畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (6): 2264-2271.doi: 10.11843/j.issn.0366-6964.2023.06.006
张琰, 刘佳悦, 吴梅金, 周家豪, 刁洪秀*
收稿日期:
2022-10-31
出版日期:
2023-06-23
发布日期:
2023-06-16
通讯作者:
刁洪秀,主要从事小动物肿瘤、兽医麻醉与镇痛研究,E-mail:diaohongxiu@yeah.net
作者简介:
张琰(2000-),女,福建龙岩人,硕士,主要从事lncRNA与犬肿瘤研究,E-mail:774332889@qq.com
基金资助:
ZHANG Yan, LIU Jiayue, WU Meijin, ZHOU Jiahao, DIAO Hongxiu*
Received:
2022-10-31
Online:
2023-06-23
Published:
2023-06-16
摘要: 犬肿瘤性疾病是兽医临床上常发的一种疾病,发病率高且危害大,是造成犬死亡的重要原因之一,尤其是对中老年犬。为了更好地诊断、治疗犬肿瘤性疾病,识别潜在的生物标志物和治疗靶点具有重要意义。非编码RNA(non-coding RNA, ncRNA)是一类不编码蛋白质并具有众多功能的RNA分子,能够通过调节基因转录参与肿瘤细胞发生发展过程,有望成为犬肿瘤性疾病诊断与治疗的生物标志物和潜在治疗靶点。因此,本文针对非编码RNA在犬乳腺肿瘤、黑色素瘤以及骨肉瘤中的诊断价值及应用前景进行综述,以期为犬肿瘤的诊断、预防和治疗提供新思路。
中图分类号:
张琰, 刘佳悦, 吴梅金, 周家豪, 刁洪秀. 非编码RNA作为犬肿瘤潜在生物标志物的研究进展[J]. 畜牧兽医学报, 2023, 54(6): 2264-2271.
ZHANG Yan, LIU Jiayue, WU Meijin, ZHOU Jiahao, DIAO Hongxiu. Research Progress of Non-coding RNA as A Potential Biomarker for Canine Tumors[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2264-2271.
[1] | VAIL D M, THAMM D H, LIPTAK J. Withrow and macewen's small animal clinical oncology[M]. 6th ed. St. Louis: Elsevier, 2019. |
[2] | BRONSON R T. Variation in age at death of dogs of different sexes and breeds[J]. American J Vet Res, 1982, 43(11):2057-2059. |
[3] | MUKHERJEE S. The emperor of all maladies:a biography of cancer[M]. New York: Scribner, 2011. |
[4] | 王琭璊, 胡婧, 张佳, 等. 非编码RNA在哺乳动物中介导环境暴露信息的研究进展[J]. 中国科学:生命科学, 2022, 52(8):1137-1147.WANG L M, HU J, ZHANG J, et al. Role of Non-coding RNAs in response to environmental exposure and mediating epigenetic inheritance in mammals[J]. Scientia Sinica Vitae, 2022, 52(8):1137-1147. (in Chinese) |
[5] | 聂世豪, 刘浩, 卢瑗瑗. 非编码RNA在肿瘤中对EGFR及相关信号通路的作用和机制[J]. 中国癌症防治杂志, 2022, 14(5):564-568.NIE S H, LIU H, LU Y Y. Role and mechanism of non-coding RNA on EGFR and related signaling pathways in tumors[J]. Chinese Journal of Oncology Prevention and Treatment, 2022, 14(5):564-568. (in Chinese) |
[6] | YAN H W, BU P C. Non-coding RNA in cancer[J]. Essays Biochem, 2021, 65(4):625-639. |
[7] | VOS P D, LEEDMAN P J, FILIPOVSKA A, et al. Modulation of miRNA function by natural and synthetic RNA-binding proteins in cancer[J]. Cell Mol Life Sci, 2019, 76(19):3745-3752. |
[8] | ALLES J, FEHLMANN T, FISCHER U, et al. An estimate of the total number of true human miRNAs[J]. Nucleic Acids Res, 2019, 47(7):3353-3364. |
[9] | LOH H Y, NORMAN B P, LAI K S, et al. The regulatory role of microRNAs in breast cancer[J]. Int J Mol Sci, 2019, 20(19):4940. |
[10] | HAYES J, PERUZZI P P, LAWLER S. MicroRNAs in cancer:biomarkers, functions and therapy[J]. Trends Mol Med, 2014, 20(8):460-469. |
[11] | RAHMAN M M, BRANE A C, TOLLEFSBOL T O. MicroRNAs and epigenetics strategies to reverse breast cancer[J]. Cells, 2019, 8(10):1214. |
[12] | POIRIER F, CHAN C T J, TIMMONS P M, et al. The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo[J]. Development, 1991, 113(4):1105-1114. |
[13] | WUTZ A. Gene silencing in X-chromosome inactivation:advances in understanding facultative heterochromatin formation[J]. Nat Rev Genet, 2011, 12(8):542-553. |
[14] | ZHAO K M, WANG X W, HU Y. Identification of lncRNA-Protein Interactions by CLIP and RNA Pull-Down Assays[M]//NAVARRO A. Long Non-Coding RNAs in Cancer. New York: Humana, 2021:231-242. |
[15] | LIU T T, LI R, LIU X, et al. LncRNA XIST acts as a MicroRNA-520 sponge to regulate the Cisplatin resistance in NSCLC cells by mediating BAX through CeRNA network[J]. Int J Med Sci, 2021, 18(2):419-431. |
[16] | BRIDGES M C, DAULAGALA A C, KOURTIDIS A. LNCcation:lncRNA localization and function[J]. J Cell Biol, 2021, 220(2):e202009045. |
[17] | ESPOSITO R, BOSCH N, LANZÓS A, et al. Hacking the cancer genome: profiling therapeutically actionable long non-coding RNAs using CRISPR-Cas9 screening[J]. Cancer Cell, 2019, 35(4):545-557. |
[18] | KIM J, PIAO H L, KIM B J, et al. Long noncoding RNA MALAT1 suppresses breast cancer metastasis[J]. Nat Genet, 2018, 50(12):1705-1715. |
[19] | PENG W X, KOIRALA P, MO Y Y. LncRNA-mediated regulation of cell signaling in cancer[J]. Oncogene, 2017, 36(41):5661-5667. |
[20] | LE BÉGUEC C, WUCHER V, LAGOUTTE L, et al. Characterisation and functional predictions of canine long non-coding RNAs[J]. Sci Rep, 2018, 8(1):13444. |
[21] | KASZAK I, RUSZCZAK A, KANAFA S, et al. Current biomarkers of canine mammary tumors[J]. Acta Vet Scand, 2018, 60(1):66. |
[22] | SALAS Y, MÁRQUEZ A, DIAZ D, et al. Epidemiological study of mammary tumors in female dogs diagnosed during the period 2002-2012:a growing animal health problem[J]. PLoS One, 2015, 10(5):e0127381. |
[23] | BENAVENTE M A, BIANCHI C P, ABA M A. Canine mammary tumors:risk factors, prognosis and treatments[J]. J Vet Adv, 2016, 6(8):1291-1300. |
[24] | 陈亚方. 犬肿瘤病的发病情况调查及诊治[D]. 郑州: 河南农业大学, 2018.CHEN Y F. Investigation of the incidence and diagnosis and treatment of canine tumor disease[D]. Zhengzhou: Henan Agricultural University, 2018. (in Chinese) |
[25] | STRATMANN N, FAILING K, RICHTER A, et al. Mammary tumor recurrence in bitches after regional mastectomy[J]. Vet Surg, 2008, 37(1):82-86. |
[26] | WAGNER S, WILLENBROCK S, NOLTE I, et al. Comparison of non-coding RNAs in human and canine cancer[J]. Front Genet, 2013, 4:46. |
[27] | 任晓丽, 范玉营, 石冬梅, 等. miR-502在犬乳腺癌中的表达及意义[J]. 畜牧兽医学报, 2020, 51(1):193-197.REN X L, FAN Y Y, SHI D M, et al. Expressions of miR-502 in canine breast cancer and clinical significance[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(1):193-197. (in Chinese) |
[28] | BULKOWSKA M, RYBICKA A, SENSES K M, et al. MicroRNA expression patterns in canine mammary cancer show significant differences between metastatic and non-metastatic tumours[J]. BMC Cancer, 2017, 17(1):728. |
[29] | RAMADAN E S, SALEM N Y, EMAM I A, et al. MicroRNA-21 expression, serum tumor markers, and immunohistochemistry in canine mammary tumors[J]. Vet Res Commun, 2022, 46(2):377-388. |
[30] | JAIN M, INGOLE S D, DESHMUKH R S, et al. CEA, CA 15-3, and miRNA expression as potential biomarkers in canine mammary tumors[J]. Chromosome Res, 2021, 29(2):175-188. |
[31] | FISH E J, MARTINEZ-ROMERO E G, DEINNOCENTES P, et al. Circulating microRNA as biomarkers of canine mammary carcinoma in dogs[J]. J Vet Intern Med, 2020, 34(3):1282-1290. |
[32] | GHAFOURI-FARD S, ESMAEILI M, TAHERI M. H19 lncRNA:roles in tumorigenesis[J]. Biomed Pharmacother, 2020, 123:109774. |
[33] | KALLEN A N, ZHOU X B, XU J, et al. The imprinted H19 lncRNA antagonizes let-7 MicroRNAs[J]. Mol Cell, 2013, 52(1):101-112. |
[34] | AN F, HOU Z J, WANG X C, et al. A microfluidic demonstration of "cluster-sprout-infiltrating" mode for hypoxic mesenchymal stem cell guided cancer cell migration[J]. Biomaterials, 2022, 290:121848. |
[35] | 胡鑫, 刘剑仑, 韦薇, 等. lncRNA H19对乳腺癌细胞增殖、侵袭、迁移能力的影响及其分子机制[J]. 山东医药, 2020, 60(35):30-33.HU X, LIU J L, WEI W, et al. Effects of lncRNA H19 on proliferation, invasion, and migration of breast cancer cells and the mechanism[J]. Shandong Medical Journal, 2020, 60(35):30-33. (in Chinese) |
[36] | GUPTA R A, SHAH N, WANG K C, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J]. Nature, 2010, 464(7291):1071-1076. |
[37] | ZHAO W Y, GENG D H, LI S Q, et al. LncRNA HOTAIR influences cell growth, migration, invasion, and apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer[J]. Cancer Med, 2018, 7(3):842-855. |
[38] | SILVA J M, BOCZEK N J, BERRES M W, et al. LSINCT5 is over expressed in breast and ovarian cancer and affects cellular proliferation[J]. RNA Biol, 2011, 8(3):496-505. |
[39] | LU B C, WU J Y, CHEN H B, et al. LncRNA expression profiles in canine mammary tumors identify lnc34977 as a promoter of proliferation, migration and invasion of canine mammary tumor cells[J]. Vet Sci, 2022, 9(2):82. |
[40] | XU E S, HU M X, GE R D, et al. LncRNA-42060 regulates tamoxifen sensitivity and tumor development via regulating the miR-204-5p/SOX4 axis in canine mammary gland tumor cells[J]. Front Vet Sci, 2021, 8:654694. |
[41] | NISHIYA A T, MASSOCO C O, FELIZZOLA C R, et al. Comparative aspects of canine melanoma[J]. Vet Sci, 2016, 3(1):7. |
[42] | LAGARRIGUE S, LORTHIOIS M, DEGALEZ F, et al. LncRNAs in domesticated animals:from dog to livestock species[J]. Mamm Genome, 2022, 33(2):248-270. |
[43] | HITTE C, LE BÉGUEC C, CADIEU E, et al. Genome-wide analysis of long non-coding RNA profiles in canine oral melanomas[J]. Genes, 2019, 10(6):477. |
[44] | PROUTEAU A, MOTTIER S, PRIMOT A, et al. Canine oral melanoma genomic and transcriptomic study defines two molecular subgroups with different therapeutical targets[J]. Cancers, 2022, 14(2):276. |
[45] | RAHMAN M, LAI Y C, HUSNA A A, et al. Micro RNA transcriptome profile in canine oral melanoma[J]. Int J Mol Sci, 2019, 20(19):4832. |
[46] | CHEN H W, LAI Y C, RAHMAN M, et al. Micro RNA differential expression profile in canine mammary gland tumor by next generation sequencing[J]. Gene, 2022, 818:146237. |
[47] | HUSNA A A, RAHMAN M, LAI Y C, et al. Identification of melanoma-specific exosomal miRNAs as the potential biomarker for canine oral melanoma[J]. Pigment Cell Melanoma Res, 2021, 34(6):1062-1073. |
[48] | YANG C M, WANG T H, CHEN H C, et al. Aberrant DNA hypermethylation-silenced SOX21-AS1 gene expression and its clinical importance in oral cancer[J]. Clin Epigenetics, 2016, 8:129. |
[49] | LESSARD L, LIU M, MARZESE D M, et al. The CASC15 long intergenic noncoding RNA locus is involved in melanoma progression and phenotype switching[J]. J Invest Dermatol, 2015, 135(10):2464-2474. |
[50] | NANCE R L, COOPER S J, STARENKI D, et al. Transcriptomic analysis of canine osteosarcoma from a precision medicine perspective reveals limitations of differential gene expression studies[J]. Genes, 2022, 13(4):680. |
[51] | BELAYNEH R, FOURMAN M S, BHOGAL S, et al. Update on osteosarcoma[J]. Curr Oncol Rep, 2021, 23(6):71. |
[52] | SIMPSON S, DUNNING M D, DE BROT S, et al. Comparative review of human and canine osteosarcoma:morphology, epidemiology, prognosis, treatment and genetics[J]. Acta Vet Scand, 2017, 59(1):71. |
[53] | SARVER A L, THAYANITHY V, SCOTT M C, et al. MicroRNAs at the human 14q32 locus have prognostic significance in osteosarcoma[J]. Orphanet J Rare Dis, 2013, 8:7. |
[54] | DAILEY D D, HESS A M, BOUMA G J, et al. MicroRNA expression changes and integrated pathways associated with poor outcome in canine osteosarcoma[J]. Front Vet Sci, 2021, 8:637622. |
[55] | XU Q L, CHENG L, CHEN J Y, et al. RETRACTED ARTICLE:miR-376a inhibits the proliferation and invasion of osteosarcoma by targeting FBXO11[J]. Hum Cell, 2019, 32(3):390-396. |
[56] | HO X D, PHUNG P, LE V Q, et al. Whole transcriptome analysis identifies differentially regulated networks between osteosarcoma and normal bone samples[J]. Exp Biol Med, 2017, 242(18):1802-1811. |
[57] | KIM H, YOO S, ZHOU R J, et al. Oncogenic role of SFRP2 in p53-mutant osteosarcoma development via autocrine and paracrine mechanism[J]. Proc Natl Acad Sci U S A, 2018, 115(47):E11128-E11137. |
[58] | QI P, XU M D, NI S J, et al. Low expression of LOC285194 is associated with poor prognosis in colorectal cancer[J]. J Transl Med, 2013, 11:122. |
[59] | LUO W, HE H B, XIAO W F, et al. MALAT1 promotes osteosarcoma development by targeting TGFA via MIR376A[J]. Oncotarget, 2016, 7(34):54733-54743. |
[60] | PU Y C, WANG J, WANG S Z. Role of autophagy in drug resistance and regulation of osteosarcoma (review)[J]. Mol Clin Oncol, 2022, 16(3):72. |
[61] | XIE W P, CHANG W J, WANG X L, et al. Allicin inhibits osteosarcoma growth by promoting oxidative stress and autophagy via the inactivation of the lncRNA MALAT1-miR-376a-Wnt/β-catenin signaling pathway [J]. Oxid Med Cell Longev, 2022, 2022:4857814. |
[62] | GHAFOURI-FARD S, SHOOREI H, MOHAQIQ M, et al. Exploring the role of non-coding RNAs in autophagy[J]. Autophagy, 2022, 18(5):949-970. |
[63] | ENTEZARI M, TAHERIAZAM A, OROUEI S, et al. LncRNA-miRNA axis in tumor progression and therapy response:an emphasis on molecular interactions and therapeutic interventions[J]. Biomed Pharmacother, 2022, 154:113609. |
[1] | 张为, 潘志豪, 方富贵. 表观遗传学调控雌性动物初情期启动的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1875-1882. |
[2] | 张颖, 宋春莲, 张莹, 沈鸿, 舒相华, 杨洪贵. 伪狂犬病病毒感染小鼠基质金属蛋白酶-9介导紧密连接蛋白损伤血脑屏障的研究[J]. 畜牧兽医学报, 2024, 55(5): 2186-2194. |
[3] | 李鹏飞, 高桂琴, 周广青, 吴锦艳, 颜新敏, 曹小安, 何继军, 袁莉刚, 尚佑军. 山羊地方性鼻内肿瘤病毒TaqMan荧光定量RT-PCR检测方法的建立及应用[J]. 畜牧兽医学报, 2024, 55(5): 2259-2266. |
[4] | 刘伟烨, 黄雪伟. 非编码RNA在传染性法氏囊病病毒感染中的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1488-1498. |
[5] | 张艳敏, 赵东旭, 王文龙. 捻转血矛线虫对伊维菌素的耐药机制[J]. 畜牧兽医学报, 2024, 55(4): 1511-1520. |
[6] | 李艺璇, 牛静轶, 李港, 万超, 方仁东, 叶超. 伪狂犬病病毒编码的内膜蛋白生物学功能研究进展[J]. 畜牧兽医学报, 2024, 55(3): 957-970. |
[7] | 高龙, 常心怡, 李程, 赵晓亚, 李汶洁, 范浩谦, 马静云. 表达外源基因SPAM1重组CAV-2溶瘤病毒的构建与拯救[J]. 畜牧兽医学报, 2024, 55(3): 1228-1237. |
[8] | 谭宁, 李巴仑, 韩苗, 李琛琛, 景远翔, 寇正, 李娜, 彭莎, 赵献军, 华进联. 米托蒽醌甲磺酸盐预处理脂肪间充质干细胞对犬糖尿病的治疗效果评价[J]. 畜牧兽医学报, 2024, 55(3): 1328-1344. |
[9] | 张馨蕊, 付予, 杨卓, 沈文娟, 陶金忠. 奶牛早期妊娠诊断蛋白的研究[J]. 畜牧兽医学报, 2024, 55(2): 451-460. |
[10] | 李春晓, 安尉, 高博泉, 王振龙, 韩冰, 陶慧, 王金全, 王秀敏. 猫犬主要过敏原蛋白的最新研究进展[J]. 畜牧兽医学报, 2024, 55(2): 471-480. |
[11] | 毕振威, 王文杰, 刘雅坤, 彭大新. 新的犬ANP32A的克隆及其在流感病毒跨物种感染中的作用[J]. 畜牧兽医学报, 2024, 55(2): 660-669. |
[12] | 史泽风, 李翎旭, 郭译文, 廖云, 孙昭宇, 王来荣, 杨德吉, 姚大伟. 基于高分辨率熔解曲线检测MD肿瘤微卫星不稳定性[J]. 畜牧兽医学报, 2024, 55(2): 759-769. |
[13] | 郭云鹏, 牛顿, 李爽, 姜兴昊, 张立夏, 任桂萍, 尹杰超. 利用1型糖尿病小鼠模型分析犬成纤维生长因子21的长效降糖效果[J]. 畜牧兽医学报, 2024, 55(2): 770-784. |
[14] | 陆江, 朱道仙, 卢劲晔, 刘莉, 郝福星, 吴植, 卢炜, 刘静. 高聚合度菊粉通过调节肠-脂肪组织轴改善高脂饮食诱导的犬肥胖[J]. 畜牧兽医学报, 2023, 54(9): 3941-3950. |
[15] | 石磊, 马裔寒, 袁占奎, 孙艺虹, 王虓, 张彬, 乔康佳. 胫骨平台水平化截骨术治疗犬前交叉韧带疾病的手术效果和并发症分析[J]. 畜牧兽医学报, 2023, 54(9): 3964-3976. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||