1 |
BLOME S , STAUBACH C , HENKE J , et al. Classical swine fever-an updated review[J]. Viruses, 2017, 9 (4): 86.
doi: 10.3390/v9040086
|
2 |
MOENNIG V , FLOEGEL-NIESMANN G , GREISER-WILKE I . Clinical signs and epidemiology of classical swine fever: a review of new knowledge[J]. Vet J, 2003, 165 (1): 11- 20.
doi: 10.1016/S1090-0233(02)00112-0
|
3 |
XIA S L , DU M L , LEI J L , et al. Piglets with maternally derived antibodies from sows immunized with rAdV-SFV-E2 were completely protected against lethal CSFV challenge[J]. Vet Microbiol, 2016, 190, 38- 42.
doi: 10.1016/j.vetmic.2016.05.007
|
4 |
FAN S Q , WU K K , LUO C W , et al. Dual NDP52 function in persistent CSFV infection[J]. Front Microbiol, 2019, 10, 2962.
|
5 |
ROSSI S , STAUBACH C , BLOME S , et al. Controlling of CSFV in European wild boar using oral vaccination: a review[J]. Front Microbiol, 2015, 6, 1141.
|
6 |
TOLEDO J R , SÁNCHEZ O , MONTESINO R , et al. Highly protective E2-CSFV vaccine candidate produced in the mammary gland of adenoviral transduced goats[J]. J Biotechnol, 2008, 133 (3): 370- 376.
doi: 10.1016/j.jbiotec.2007.09.014
|
7 |
MAURER R , STETTLER P , RUGGLI N , et al. Oronasal vaccination with classical swine fever virus (CSFV) replicon particles with either partial or complete deletion of the E2 gene induces partial protection against lethal challenge with highly virulent CSFV[J]. Vaccine, 2005, 23 (25): 3318- 3328.
doi: 10.1016/j.vaccine.2005.01.076
|
8 |
DESSAIN S K , ADEKAR S P , STEVENS J B , et al. High efficiency creation of human monoclonal antibody-producing hybridomas[J]. J Immunol Methods, 2004, 291 (1/2): 109- 122.
|
9 |
HOOGENBOOM H R . Selecting and screening recombinant antibody libraries[J]. Nat Biotechnol, 2005, 23 (9): 1105- 1116.
doi: 10.1038/nbt1126
|
10 |
CORONELLA J A , TELLEMAN P , TRUONG T D , et al. Amplification of IgG VH and VL (Fab) from single human plasma cells and B cells[J]. Nucleic Acids Res, 2000, 28 (20): e85.
doi: 10.1093/nar/28.20.e85
|
11 |
CORSIERO E , BOMBARDIERI M , CARLOTTI E , et al. Single cell cloning and recombinant monoclonal antibodies generation from RA synovial B cells reveal frequent targeting of citrullinated histones of NETs[J]. Ann Rheum Dis, 2016, 75 (10): 1866- 1875.
doi: 10.1136/annrheumdis-2015-208356
|
12 |
LI K , WANG S , CAO Y M , et al. Development of foot-and-mouth disease virus-neutralizing monoclonal antibodies derived from plasmablasts of infected cattle and their germline gene usage[J]. Front Immunol, 2019, 10, 2870.
doi: 10.3389/fimmu.2019.02870
|
13 |
VAN RIJN P A , BOSSERS A , WENSVOORT G , et al. Classical swine fever virus (CSFV) envelope glycoprotein E2 containing one structural antigenic unit protects pigs from lethal CSFV challenge[J]. J Gen Virol, 1996, 77 (Pt 11): 2737- 2745.
|
14 |
WANG L H , MADERA R , LI Y Z , et al. Recent advances in the diagnosis of classical swine fever and future perspectives[J]. Pathogens, 2020, 9 (8): 658.
doi: 10.3390/pathogens9080658
|
15 |
DONG X N , CHEN Y H . Candidate peptide-vaccines induced immunity against CSFV and identified sequential neutralizing determinants in antigenic domain A of glycoprotein E2[J]. Vaccine, 2006, 24 (11): 1906- 1913.
doi: 10.1016/j.vaccine.2005.10.039
|
16 |
ZHANG Y M , ZHANG W J , CHENG J , et al. Designing a novel E2-IFN-γ fusion protein against CSFV by immunoinformatics and structural vaccinology approaches[J]. Appl Microbiol Biotechnol, 2022, 106 (9/10): 3611- 3623.
|
17 |
ZHANG H W , WEN W , ZHAO Z K , et al. Enhanced protective immunity to CSFV E2 subunit vaccine by using IFN-γ as immunoadjuvant in weaning piglets[J]. Vaccine, 2018, 36 (48): 7353- 7360.
doi: 10.1016/j.vaccine.2018.10.030
|
18 |
KIVI G , TEESALU K , PARIK J , et al. HybriFree: a robust and rapid method for the development of monoclonal antibodies from different host species[J]. BMC Biotechnol, 2016, 16, 2.
doi: 10.1186/s12896-016-0232-6
|
19 |
LIAO X F , MAKRIS M , LUO X M . Fluorescence-activated cell sorting for purification of plasmacytoid dendritic cells from the mouse bone marrow[J]. J Vis Exp, 2016, (117): 54641.
|
20 |
MENG W X , LI L K , XIONG W , et al. Efficient generation of monoclonal antibodies from single rhesus macaque antibody secreting cells[J]. mAbs, 2015, 7 (4): 707- 718.
doi: 10.1080/19420862.2015.1051440
|
21 |
CHANG C Y , HUANG C C , LIN Y J , et al. Antigenic domains analysis of classical swine fever virus E2 glycoprotein by mutagenesis and conformation-dependent monoclonal antibodies[J]. Virus Res, 2010, 149 (2): 183- 189.
doi: 10.1016/j.virusres.2010.01.016
|