| [1] | BERCOVICH Z. The use of skin delayed-type hypersensitivity as an adjunct test to diagnose brucellosis in cattle:a review[J]. Vet Quart, 2000, 22(3):123-130. | 
																													
																						| [2] | FRANCO M P, MULDER M, GILMAN R H, et al. Human brucellosis[J]. Lancet Infect Dis, 2007, 7(12):775-786. | 
																													
																						| [3] | PURWAR S, METGUD S C, KARADESAI S G, et al. Triad of infective endocarditis, splenic abscess, and septicemia caused by Brucella melitensis[J]. J Lab Physicians, 2017, 9(4):340-342. | 
																													
																						| [4] | ASMARE K. Neospora caninum versus Brucella spp. Exposure among dairy cattle in Ethiopia:a case control study[J]. Trop Anim Health Prod, 2014, 46(6):961-966. | 
																													
																						| [5] | PAPPAS G, AKRITIDIS N, BOSILKOVSKI M, et al. Brucellosis[J]. N Engl J Med, 2005, 352(22):2325-2336. | 
																													
																						| [6] | SCHURIG G G, SRIRANGANATHAN N, CORBEL M J. Brucellosis vaccines:past, present and future[J]. Vet Microbiol, 2002, 90(1-4):479-496. | 
																													
																						| [7] | FICHT T A, KAHL-MCDONAGH M M, ARENAS-GAMBOA A M, et al. Brucellosis:the case for live, attenuated vaccines[J]. Vaccine, 2009, 27(S4):D40-D43. | 
																													
																						| [8] | AVILA-CALDERON E D, LOPEZ-MERINO A, SRIRANGANATHAN N, et al. A history of the development of Brucella vaccines[J]. Biomed Res Int, 2013, 2013:743509. | 
																													
																						| [9] | HASANJANI-ROUSHAN M R, KAZEMI S, FALLAH-ROSTAMI F, et al. Brucellosis vaccines:an overview[J]. Crescent J Med Biol Sci, 2014, 1(4):118-124. | 
																													
																						| [10] | YANG X H, SKYBERG J A, CAO L, et al. Progress in Brucella vaccine development[J]. Front Biol, 2013, 8(1):60-77. | 
																													
																						| [11] | GHEIBI A, KHANAHMAD H, KASHFI K, et al. Development of new generation of vaccines for Brucella abortus[J]. Heliyon, 2018, 4(12):E01079. | 
																													
																						| [12] | MØLLER T, FRANCH T, HØJRUP P, et al. Hfq:a bacterial Sm-like protein that mediates RNA-RNA interaction[J]. Mol Cell, 2002, 9(1):23-30. | 
																													
																						| [13] | CASWELL C C, GAINES J M, ROOP II R M. The RNA chaperone Hfq independently coordinates expression of the VirB type IV secretion system and the LuxR-type regulator BabR in Brucella abortus 2308[J]. J Bacteriol, 2012, 194(1):3-14. | 
																													
																						| [14] | CUI M Q, WANG T K, XU J, et al. Impact of Hfq on global gene expression and intracellular survival in Brucella melitensis[J]. PLoS One, 2013, 8(8):e71933. | 
																													
																						| [15] | ZHANG J B, GUO F, CHEN C F, et al. Brucella melitensis 16M Δhfq attenuation confers protection against wild-type challenge in BALB/c mice[J]. Microbiol Immunol, 2013, 57(7):502-510. | 
																													
																						| [16] | ZYGMUNT M S, HAGIUS S D, WALKER J V, et al. Identification of Brucella melitensis 16M genes required for bacterial survival in the caprine host[J]. Microbes Infect, 2006, 8(14-15):2849-2854. | 
																													
																						| [17] | SHIM S, SOH S H, IM Y B, et al. Elicitation of Th1/Th2 related responses in mice by chitosan nanoparticles loaded with Brucella abortus malate dehydrogenase, outer membrane proteins 10 and 19[J]. Int J Med Microbiol, 2020, 310(1):151362. | 
																													
																						| [18] | IMTIAZ W, KHAN A, GUL S T, et al. Evaluation of DNA vaccine encoding BCSP31 surface protein of Brucella abortus for protective immunity[J]. Microb Pathog, 2018, 125:514-520. | 
																													
																						| [19] | REYES A W B, VU S H, HUY T X N, et al. Adenosine receptor Adora2b antagonism attenuates Brucella abortus 544 infection in professional phagocyte RAW 264. 7 cells and BALB/c mice[J]. Vet Microbiol, 2020, 242:108586. | 
																													
																						| [20] | GOLDING B, SCOTT D E, SCHARF O, et al. Immunity and protection against Brucella abortus[J]. Microbes Infect, 2001, 3(1):43-48. | 
																													
																						| [21] | KO J, SPLITTER G A. Molecular host-pathogen interaction in brucellosis:current understanding and future approaches to vaccine development for mice and humans[J]. Clin Microbiol Rev, 2003, 16(1):65-78. | 
																													
																						| [22] | WU W H, WEIGAND L, MENDEZ S. The IL-6-deficient mouse exhibits impaired lymphocytic responses to a vaccine combining live Leishmania major and CpG oligodeoxynucleotides[J]. Can J Microbiol, 2009, 55(6):705-713. | 
																													
																						| [23] | SATHIYASEELAN J, GOENKA R, PARENT M, et al. Treatment of Brucella-susceptible mice with IL-12 increases primary and secondary immunity[J]. Cell Immunol, 2006, 243(1):1-9. | 
																													
																						| [24] | BARRIONUEVO P, DELPINO M V, VELÁSQUEZ L N, et al. Brucella abortus inhibits IFN-γ-induced FcγRI expression and FcγRI-restricted phagocytosis via toll-like receptor 2 on human monocytes/macrophages[J]. Microbes Infect, 2011, 13(3):239-250. | 
																													
																						| [25] | MORA-CARTÍN R, GUTIÉRREZ-JIMÉNEZ C, ALFARO-ALARCÓN A, et al. Neutrophils dampen adaptive immunity in brucellosis[J]. Infect Immun, 2019, 87(5):e00118-19. | 
																													
																						| [26] | LI Z Q, SHI J X, FU W D, et al. A Brucella melitensis M5-90 wboA deletion strain is attenuated and enhances vaccine efficacy[J]. Mol Immunol, 2015, 66(2):276-283. | 
																													
																						| [27] | LI Z Q, WANG S L, ZHANG J L, et al. Brucella abortus 2308ΔNodVΔNodW double-mutant is highly attenuated and confers protection against wild-type challenge in BALB/c mice[J]. Microb Pathog, 2017, 106:30-39. | 
																													
																						| [28] | ZHANG Y, LI T S, ZHANG J, et al. The Brucella melitensis M5-90 phosphoglucomutase (PGM) mutant is attenuated and confers protection against wild-type challenge in BALB/c mice[J]. World J Microbiol Biotechnol, 2016, 32(4):58. | 
																													
																						| [29] | LI Z Q, WANG S L, ZHANG H, et al. Immunization with recombinant GntR plasmid confers protection against Brucella challenge in BALB/c mice[J]. Microb Pathog, 2017, 111:357-361. | 
																													
																						| [30] | BARRIONUEVO P, GIAMBARTOLOMEI G H. Inhibition of antigen presentation by Brucella:many more than many ways[J]. Microbes Infect, 2019, 21(3-4):136-142. | 
																													
																						| [31] | SAADEH B, CASWELL C C, CHAO Y J, et al. Transcriptome-wide identification of Hfq-associated RNAs in Brucella suis by deep sequencing[J]. J Bacteriol, 2016, 198(3):427-435. | 
																													
																						| [32] | LEI S S, ZHONG Z J, KE Y H, et al. Deletion of the small RNA chaperone protein Hfq down regulates genes related to virulence and confers protection against wild-type Brucella challenge in mice[J]. Front Microbiol, 2016, 6:1570. | 
																													
																						| [33] | RAZ E, TIGHE H, SATO Y, et al. Preferential induction of a Th1 immune response and inhibition of specific IgE antibody formation by plasmid DNA immunization[J]. Proc Natl Acad Sci U S A, 1996, 93(10):5141-5145. | 
																													
																						| [34] | 杨阳, 杨琦, 董然然, 等. 基于转录组测序筛选鼠伤寒沙门菌hfq基因缺失菌的差异表达基因[J]. 畜牧兽医学报, 2019, 50(2):2578-2585.YANG Y, YANG Q, DONG R R, et al. Screening of differentially expressed genes of Salmonella typhimurium hfq gene deletion bacteria based on transcriptome sequencing[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(12):2578-2585. (in Chinese) | 
																													
																						| [35] | 徐一轲, 孙愉宸, 盛强龙, 等. 维氏气单胞菌的smpB、tmRNA及hfq敲除菌株减毒活疫苗筛选[J]. 山东农业大学学报:自然科学版, 2019, 50(2):186-190.XU Y K, SUN Y C, SHENG Q L, et al. Screening out live attenuated vaccine from Aeromonas veronii strain without smpB, tmRNA or hfq[J]. Journal of Shandong Agricultural University:Natural Science Edition, 2019, 50(2):186-190. (in Chinese) | 
																													
																						| [36] | 王贵宾, 蔡奇岚, 李泽琦, 等. 嗜水气单胞菌hfq2基因对生物被膜形成的影响[J]. 科学通报, 2019, 64(14):1506-1514.WANG G B, CAI Q L, LI Z Q, et al. Effect of hfq2 gene in Aeromonas hydrophila on biofilm formation[J]. Chinese Science Bulletin, 2019, 64(14):1506-1514. (in Chinese) |