畜牧兽医学报 ›› 2022, Vol. 53 ›› Issue (10): 3345-3357.doi: 10.11843/j.issn.0366-6964.2022.10.008
郑晓楠1,2, 李婷婷2*, 王金磊2,3, 郑文斌1, 朱兴全1,4*
收稿日期:
2022-03-01
出版日期:
2022-10-23
发布日期:
2022-10-26
通讯作者:
朱兴全,主要从事动物寄生虫及其分子生物学研究,E-mail:xingquanzhu1@hotmail.com;李婷婷,主要从事动物寄生虫及其分子生物学研究,E-mail:litt866@163.com
作者简介:
郑晓楠(1988-),女,山西榆社人,博士生,主要从事寄生虫分子生物学研究,E-mail:zhengxiaonan8889@126.com
基金资助:
ZHENG Xiaonan1,2, LI Tingting2*, WANG Jinlei2,3, ZHENG Wenbin1, ZHU Xingquan1,4*
Received:
2022-03-01
Online:
2022-10-23
Published:
2022-10-26
摘要: 刚地弓形虫(Toxoplasma gondii)是一种重要的人兽共患寄生原虫,具有中间宿主广泛、生活史复杂、传播方式多样、呈全球性分布等特点,可感染几乎所有的恒温动物,导致人兽共患的弓形虫病。弓形虫慢性感染约1/3的世界人口,对免疫缺陷患者、孕妇、孕畜的健康更是造成严重威胁。致密颗粒蛋白是由致密颗粒(弓形虫的一种亚细胞分泌器官)分泌的蛋白质,它们可通过操控宿主(细胞)基因表达、信号通路进而调控宿主细胞的免疫反应和细胞周期,并在蛋白质的转运和定位、营养物质的摄取、纳米管网络(IVN)的形成与稳定性的维持、逸出、慢性感染等生理过程中发挥重要作用。本文综述弓形虫致密颗粒蛋白基本生物学功能的最新研究进展,旨在为深入研究弓形虫的致病机制、鉴定新的抗弓形虫潜在药物靶点和疫苗候选分子提供借鉴。
中图分类号:
郑晓楠, 李婷婷, 王金磊, 郑文斌, 朱兴全. 弓形虫致密颗粒蛋白的生物学功能研究进展[J]. 畜牧兽医学报, 2022, 53(10): 3345-3357.
ZHENG Xiaonan, LI Tingting, WANG Jinlei, ZHENG Wenbin, ZHU Xingquan. Research Progress on Biological Functions of Dense Granule Proteins of Toxoplasma gondii[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3345-3357.
[1] | ELSHEIKHA H M, MARRA C M, ZHU X Q. Epidemiology, pathophysiology, diagnosis, and management of cerebral toxoplasmosis[J]. Clin Microbiol Rev, 2021, 34(1):e00115-19. |
[2] | YAROVINSKY F. Innate immunity to Toxoplasma gondii infection[J]. Nat Rev Immunol, 2014, 14(2):109-121. |
[3] | WANG Z D, WANG S C, LIU H H, et al. Prevalence and burden of Toxoplasma gondii infection in HIV-infected people:a systematic review and meta-analysis[J]. Lancet HIV, 2017, 4(4):e177-e88. |
[4] | DUNAY I R, GAJUREL K, DHAKAL R, et al. Treatment of Toxoplasmosis:historical perspective, animal models, and current clinical practice[J]. Clin Microbiol Rev, 2018, 31(4):e00057-17. |
[5] | ZHANG N Z, CHEN J, WANG M, et al. Vaccines against Toxoplasma gondii:new developments and perspectives[J]. Expert Rev Vaccines, 2013, 12(11):1287-1299. |
[6] | WANG J L, ZHANG N Z, LI T T, et al. Advances in the development of anti-Toxoplasma gondii vaccines:challenges, opportunities, and perspectives[J]. Trends Parasitol, 2019, 35(3):239-253. |
[7] | SIBLEY L D, NIESMAN I R, PARMLEY S F, et al. Regulated secretion of multi-lamellar vesicles leads to formation of a tubulo-vesicular network in host-cell vacuoles occupied by Toxoplasma gondii[J]. J Cell Sci, 1995, 108(4):1669-1677. |
[8] | BLADER I J, COLEMAN B I, CHEN C T, et al. Lytic cycle of Toxoplasma gondii:15 years later[J]. Annu Rev Microbiol, 2015, 69:463-485. |
[9] | MA J S, SASAI M W, OHSHIMA J, et al. Selective and strain-specific NFAT4 activation by the Toxoplasma gondii polymorphic dense granule protein GRA6[J]. J Exp Med, 2014, 211(10):2013-2032. |
[10] | HAKIMI M A, OLIAS P, SIBLEY L D. Toxoplasma effectors targeting host signaling and transcription[J]. Clin Microbiol Rev, 2017, 30(3):615-645. |
[11] | ROSOWSKI E E, LU D N, JULIEN L, et al. Strain-specific activation of the NF-κB pathway by GRA15, a novel Toxoplasma gondii dense granule protein[J]. J Exp Med, 2011, 208(1):195-212. |
[12] | GOV L, KARIMZADEH A, UENO N, et al. Human innate immunity to Toxoplasma gondii is mediated by host caspase-1 and ASC and parasite GRA15[J]. mBio, 2013, 4(4):e00255-13. |
[13] | PERNAS L, ADOMAKO-ANKOMAH Y, SHASTRI A J, et al. Toxoplasma effector MAF1 mediates recruitment of host mitochondria and impacts the host response[J]. PLoS Biol, 2014, 12(4):e1001845. |
[14] | BLANK M L, PARKER M L, RAMASWAMY R, et al. A Toxoplasma gondii locus required for the direct manipulation of host mitochondria has maintained multiple ancestral functions[J]. Mol Microbiol, 2018, 108(5):519-535. |
[15] | BRAUN L, BRENIER-PINCHART M P, YOGAVEL M, et al. A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation[J]. J Exp Med, 2013, 210(10):2071-2086. |
[16] | OLIAS P, ETHERIDGE R D, ZHANG Y, et al. Toxoplasma effector recruits the Mi-2/NuRD complex to repress STAT1 transcription and block IFN-γ-dependent gene expression[J]. Cell Host Microbe, 2016, 20(1):72-82. |
[17] | MATTA S K, OLIAS P, HUANG Z, et al. Toxoplasma gondii effector TgIST blocks type I interferon signaling to promote infection[J]. Proc Natl Acad Sci U S A, 2019, 116(35):17480-17491. |
[18] | GAY G, BRAUN L, BRENIER-PINCHART M P, et al. Toxoplasma gondii TgIST co-opts host chromatin repressors dampening STAT1-dependent gene regulation and IFN-γ-mediated host defenses[J]. J Exp Med, 2016, 213(9):1779-1798. |
[19] | BRAUN L, BRENIER-PINCHART M P, HAMMOUDI P M, et al. The Toxoplasma effector TEEGR promotes parasite persistence by modulating NF-κB signalling via EZH2[J]. Nat Microbiol, 2019, 4(7):1208-1220. |
[20] | HE H, BRENIER-PINCHART M P, BRAUN L, et al. Characterization of a Toxoplasma effector uncovers an alternative GSK3/β-catenin-regulatory pathway of inflammation[J]. Elife, 2018, 7:e39887. |
[21] | TOMITA T, MUKHOPADHYAY D, HAN B, et al. Toxoplasma gondii matrix antigen 1 is a secreted immunomodulatory effector[J]. mBio, 2021, 12(3):e00603-21. |
[22] | SHASTRI A J, MARINO N D, FRANCO M, et al. GRA25 is a novel virulence factor of Toxoplasma gondii and influences the host immune response[J]. Infect Immun, 2014, 82(6):2595-2605. |
[23] | HERMANNS T, MVLLER U B, KÖNEN-WAISMAN S, et al. The Toxoplasma gondii rhoptry protein ROP18 is an Irga6-specific kinase and regulated by the dense granule protein GRA7[J]. Cell Microbiol, 2016, 18(2):244-259. |
[24] | NYONDA M A, HAMMOUDI P M, YE S, et al. Toxoplasma gondii GRA60 is an effector protein that modulates host cell autonomous immunity and contributes to virulence[J]. Cell Microbiol, 2021, 23(2):e13278. |
[25] | WANG J L, BAI M J, ELSHEIKHA H M, et al. Novel roles of dense granule protein 12 (GRA12) in Toxoplasma gondii infection[J]. FASEB J, 2020, 34(2):3165-3178. |
[26] | GUEVARA R B, FOX B A, FALLA A, et al. Toxoplasma gondii intravacuolar-network-associated dense granule proteins regulate maturation of the cyst matrix and cyst wall[J]. mSphere, 2019, 4(5):e00487-19. |
[27] | FOX B A, GUEVARA R B, ROMMEREIM L M, et al. Toxoplasma gondii parasitophorous vacuole membrane-associated dense granule proteins orchestrate chronic infection and GRA12 underpins resistance to host gamma interferon[J]. mBio, 2019, 10(4):e00589-19. |
[28] | KRAVETS E, DEGRANDI D, MA Q J, et al. Guanylate binding proteins directly attack Toxoplasma gondii via supramolecular complexes[J]. Elife, 2016, 5:e11479. |
[29] | ZHAO Y O, KHAMINETS A, HUNN J P, et al. Disruption of the Toxoplasma gondii parasitophorous vacuole by IFNγ-inducible immunity-related GTPases (IRG proteins) triggers necrotic cell death[J]. PLoS Pathog, 2009, 5(2):e1000288. |
[30] | BOUGDOUR A, DURANDAU E, BRENIER-PINCHART M P, et al. Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression[J]. Cell Host Microbe, 2013, 13(4):489-500. |
[31] | KIM S G, SEO S H, SHIN J H, et al. Increase in the nuclear localization of PTEN by the Toxoplasma GRA16 protein and subsequent induction of p53-dependent apoptosis and anticancer effect[J]. J Cell Mol Med, 2019, 23(5):3234-3245. |
[32] | PANAS M W, NAOR A, CYGAN A M, et al. Toxoplasma controls host cyclin E expression through the use of a novel MYR1-dependent effector protein, HCE1[J]. mBio, 2019, 10(2):e00674-19. |
[33] | CYGAN A M, THEISEN T C, MENDOZA A G, et al. Coimmunoprecipitation with MYR1 identifies three additional proteins within the Toxoplasma gondii parasitophorous vacuole required for translocation of dense granule effectors into host cells[J]. mSphere, 2020, 5(1):e00858-19. |
[34] | BLAKELY W J, HOLMES M J, ARRIZABALAGA G. The Secreted acid phosphatase domain-containing GRA44 from Toxoplasma gondii is required for c-Myc induction in infected cells[J]. mSphere, 2020, 5(1):e00877-19. |
[35] | FRANCO M, PANAS M W, MARINO N D, et al. A novel secreted protein, MYR1, is central to Toxoplasma's manipulation of host cells[J]. mBio, 2016, 7(1):e02231-15. |
[36] | MARINO N D, PANAS M W, FRANCO M, et al. Identification of a novel protein complex essential for effector translocation across the parasitophorous vacuole membrane of Toxoplasma gondii[J]. PLoS Pathog, 2018, 14(1):e1006828. |
[37] | WANG Y F, SANGARÉ L O, PAREDES-SANTOS T C, et al. Genome-wide screens identify Toxoplasma gondii determinants of parasite fitness in IFNγ-activated murine macrophages[J]. Nat Commun, 2020, 11(1):5258. |
[38] | MAYORAL J, TOMITA T, TU V, et al. Toxoplasma gondii PPM3C, a secreted protein phosphatase, affects parasitophorous vacuole effector export[J]. PLoS Pathog, 2020, 16(12):e1008771. |
[39] | WANG Y F, CIRELLI K M, BARROS P D C, et al. Three Toxoplasma gondii dense granule proteins are required for induction of lewis rat macrophage pyroptosis[J]. mBio, 2019, 10(1):e02388-18. |
[40] | NAOR A, PANAS M W, MARINO N, et al. MYR1-dependent effectors are the major drivers of a host cell's early response to Toxoplasma, including counteracting MYR1-independent effects[J]. mBio, 2018, 9(2):e02401-17. |
[41] | FRANCO M, SHASTRI A J, BOOTHROYD J C. Infection by Toxoplasma gondii specifically induces host c-Myc and the genes this pivotal transcription factor regulates[J]. Eukaryot Cell, 2014, 13(4):483-493. |
[42] | COFFEY M J, SLEEBS B E, UBOLDI A D, et al. An aspartyl protease defines a novel pathway for export of Toxoplasma proteins into the host cell[J]. Elife, 2015, 4:e10809. |
[43] | HAMMOUDI P M, JACOT D, MUELLER C, et al. Fundamental roles of the golgi-associated Toxoplasma Aspartyl protease, ASP5, at the host-parasite interface[J]. PLoS Pathog, 2015, 11(10):e1005211. |
[44] | GOLD D A, KAPLAN A D, LIS A, et al. The Toxoplasma dense granule proteins GRA17 and GRA23 mediate the movement of small molecules between the host and the parasitophorous vacuole[J]. Cell Host Microbe, 2015, 17(5):642-652. |
[45] | WANG J L, ELSHEIKHA H M, ZHU W N, et al. Immunization with Toxoplasma gondii GRA17 deletion mutant induces partial protection and survival in challenged mice[J]. Front Immunol, 2017, 8:730. |
[46] | MASATANI T, MATSUO T, TANAKA T, et al. TgGRA23, a novel Toxoplasma gondii dense granule protein associated with the parasitophorous vacuole membrane and intravacuolar network[J]. Parasitol Int, 2013, 62(4):372-379. |
[47] | PAREDES-SANTOS T, WANG Y F, WALDMAN B, et al. The GRA17 parasitophorous vacuole membrane permeability pore contributes to bradyzoite viability[J]. Front Cell Infect Microbiol, 2019, 9:321. |
[48] | LI T T, WANG J L, LIANG Q L, et al. Effect of deletion of gra17 and gra23 genes on the growth, virulence, and immunogenicity of type II Toxoplasma gondii[J]. Parasitol Res, 2020, 119(9):2907-2916. |
[49] | LIANG Q L, SUN L X, ELSHEIKHA H M, et al. RHΔgra17Δnpt1 strain of Toxoplasma gondii elicits protective immunity against acute, chronic and congenital Toxoplasmosis in mice[J]. Microorganisms, 2020, 8(3):352. |
[50] | MERCIER C, DUBREMETZ J F, RAUSCHER B, et al. Biogenesis of nanotubular network in Toxoplasma parasitophorous vacuole induced by parasite proteins[J]. Mol Biol Cell, 2002, 13(7):2397-2409. |
[51] | ROMANO J D, NOLAN S J, PORTER C, et al. The parasite Toxoplasma sequesters diverse Rab host vesicles within an intravacuolar network[J]. J Cell Biol, 2017, 216(12):4235-4254. |
[52] | ROMMEREIM L M, BELLINI V, FOX B, et al. Phenotypes associated with knockouts of eight dense granule gene loci (GRA2-9) in virulent Toxoplasma gondii[J]. PLoS One, 2016, 11(7):e0159306. |
[53] | LAFAVERS K A, MÁRQUEZ-NOGUERAS K M, COPPENS I, et al. A novel dense granule protein, GRA41, regulates timing of egress and calcium sensitivity in Toxoplasma gondii[J]. Cell Microbiol, 2017, 19(9):e12749. |
[54] | BERAKI T, HU X Y, BRONCEL M, et al. Divergent kinase regulates membrane ultrastructure of the Toxoplasma parasitophorous vacuole[J]. Proc Natl Acad Sci U S A, 2019, 116(13):6361-6370. |
[55] | DEFFIEU M S, ALAYI T D, SLOMIANNY C, et al. The Toxoplasma gondii dense granule protein TgGRA3 interacts with host Golgi and dysregulates anterograde transport[J]. Biol Open, 2019, 8(3):bio039818. |
[56] | COPPENS I, DUNN J D, ROMANO J D, et al. Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space[J]. Cell, 2006, 125(2):261-274. |
[57] | DUNN J D, RAVINDRAN S, KIM S K, et al. The Toxoplasma gondii dense granule protein GRA7 is phosphorylated upon invasion and forms an unexpected association with the rhoptry proteins ROP2 and ROP4[J]. Infect Immun, 2008, 76(12):5853-5861. |
[58] | NADIPURAM S M, KIM E W, VASHISHT A A, et al. In vivo biotinylation of the Toxoplasma parasitophorous vacuole reveals novel dense granule proteins important for parasite growth and pathogenesis[J]. mBio, 2016, 7(4):e00808-16. |
[59] | RIVERA-CUEVAS Y, MAYORAL J, DI CRISTINA M, et al. Toxoplasma gondii exploits the host ESCRT machinery for parasite uptake of host cytosolic proteins[J]. PLoS Pathog, 2021, 17(12):e1010138. |
[60] | SCHWAB J C, BECKERS C J, JOINER K A. The parasitophorous vacuole membrane surrounding intracellular Toxoplasma gondii functions as a molecular sieve[J]. Proc Natl Acad Sci U S A, 1994, 91(2):509-513. |
[61] | DOU Z C, MCGOVERN O L, DI CRISTINA M, et al. Toxoplasma gondii ingests and digests host cytosolic proteins[J]. mBio, 2014, 5(4):e01188-14. |
[62] | GUÉRIN A, CORRALES R M, PARKER M L, et al. Efficient invasion by Toxoplasma depends on the subversion of host protein networks[J]. Nat Microbiol, 2017, 2(10):1358-1366. |
[63] | CYGAN A M, JEAN BELTRAN P M, MENDOZA A G, et al. Proximity-Labeling reveals novel host and parasite proteins at the Toxoplasma parasitophorous vacuole membrane[J]. mBio, 2021, 12(6):e0026021. |
[64] | ROME M E, BECK J R, TURETZKY J M, et al. Intervacuolar transport and unique topology of GRA14, a novel dense granule protein in Toxoplasma gondii[J]. Infect Immun, 2008, 76(11):4865-4875. |
[65] | OKADA T, MARMANSARI D, LI Z M, et al. A novel dense granule protein, GRA22, is involved in regulating parasite egress in Toxoplasma gondii[J]. Mol Biochem Parasitol, 2013, 189(1-2):5-13. |
[66] | DÍAZ-MARTÍN R D, MERCIER C, GÓMEZ DE LEÓN C T, et al. The dense granule protein 8 (GRA8) is a component of the sub-pellicular cytoskeleton in Toxoplasma gondii[J]. Parasitol Res, 2019, 118(6):1899-1918. |
[67] | GUEVARA R B, FOX B A, BZIK D J. Toxoplasma gondii parasitophorous vacuole membrane-associated dense granule proteins regulate maturation of the cyst wall[J]. mSphere, 2020, 5(1):e00851-19. |
[68] | GUEVARA R B, FOX B A, BZIK D J. A family of Toxoplasma gondii genes related to GRA12 regulate cyst burdens and cyst reactivation[J]. mSphere, 2021, 6(2):e00182-21. |
[69] | TU V, TOMITA T, SUGI T, et al. The Toxoplasma gondii cyst wall interactome[J]. mBio, 2020, 11(1):e02699-19. |
[70] | NADIPURAM S M, THIND A C, RAYATPISHEH S, et al. Proximity biotinylation reveals novel secreted dense granule proteins of Toxoplasma gondii bradyzoites[J]. PLoS One, 2020, 15(5):e0232552. |
[71] | TOMITA T, BZIK D J, MA Y F, et al. The Toxoplasma gondii cyst wall protein CST1 is critical for cyst wall integrity and promotes bradyzoite persistence[J]. PLoS Pathog, 2013, 9(12):e1003823. |
[72] | TU V, MAYORAL J, SUGI T, et al. Enrichment and proteomic characterization of the cyst wall from in vitro Toxoplasma gondii cysts[J]. mBio, 2019, 10(2):e00469-19. |
[73] | YOUNG J C, BRONCEL M, TEAGUE H, et al. Phosphorylation of Toxoplasma gondii secreted proteins during acute and chronic stages of infection[J]. mSphere, 2020, 5(5):e00792-20. |
[1] | 钟朱夏, 胡修忠, 向敏, 余婕, 刘辰晖, 赵胜兰, 万平民, 王定发, 周源, 程蕾. 妊娠相关糖蛋白的生物学功能及其在畜牧生产中的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 874-881. |
[2] | 刘强, 牛小霞, 方敏, 刘艳玲, 高辉, 陈吉祥, 加华才让, 张思浓, 李勇. 牛冠状病毒刺突蛋白研究进展[J]. 畜牧兽医学报, 2024, 55(3): 944-956. |
[3] | 李艺璇, 牛静轶, 李港, 万超, 方仁东, 叶超. 伪狂犬病病毒编码的内膜蛋白生物学功能研究进展[J]. 畜牧兽医学报, 2024, 55(3): 957-970. |
[4] | 郭艳丽, 李可强, 白少川, 王涛, 王德贺, 王麒, 李兰会. ALV-E的结构、活性调控以及对宿主功能的影响[J]. 畜牧兽医学报, 2023, 54(7): 2683-2691. |
[5] | 孙晓敬, 张磊, 田甜, 马茜, 姚佳, 汪洋. 弓形虫病治疗:从传统药物到纳米药物[J]. 畜牧兽医学报, 2023, 54(5): 1834-1844. |
[6] | 夏春秋, 万发春, 刘磊, 沈维军, 肖定福. 缬氨酸的生物学功能及其在畜禽日粮中的应用[J]. 畜牧兽医学报, 2023, 54(11): 4502-4513. |
[7] | 陈慧娴, 陈雅婕, 王先梅, 王丽芳, 刘群, 刘晶. 弓形虫和新孢子虫交叉反应抗原MIC7A对小鼠的免疫保护效力分析[J]. 畜牧兽医学报, 2022, 53(7): 2300-2306. |
[8] | 付明, 贺君君, 朱兴全, 丛伟. 弓形虫卵囊感染小鼠的急性期与慢性期的脑组织蛋白质组变化[J]. 畜牧兽医学报, 2022, 53(2): 556-566. |
[9] | 王沛, 王萌, 李婷婷, 郑晓楠, 梁勤立, 陈小庆. 弓形虫4个假定蛋白基因缺失株的构建及其基本生物功能学研究[J]. 畜牧兽医学报, 2022, 53(10): 3598-3608. |
[10] | 王卫振, 邓占钊, 辛国省, 蔡正云, 顾亚玲, 张娟. 环状RNA的生物学功能及其在家禽中的研究进展[J]. 畜牧兽医学报, 2021, 52(7): 1778-1788. |
[11] | 刘一冰, 吴德群, 蔺哲广, 吉挺. 蜂王浆生物学功能研究进展[J]. 畜牧兽医学报, 2021, 52(6): 1498-1510. |
[12] | 尹德琦, 魏子巍, 张义伟, 桑晓宇, 杨娜, 冯颖, 陈冉, 姜宁. 弓形虫蛋白质翻译后修饰研究进展[J]. 畜牧兽医学报, 2021, 52(11): 2995-3005. |
[13] | 邱燕华, 翟斌涛, 尚小飞, 周绪正, 李冰, 张继瑜. 桧烯抗弓形虫活性的体外评价[J]. 畜牧兽医学报, 2021, 52(10): 2915-2923. |
[14] | 李祎, 王先梅, 杨旭, 邓均华, 王飞, 刘群, 许建海, 刘晶. 1种检测弓形虫急性感染的夹心ELISA方法[J]. 畜牧兽医学报, 2020, 51(12): 3101-3110. |
[15] | 高俊莹, 张东超, 李璇, 王华琳, 姜宁. 弓形虫表面抗原SAG1黏附宿主细胞表面硫化肝素的特性研究[J]. 畜牧兽医学报, 2019, 50(9): 1874-1881. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||