畜牧兽医学报 ›› 2022, Vol. 53 ›› Issue (10): 3335-3344.doi: 10.11843/j.issn.0366-6964.2022.10.007
罗俊1,2, 刘金玲1,2, 郑鹿平1,2, 罗琴3, 滕蔓1,2*
收稿日期:
2021-11-11
出版日期:
2022-10-23
发布日期:
2022-10-26
通讯作者:
滕蔓,主要从事家禽免疫抑制病与肿瘤病研究,E-mail:tm135@aliyun.com
作者简介:
罗俊(1978-),男,河南罗山人,研究员,博士,主要从事动物病毒学研究,E-mail:luojun593@aliyun.com
基金资助:
LUO Jun1,2, LIU Jinling1,2, ZHENG Luping1,2, LUO Qin3, TENG Man1,2*
Received:
2021-11-11
Online:
2022-10-23
Published:
2022-10-26
摘要: 基于CRISPR/Cas9系统的基因编辑是最新一代的基因组编辑技术,在向导RNA (gRNA)的介导下几乎可以靶向编辑任何一种基因,实现基因组的定点突变、敲除或插入。近年来将CRISPR/Cas9基因编辑技术应用于大基因组DNA病毒的研究,尤其是用于疱疹病毒的基因编辑已成为病毒学研究领域的最新国际热点。自2016年首次报道利用CRISPR/Cas9系统改造家禽疱疹病毒如马立克病病毒(MDV)基因组以来,短短5年时间已全面应用于家禽疱疹病毒的蛋白编码基因和非编码RNA基因的编辑、基因缺失疫苗和重组疫苗研发、抗病毒治疗以及抗病育种等领域。本文详细综述了当前CRISPR/Cas9基因编辑技术在家禽疱疹病毒中的应用进展和最新成果,并对其面临的问题和前景进行了展望,以期为后续研究提供重要参考。
中图分类号:
罗俊, 刘金玲, 郑鹿平, 罗琴, 滕蔓. 家禽疱疹病毒CRISPR/Cas9基因编辑最新研究进展[J]. 畜牧兽医学报, 2022, 53(10): 3335-3344.
LUO Jun, LIU Jinling, ZHENG Luping, LUO Qin, TENG Man. Recent Advances in Engineering Avian Herpesviruses by CRISPR/Cas9-based Gene Editing Technology[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3335-3344.
[1] | DEVEAU H, GARNEAU J E, MOINEAU S.CRISPR/Cas system and its role in phage-bacteria interactions[J].Annu Rev Microbiol, 2010, 64(1):475-493. |
[2] | DELTCHEVA E, CHYLINSKI K, SHARMA C M, et al.CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J].Nature, 2011, 471(7340):602-607. |
[3] | CONG L, RAN F A, COX D, et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science, 2013, 339(6121):819-823. |
[4] | MALI P, ESVELT K M, CHURCH G M.Cas9 as a versatile tool for engineering biology[J].Nat Methods, 2013, 10(10):957-963. |
[5] | JIANG W Y, BIKARD D, COX D, et al.RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J].Nat Biotechnol, 2013, 31(3):233-239. |
[6] | CHANG N N, SUN C H, GAO L, et al.Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos[J].Cell Res, 2013, 23(4):465-472. |
[7] | RYAN O W, CATE J H D.Multiplex engineering of industrial yeast genomes using CRISPRm[J].Methods Enzymol, 2014, 546:473-489. |
[8] | WANG H Y, YANG H, SHIVALILA C S, et al.One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J].Cell, 2013, 153(4):910-918. |
[9] | BASSETT A, LIU J L.CRISPR/Cas9 mediated genome engineering in Drosophila[J].Methods, 2014, 69(2):128-136. |
[10] | WARD J D.Rendering the intractable more tractable:tools from Caenorhabditis elegans ripe for import into parasitic nematodes[J].Genetics, 2015, 201(4):1279-1294. |
[11] | KENNEDY E M, KORNEPATI A V R, CULLEN B R.Targeting hepatitis B virus cccDNA using CRISPR/Cas9[J].Antiviral Res, 2015, 123:188-192. |
[12] | HU Z, YU L, ZHU D, et al.Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells[J].Biomed Res Int, 2014, 2014:612823. |
[13] | BI Y W, SUN L, GAO D D, et al.High-efficiency targeted editing of large viral genomes by RNA-guided nucleases[J].PLoS Pathog, 2014, 10(5):e1004090. |
[14] | WANG J B, QUAKE S R.RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection[J].Proc Natl Acad Sci U S A, 2014, 111(36):13157-13162. |
[15] | GERGEN J, COULON F, CRENEGUY A, et al.Multiplex CRISPR/Cas9 system impairs HCMV replication by excising an essential viral gene[J].PLoS One, 2018, 13(2):e0192602. |
[16] | TSO F Y, WEST J T, WOOD C.Reduction of Kaposi's sarcoma-associated herpesvirus latency using CRISPR-Cas9 to edit the latency-associated nuclear antigen gene[J].J Virol, 2019, 93(7):e02183-18. |
[17] | XU A T, QIN C, LANG Y, et al.A simple and rapid approach to manipulate pseudorabies virus genome by CRISPR/Cas9 system[J].Biotechnol Lett, 2015, 37(6):1265-1272. |
[18] | ZOU Z, HUANG K, WEI Y M, et al.Construction of a highly efficient CRISPR/Cas9-mediated duck enteritis virus-based vaccine against H5N1 avian influenza virus and duck Tembusu virus infection[J].Sci Rep, 2017, 7(1):1478. |
[19] | YAO Y, BASSETT A, NAIR V.Targeted editing of avian herpesvirus vaccine vector using CRISPR/Cas9 nucleases[J].J Vaccine Technol, 2016, 1:1-7. |
[20] | BAIGENT S J, PETHERBRIDGE L J, SMITH L P, et al.Herpesvirus of turkey reconstituted from bacterial artificial chromosome clones induces protection against Marek's disease[J].J Gen Virol, 2006, 87(Pt 4):769-776. |
[21] | LIU Y Z, LI K, GAO Y L, et al.Recombinant Marek's disease virus as a vector-based vaccine against avian leukosis virus subgroup J in chicken[J].Viruses, 2016, 8(11):301. |
[22] | BALZLI C L, BERTRAN K, LEE D H, et al.The efficacy of recombinant turkey herpesvirus vaccines targeting the H5 of highly pathogenic avian influenza virus from the 2014-2015 North American outbreak[J].Vaccine, 2018, 36(1):84-90. |
[23] | LIU J X, CHEN P C, JIANG Y P, et al.A duck enteritis virus-vectored bivalent live vaccine provides fast and complete protection against H5N1 avian influenza virus infection in ducks[J].J Virol, 2011, 85(21):10989-10998. |
[24] | REDDY S M, LUPIANI B, GIMENO I M, et al.Rescue of a pathogenic Marek's disease virus with overlapping cosmid DNAs:use of a pp38 mutant to validate the technology for the study of gene function[J].Proc Natl Acad Sci U S A, 2002, 99(10):7054-7059. |
[25] | LUPIANI B, LEE L F, CUI X P, et al.Marek's disease virus-encoded meq gene is involved in transformation of lymphocytes but is dispensable for replication[J].Proc Natl Acad Sci U S A, 2004, 101(32):11815-11820. |
[26] | SCHUMACHER D, TISCHER B K, FUCHS W, et al.Reconstitution of Marek's disease virus serotype 1 (MDV-1) from DNA cloned as a bacterial artificial chromosome and characterization of a glycoprotein B-negative MDV-1 mutant[J].J Virol, 2000, 74(23):11088-11098. |
[27] | TISCHER B K, SMITH G A, OSTERRIEDER N.En passant mutagenesis:a two step markerless red recombination system[M]//BRAMAN J.In Vitro Mutagenesis Protocols.3rd ed.Humana Totowa:Springer, 2010:421-430. |
[28] | PETHERBRIDGE L, HOWES K, BAIGENT S J, et al.Replication-competent bacterial artificial chromosomes of Marek's disease virus:Novel tools for generation of molecularly defined herpesvirus vaccines[J].J Virol, 2003, 77(16):8712-8718. |
[29] | 崔红玉.鸡马立克氏病病毒细菌人工染色体的构建[D].哈尔滨:中国农业科学院, 2007.CUI H Y.Cloning of Marek's disease virus genome as an infectious bacterial artificial chromosome[D].Harbin:Chinese Academy of Agricultural Sciences, 2007.(in Chinese). |
[30] | PETHERBRIDGE L, XU H T, ZHAO Y G, et al.Cloning of Gallid herpesvirus 3 (Marek's disease virus serotype-2) genome as infectious bacterial artificial chromosomes for analysis of viral gene functions[J].J Virol Methods, 2009, 158(1-2):11-17. |
[31] | PETHERBRIDGE L, BROWN A C, BAIGENT S J, et al.Oncogenicity of virulent Marek's disease virus cloned as bacterial artificial chromosomes[J].J Virol, 2004, 78(23):13376-13380. |
[32] | SUN A J, LAWRENCE P, ZHAO Y G, et al.A BAC clone of MDV strain GX0101 with REV-LTR integration retained its pathogenicity[J].Chin Sci Bull, 2009, 54(15):2641-2647. |
[33] | REDDY S M, SUN A J, KHAN O A, et al.Cloning of a very virulent plus, 686 strain of Marek's disease virus as a bacterial artificial chromosome[J].Avian Dis, 2013, 57(2 Suppl):469-473. |
[34] | JAROSINSKI K W, MARGULIS N G, KAMIL J P, et al.Horizontal transmission of Marek's disease virus requires US2, the UL13 protein kinase, and gC[J].J Virol, 2007, 81(19):10575-10587. |
[35] | SPATZ S J, SMITH L P, BAIGENT S J, et al.Genotypic characterization of two bacterial artificial chromosome clones derived from a single DNA source of the very virulent gallid herpesvirus-2 strain C12/130[J].J Gen Virol, 2011, 92(Pt 7):1500-1507. |
[36] | AFONSO C L, TULMAN E R, LU Z, et al.The genome of Turkey herpesvirus[J].J Virol, 2001, 75(2):971-978. |
[37] | BUBLOT M, SHARMA J.Vaccination against Marek's disease[M]//DAVISON F, NAIR V.Marek's Disease.Amsterdam:Elsevier, 2004:168-185. |
[38] | CRONENBERG A M, VAN GEFFEN C E, DORRESTEIN J, et al.Vaccination of broilers with HVT expressing an Eimeria acervulina antigen improves performance after challenge with Eimeria[J].Acta Virol, 1999, 43(2-3):192-197. |
[39] | LI Y Q, REDDY K, REID S M, et al.Recombinant herpesvirus of turkeys as a vector-based vaccine against highly pathogenic H7N1 avian influenza and Marek's disease[J].Vaccine, 2011, 29(46):8257-8266. |
[40] | REDDY S K, SHARMA J M, AHMAD J, et al.Protective efficacy of a recombinant herpesvirus of turkeys as an in ovo vaccine against Newcastle and Marek's diseases in specific-pathogen-free chickens[J].Vaccine, 1996, 14(6):469-477. |
[41] | TSUKAMOTO K, SAITO S, SAEKI S, et al.Complete, long-lasting protection against lethal infectious bursal disease virus challenge by a single vaccination with an avian herpesvirus vector expressing VP2 antigens[J].J Virol, 2002, 76(11):5637-5645. |
[42] | HECKERT R A, RIVA J, COOK S, et al.Onset of protective immunity in chicks after vaccination with a recombinant herpesvirus of turkeys vaccine expressing Newcastle disease virus fusion and hemagglutinin-neuraminidase antigens[J].Avian Dis, 1996, 40(4):770-777. |
[43] | ZHANG Y Y, TANG N, SADIGH Y, et al.Application of CRISPR/Cas9 gene editing system on MDV-1 genome for the study of gene function[J].Viruses, 2018, 10(6):279. |
[44] | 张 峰, 于正浩, 兰兴鸽, 等.利用CRISPR/Cas9技术缺失MDV分离株meq基因的研究[J].中国家禽, 2019, 41(9):26-32.ZHANG F, YU Z H, LAN X G, et al.Study on deletion of meq gene of MDV isolate by CRISPR/Cas9 system[J].China Poultry, 2019, 41(9):26-32.(in Chinese) |
[45] | 滕 蔓, 郑鹿平, 刘金玲, 等.利用CRISPR/Cas9基因编辑技术构建马立克病病毒超强毒株原癌基因meq缺失株及其鉴定[J].病毒学报, 2020, 36(4):675-684.TENG M, ZHENG L P, LIU J L, et al.Editing of oncogenic meq of very-virulent Marek's disease virus by the CRISPR/Cas9 system[J].Chinese Journal of Virology, 2020, 36(4):675-684.(in Chinese) |
[46] | 杨 森, 滕 蔓, 刘金玲, 等.鸡马立克病疫苗株CVI988/Rispens meq基因编辑及缺失毒株的构建与鉴定[J].畜牧兽医学报, 2020, 51(8):1970-1976.YANG S, TENG M, LIU J L, et al.Construction of meq deleted strain by gene editing of Marek's disease vaccine strain CVI988/Rispens via the CRISPR/Cas9 system and identification[J].Acta Veterinaria et Zootechnica Sinica, 2020, 51(8):1970-1976.(in Chinese) |
[47] | LUO J, TENG M, ZAI X S, et al.Efficient mutagenesis of Marek's disease virus-encoded microRNAs using a CRISPR/Cas9-based gene editing system[J].Viruses, 2020, 12(4):466. |
[48] | YU Z H, TENG M, SUN A J, et al.Virus-encoded miR-155 ortholog is an important potential regulator but not essential for the development of lymphomas induced by very virulent Marek's disease virus[J].Virology, 2014, 448:55-64. |
[49] | TENG M, YU Z H, SUN A J, et al.The significance of the individual meq-clustered miRNAs of Marek's disease virus in oncogenesis[J].J Gen Virol, 2015, 96(Pt 3):637-649. |
[50] | TENG M, YU Z H, ZHAO P, et al.Putative roles as oncogene or tumour suppressor of the Mid-clustered microRNAs in Gallid alphaherpesvirus 2 (GaHV2) induced Marek's disease lymphomagenesis[J].J Gen Virol, 2017, 98(5):1097-1112. |
[51] | 楚钰淑, 滕 蔓, 周子誉, 等.LAT基因簇miRNA的CRISPR/Cas9基因编辑对马立克病病毒体外复制的影响分析[J].病毒学报, 2021, 37(6):1428-1439.CHU Y S, TENG M, ZHOU Z Y, et al.CRISPR/Cas9 system-based gene editing of the LAT-clustered microRNAs and its influence on in vitro replication of Marek's disease virus[J].Chinese Journal of Virology, 2021, 37(6):1428-1439.(in Chinese) |
[52] | ZHAO Y G, PETHERBRIDGE L, SMITH L P, et al.Self-excision of the BAC sequences from the recombinant Marek's disease virus genome increases replication and pathogenicity[J].Virol J, 2008, 5:19. |
[53] | ZHANG Y Y, LUO J, TANG N, et al.Targeted editing of the pp38 gene in Marek's disease virus-transformed cell lines using CRISPR/Cas9 system[J].Viruses, 2019, 11(5):391. |
[54] | ZHANG Y Y, TANG N, LUO J, et al.Marek's disease virus-encoded microRNA 155 ortholog critical for the induction of lymphomas is not essential for the proliferation of transformed cell lines[J].J Virol, 2019, 93(17):e00713-19. |
[55] | TANG N, ZHANG Y Y, PEDRERA M, et al.A simple and rapid approach to develop recombinant avian herpesvirus vectored vaccines using CRISPR/Cas9 system[J].Vaccine, 2018, 36(5):716-722. |
[56] | TANG N, ZHANG Y Y, SADIGH Y, et al.Generation of a triple insert live avian herpesvirus vectored vaccine using CRISPR/Cas9-based gene editing[J].Vaccines (Basel), 2020, 8(1):97. |
[57] | CHANG P X, AMEEN F, SEALY J E, et al.Application of HDR-CRISPR/Cas9 and erythrocyte binding for rapid generation of recombinant turkey herpesvirus-vectored avian influenza virus vaccines[J].Vaccines (Basel), 2019, 7(4):192. |
[58] | LIU L T, WANG T, WANG M Y, et al.Recombinant turkey herpesvirus expressing H9 hemagglutinin providing protection against H9N2 avian influenza[J].Virology, 2019, 529:7-15. |
[59] | HAGAG I T, WIGHT D J, BARTSCH D, et al.Abrogation of Marek's disease virus replication using CRISPR/Cas9[J].Sci Rep, 2020, 10(1):10919. |
[60] | CHALLAGULLA A, JENKINS K A, O'NEIL T E, et al.In vivo inhibition of Marek's disease virus in transgenic chickens expressing Cas9 and gRNA against ICP4[J].Microorganisms, 2021, 9(1):164. |
[61] | LIU Y Z, XU Z K, ZHANG Y, et al.Marek's disease virus as a CRISPR/Cas9 delivery system to defend against avian leukosis virus infection in chickens[J].Vet Microbiol, 2020, 242:108589. |
[62] | LI K, LIU Y Z, XU Z K, et al.Prevention of avian retrovirus infection in chickens using CRISPR-Cas9 delivered by Marek's disease virus[J].Mol Ther Nucleic Acids, 2020, 21:343-353. |
[63] | CHANG P X, YAO Y X, TANG N, et al.The application of NHEJ-CRISPR/Cas9 and Cre-Lox system in the generation of bivalent duck enteritis virus vaccine against avian influenza virus[J].Viruses, 2018, 10(2):81. |
[64] | ATASOY M O, ROHAIM M A, MUNIR M.Simultaneous deletion of virulence factors and insertion of antigens into the infectious laryngotracheitis virus using NHEJ-CRISPR/Cas9 and Cre-Lox system for construction of a stable vaccine vector[J].Vaccines (Basel), 2019, 7(4):207. |
[65] | 滕 蔓, 刘金玲, 郑鹿平, 等.CRISPR/Cas9基因编辑技术在病毒学研究中的应用及进展[J].病毒学报, 2020, 36(5):946-954.TENG M, LIU J L, ZHENG L P, et al.Research progress in application of the CRISPR/Cas9 gene editing system in virology[J].Chinese Journal of Virology, 2020, 36(5):946-954.(in Chinese) |
[66] | TENG M, YAO Y X, NAIR V, et al.Latest advances of virology research using CRISPR/Cas9-based gene-editing technology and its application to vaccine development[J].Viruses, 2021, 13(5):779. |
[1] | 邱梅玉, 张雪梅, 张宁, 刘明军. 引导编辑技术的研究进展及应用[J]. 畜牧兽医学报, 2024, 55(4): 1345-1355. |
[2] | 王家丽, 杨帆, 邵文华, 黄梦瑶, 曹伟军, 蒲秀瑛, 张伟, 郑海学. Tollip敲除猪肾细胞系的构建[J]. 畜牧兽医学报, 2024, 55(4): 1810-1818. |
[3] | 张晨俭, 李隐侠, 丁强, 刘伟佳, 王慧利, 何南, 吴家顺, 曹少先. CRISPR/Cas9技术高效制备山羊SOCS2基因编辑胚胎[J]. 畜牧兽医学报, 2024, 55(1): 129-141. |
[4] | 费晓钰, 石超群, 刘雪明, 苏峰, 姜运良. CRISPR/Cas9系统介导的猪MRC1修饰基因降低PCV2复制的研究[J]. 畜牧兽医学报, 2023, 54(3): 934-946. |
[5] | 刘铃, 王丹丹, 崔凯, 马月辉, 蒋琳. 猪繁殖与呼吸综合征抗病育种研究进展[J]. 畜牧兽医学报, 2023, 54(2): 434-442. |
[6] | 陈俊贞, 权冉, 付强, 葛丽娟, 袁圆圆, 张成远, 李建林, 史慧君. 热休克蛋白HSP90B1影响牛病毒性腹泻病毒复制的研究[J]. 畜牧兽医学报, 2023, 54(2): 683-693. |
[7] | 张硕, 周雨潇, 吴海波, 索伦. 长效CRISPR/Cas9基因编辑结局的动态追踪研究[J]. 畜牧兽医学报, 2023, 54(10): 4196-4208. |
[8] | 邓敏儿, 李娜, 郭亚琼, 冯耀宇, 肖立华. CRISPR/Cas9系统在寄生原虫基因编辑中的应用[J]. 畜牧兽医学报, 2023, 54(1): 69-79. |
[9] | 赵为民, 王慧利, 曹少先, 郭日红, 王泽平, 陈哲, 徐奎, 付言峰, 李碧侠, 任守文, 程金花. 猪CD163基因的单碱基编辑研究[J]. 畜牧兽医学报, 2022, 53(4): 1041-1050. |
[10] | 李兆龙, 张惠芳, 丰志华, 方舟. 携带CRISPR/Cas9的重组腺联病毒对伪狂犬病病毒感染小鼠的治疗效应[J]. 畜牧兽医学报, 2022, 53(3): 834-846. |
[11] | 邹惠影, 李俊良, 朱化彬. 引导编辑系统的研究与应用进展[J]. 畜牧兽医学报, 2022, 53(11): 3721-3730. |
[12] | 王沛, 王萌, 李婷婷, 郑晓楠, 梁勤立, 陈小庆. 弓形虫4个假定蛋白基因缺失株的构建及其基本生物功能学研究[J]. 畜牧兽医学报, 2022, 53(10): 3598-3608. |
[13] | 李琛, 何文峰, 赵丽娜, 凡启, 杨国庆, 刘慧敏. PK-15细胞的ISG15基因敲除促进PRV的复制[J]. 畜牧兽医学报, 2022, 53(10): 3621-3630. |
[14] | 王圣楠, 王丹丹, 田文杰, 浦亚斌, 潘登科, 邢向阳, 马月辉, 蒋琳. ZBED6基因对巴马香猪脾发育的作用机制分析[J]. 畜牧兽医学报, 2021, 52(9): 2394-2405. |
[15] | 王欢, 邹惠影, 朱化彬, 赵善江. CRISPR/Cas9基因编辑技术在家畜育种新材料创制中的研究进展[J]. 畜牧兽医学报, 2021, 52(4): 851-861. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||