[1] |
LOWY F D. Antimicrobial resistance:the example of Staphylococcus aureus[J]. J Clin Invest, 2003, 111(9):1265-1273.
|
[2] |
HAU S J, HAAN J S, DAVIES P R, et al. Antimicrobial resistance distribution differs among methicillin resistant Staphylococcus aureus Sequence Type (ST) 5 isolates from health care and agricultural sources[J]. Front Microbiol, 2018, 9:2102.
|
[3] |
OLIVEIRA W F, SILVA P M S, SILVA R C S, et al. Staphylococcus aureus and Staphylococcus epidermidis infections on implants[J]. J Hosp Infect, 2018, 98(2):111-117.
|
[4] |
ROUARD C, GARNIER F, LERAUT J, et al. Emergence and within-host genetic evolution of methicillin-resistant Staphylococcus aureus resistant to linezolid in a cystic fibrosis patient[J]. Antimicrob Agents Chemother, 2018, 62(12):e00720-18.
|
[5] |
JUNIE L M, JEICAN I I, MATROŞ L, et al. Molecular epidemiology of the community-associated methicillin-resistant staphylococcus aureus clones:a synthetic review[J]. Clujul Med, 2018, 91(1):7-11.
|
[6] |
LI L, CHEUNG A, BAYER A S, et al. The global regulon sarA regulates β-lactam antibiotic resistance in methicillin-resistant Staphylococcus aureus in vitro and in endovascular infections[J]. J Infect Dis, 2016, 214(9):1421-1429.
|
[7] |
ADHIKARI R, PANT N D, NEUPANE S, et al. Detection of methicillin resistant Staphylococcus aureus and Determination of minimum inhibitory concentration of vancomycin for Staphylococcus aureus isolated from pus/wound swab samples of the patients attending a tertiary care hospital in Kathmandu, Nepal[J]. Can J Infect Dis Med Microbiol, 2017, 2017:2191532.
|
[8] |
LUTHER M, PARENTE D M, CAFFREY A R, et al. Clinical and genetic risk factors for biofilm-forming Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2018, 62(5):e02252-17.
|
[9] |
TAKAYAMA Y, TANAKA T, OIKAWA K, et al. Prevalence of blaZ gene and performance of phenotypic tests to detect penicillinase in Staphylococcus aureus isolates from Japan[J]. Ann Lab Med, 2018, 38(2):155-159.
|
[10] |
PINHO M G, FILIPE S R, De LENCASTRE H, et al. Complementation of the essential peptidoglycan transpeptidase function of Penicillin-Binding Protein 2(PBP2) by the drug resistance protein PBP2A in Staphylococcus aureus[J]. J Bacteriol, 2001, 183(22):6525-6531.
|
[11] |
MIRELMAN D, SHARON N. Biosynthesis of peptidoglycan by a cell wall preparation of Staphylococcus aureus and its inhibition by penicillin[J]. Biochem Biophys Res Commun, 1972, 46(5):1909-1917.
|
[12] |
WATTS J L, SHRYOCK T R, APLEY M, et al. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals:approved standard[M]. Pennsylvania:Clinical and Laboratory Standards Institute, 2013.
|
[13] |
SOLYMAN S M, BLACK C C, DUIM B, et al. Multilocus sequence typing for characterization of Staphylococcus pseudintermedius[J]. J Clin Microbiol, 2013, 51(1):306-310.
|
[14] |
HACKBARTH C J, CHAMBERS H F. Methicillin-resistant staphylococci:genetics and mechanisms of resistance[J]. Antimicrob Agents Chemother, 1989, 33(7):991-994.
|
[15] |
YUAN W C, HU Q W, CHENG H, et al. Cell wall thickening is associated with adaptive resistance to amikacin in methicillin-resistant Staphylococcus aureus clinical isolates[J]. J Antimicrob Chemother, 2013, 68(5):1089-1096.
|
[16] |
SINGH A, SINGH S, SINGH J, et al. Survivability and fitness cost of heterogeneous vancomycin-intermediate Staphylococcus aureus[J]. Indian J Med Microbiol, 2017, 35(3):415-416.
|
[17] |
ENG R H K, SMITH S M, BUCCINI F J, et al. Differences in ability of cell-wall antibiotics to suppress emergence of rifampicin resistance in Staphylococcus aureus[J]. J Antimicrob Chemother, 1985, 15(2):201-207.
|
[18] |
WILKINSON B J, SISSON S P, KIM Y, et al. Localization of the third component of complement on the cell wall of encapsulated Staphylococcus aureus M:implications for the mechanism of resistance to phagocytosis[J]. Infect Immun, 1979, 26(3):1159-1563.
|
[19] |
FOOLADVAND S, SARMADIAN H, HABIBI D, et al. High prevalence of methicillin resistant and enterotoxin gene-positive Staphylococcus aureus among nasally colonized food handlers in central Iran[J]. Eur J Clin Microbiol Infect Dis, 2019, 38:87-92.
|
[20] |
UDO E E, AL-SWEIH N, NORONHA B C. A chromosomal location of the mupA gene in Staphylococcus aureus expressing high-level mupirocin resistance[J]. J Antimicrob Chemother, 2003, 51(5):1283-1286.
|
[21] |
WEIGEL L M, CLEWELL D B, GILL S R, et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus[J]. Science, 2003, 302(5650):1569-1571.
|
[22] |
GALLAGHER L A, COUGHLAN S, BLACK N S, et al. Tandem amplification of the staphylococcal cassette chromosome MEC element can drive high-level methicillin resistance in methicillin-resistant Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2017, 61(9):e00869-17.
|
[23] |
HIRAMATSU K. Vancomycin-resistant Staphylococcus aureus:a new model of antibiotic resistance[J]. Lancet Infect Dis, 2001, 1(3):147-155.
|
[24] |
HANAKI H, KUWAHARA-ARAI K, BOYLE-VAVRA S, et al. Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50[J]. J Antimicrob Chemother, 1998, 42(2):199-209.
|
[25] |
SHARMA R, RANI C, MEHRA R, et al. Identification and characterization of novel small molecule inhibitors of the acetyltransferase activity of Escherichia coli N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU)[J]. Appl Microbiol Biotechnol, 2016, 100(7):3071-3085.
|
[26] |
AUGER G, VAN HEIJENOORT J, MENGIN-LECREULX D, et al. A MurG assay which utilises a synthetic analogue of lipid I[J]. FEMS Microbiol Lett, 2003, 219(1):115-119.
|
[27] |
ŁĘSKI T A, TOMASZ A. Role of Penicillin-Binding Protein 2(PBP2) in the antibiotic susceptibility and cell wall cross-linking of Staphylococcus aureus:evidence for the cooperative functioning of PBP2, PBP4, and PBP2A[J]. J Bacteriol, 2005, 187(5):1815-1824.
|
[28] |
HOUSTON P, ROWE S E, POZZI C, et al. Essential role for the major autolysin in the fibronectin-binding protein-mediated Staphylococcus aureus biofilm phenotype[J]. Infect Immun, 2011, 79(3):1153-1165.
|
[29] |
GARDETE S, WU S W, GILL S, et al. Role of VraSR in antibiotic resistance and antibiotic-induced stress response in Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2006, 50(10):3424-3434.
|
[30] |
BISWAS R, VOGGU L, SIMON U K, et al. Activity of the major staphylococcal autolysin Atl[J]. FEMS Microbiol Lett, 2006, 259(2):260-268.
|
[31] |
SCHLAG M, BISWAS R, KRISMER B, et al. Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl[J]. Mol Microbiol, 2010, 75(4):864-873.
|