畜牧兽医学报 ›› 2020, Vol. 51 ›› Issue (2): 243-251.doi: 10.11843/j.issn.0366-6964.2020.02.005
李丘轲, 李金泽, 吴华, 丑淑丽, 单安山*
收稿日期:
2019-08-08
出版日期:
2020-02-23
发布日期:
2020-02-22
通讯作者:
单安山,主要从事动物营养与饲料科学研究,E-mail:asshan@neau.edu.cn
作者简介:
李丘轲(1996-),女,江苏赣榆人,硕士生,主要从事动物营养与饲料科学研究,E-mail:15636103001@163.com
基金资助:
LI Qiuke, LI Jinze, WU Hua, CHOU Shuli, SHAN Anshan*
Received:
2019-08-08
Online:
2020-02-23
Published:
2020-02-22
摘要: 抗生素问世以来挽救了无数生命,然而近年来抗生素的滥用越来越严重,从而导致多重耐药菌的出现以及机体正常微生物群落的生态失衡等问题,迫使人们开始寻找有效的抗生素替代物。抗菌肽广泛存在于动植物体中,具有抗菌、抗肿瘤、抗病毒及免疫调节等生物学活性,且不易诱发细菌耐药性,在临床和畜牧生产中表现出极好的应用前景。为避免细菌耐药性和微生态紊乱等问题的产生,具有靶向功能的抗菌肽受到科研工作者的青睐,逐渐成为研究的热点,并有望成为抗生素替代物之一。本文对近年来靶向抗菌肽的设计思路及其在临床和畜牧生产中的应用前景进行概述,以期为将来靶向抗菌肽的开发提供新的思路。
中图分类号:
李丘轲, 李金泽, 吴华, 丑淑丽, 单安山. 靶向抗菌肽的设计策略与应用[J]. 畜牧兽医学报, 2020, 51(2): 243-251.
LI Qiuke, LI Jinze, WU Hua, CHOU Shuli, SHAN Anshan. Design Strategy and Application on Targeted Antimicrobial Peptides[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(2): 243-251.
[1] | FJELL C D, HISS J A, HANCOCK R E W, et al. Designing antimicrobial peptides:form follows function[J]. Nat Rev Drug Discov, 2012, 11(1):37-51. |
[2] | 单安山, 田昊天,邵长轩,等. 抗菌肽抗细菌机理研究进展[J]. 东北农业大学学报, 2018, 49(3):84-94.SAN A S, TIAN H T, SHAO C X, et al. Research advance on antibacterial mechanism of antimicrobial peptides[J]. Journal of Northeast Agricultural University, 2018, 49(3):84-94. (in Chinese) |
[3] | TRAVKOVA O G, MOEHWALD H, BREZESINSKI G. The interaction of antimicrobial peptides with membranes[J]. Adv Colloid Interface Sci, 2017, 247:521-532. |
[4] | YOON J H, INGALE S L, KIM J S, et al. Effects of dietary supplementation of synthetic antimicrobial peptide-A3 and P5 on growth performance, apparent total tract digestibility of nutrients, fecal and intestinal microflora and intestinal morphology in weanling pigs[J]. Livest Sci, 2014, 159:53-60. |
[5] | BROGDEN N K, BROGDEN K A. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals?[J]. Int J Antimicrob Agents, 2011, 38(3):217-225. |
[6] | WANG J J, DOU X J, SONG J, et al. Antimicrobial peptides:Promising alternatives in the post feeding antibiotic era[J]. Med Res Rev, 2019, 39(3):831-859. |
[7] | LV Y F, WANG J J, GAO H, et al. Antimicrobial properties and membrane-active mechanism of a potential α-helical antimicrobial derived from cathelicidin PMAP-36[J]. PLoS One, 2014, 9(1):e86364. |
[8] | YANG Z Y, HE S Q, WANG J J, et al. Rational design of short peptide variants by using Kunitzin-RE, an amphibian-derived bioactivity peptide, for acquired potent broad-spectrum antimicrobial and improved therapeutic potential of commensalism coinfection of pathogens[J]. J Med Chem, 2019, 62(9):4586-4605. |
[9] | XU W, ZHU X, TAN T T, et al. Design of embedded-hybrid antimicrobial peptides with enhanced cell selectivity and anti-biofilm activity[J]. PLoS One, 2014, 9(6):e98935. |
[10] | HE J, ANDERSON M H, SHI W Y, et al. Design and activity of a ‘dual-targeted’ antimicrobial peptide[J]. Int J Antimicrob Agents, 2009, 33(6):532-537. |
[11] | DONG N, CHOU S L, LI J W, et al. Short symmetric-end antimicrobial peptides centered on β-turn amino acids unit improve selectivity and stability[J]. Front Microbiol, 2018, 9:2832. |
[12] | CHOU S L, SHAO C X, WANG J J, et al. Short, multiple-stranded β-hairpin peptides have antimicrobial potency with high selectivity and salt resistance[J]. Acta Biomater, 2016, 30:78-93. |
[13] | WANG J J, CHOU S L, XU L, et al. High specific selectivity and membrane-active mechanism of the synthetic centrosymmetric α-helical peptides with Gly-Gly pairs[J]. Sci Rep, 2015, 5(1):15963. |
[14] | SHAO C X, TIAN H T, WANG T Y, et al. Central β-turn increases the cell selectivity of imperfectly amphipathic α-helical peptides[J]. Acta Biomater, 2018, 69:243-255. |
[15] | XU L, CHOU S L, WANG J J, et al. Antimicrobial activity and membrane-active mechanism of tryptophan zipper-like β-hairpin antimicrobial peptides[J]. Amino Acids, 2015, 47(11):2385-2397. |
[16] | WANG J J, CHOU S L, YANG Z Y, et al. Combating drug-resistant fungi with novel imperfectly amphipathic palindromic peptides[J]. J Med Chem, 2018, 61(9):3889-3907. |
[17] | WANG J J, SONG J, YANG Z Y, et al. Antimicrobial peptides with high proteolytic resistance for combating gram-negative bacteria[J]. J Med Chem, 2019, 62(5):2286-2304. |
[18] | ZHU X, DONG N, WANG Z Y, et al. Design of imperfectly amphipathic α-helical antimicrobial peptides with enhanced cell selectivity[J]. Acta Biomater, 2014, 10(1):244-257. |
[19] | GUO L H, EDLUND A. Targeted antimicrobial peptides:a novel technology to eradicate harmful Streptococcus mutans[J]. J Calif Dent Assoc, 2017, 45(10):557-564. |
[20] | ECKERT R, HE J, YARBROUGH D K, et al. Targeted killing of Streptococcus mutans by a pheromone-guided "smart" antimicrobial peptide[J]. Antimicrob Agents Chemother, 2006, 50(11):3651-3657. |
[21] | HAN J H, BILKER W B, NACHAMKIN I, et al. Impact of antibiotic use during hospitalization on the development of gastrointestinal colonization with Escherichia coli with reduced fluoroquinolone susceptibility[J]. Infect Control Hosp Epidemiol, 2013, 34(10):1070-1076. |
[22] | ECKERT R, QI F X, YARBROUGH D K, et al. Adding selectivity to antimicrobial peptides:rational design of a multidomain peptide against Pseudomonas spp.[J]. Antimicrob Agents Chemother, 2006, 50(4):1480-1488. |
[23] | 杨颜铱, 陈芸,高爽,等. 抗菌肽抑制脂多糖诱导的炎症反应[J]. 动物营养学报, 2016, 28(12):3770-3776.YNG Y Y, CHEN Y, GAO S, et al. Inhibitory effects of antimicrobial peptides on lipopolysaccharide-induced inflammation[J]. Chinese Journal of Animal Nutrition, 2016, 28(12):3770-3776. (in Chinese) |
[24] | NIKAIDO H. Preventing drug access to targets:cell surface permeability barriers and active efflux in bacteria[J]. Semin Cell Dev Biol, 2001, 12(3):215-223. |
[25] | LÁZÁR V, MARTINS A, SPOHN R, et al. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides[J]. Nat Microbiol, 2018, 3(6):718-731. |
[26] | MUHLE S A, TAM J P. Design of gram-negative selective antimicrobial peptides[J]. Am Chem Soc, 2001, 40(19):5777-5785. |
[27] | DE HAAS C J, VAN DER ZEE R, BENAISSA-TROUW B, et al. Lipopolysaccharide (LPS)-binding synthetic peptides derived from serum amyloid P component neutralize LPS[J]. Infect Immun, 1999, 67(6):2790-2796. |
[28] | KIM H, JANG J H, KIM S C, et al. Enhancement of the antimicrobial activity and selectivity of GNU7 against Gram-negative bacteria by fusion with LPS-targeting peptide[J]. Peptides, 2016, 82:60-66. |
[29] | HWANG I Y, LEE H L, HUANG J G, et al. Engineering microbes for targeted strikes against human pathogens[J]. Cell Mol Life Sci, 2018, 75(15):2719-2733. |
[30] | HUO L J, HUANG X Y, LING J Q, et al. Selective activities of STAMPs against Streptococcus mutans[J]. Exp Ther Med, 2018, 15(2):1886-1893. |
[31] | KAUFMANN G F, PARK J, JANDA K D. Bacterial quorum sensing:a new target for anti-infective immunotherapy[J]. Expert Opin Biol Ther, 2008, 8(6):719-724. |
[32] | EVEN-TOV E, BENDORI S O, VALASTYAN J, et al. Social evolution selects for redundancy in bacterial quorum sensing[J]. PLoS Biol, 2016, 14(2):e1002386. |
[33] | QIU X Q, WANG H, LU X F, et al. An engineered multidomain bactericidal peptide as a model for targeted antibiotics against specific bacteria[J]. Nat Biotechnol, 2003, 21(12):1480-1485. |
[34] | QIU X Q, ZHANG J, WANG H, et al. A novel engineered peptide, a narrow-spectrum antibiotic, is effective against vancomycin-resistant Enterococcus faecalis[J]. Antimicrob Agents Chemother, 2005, 49(3):1184-1189. |
[35] | MAO R Y, TENG D, WANG X M, et al. Design, expression, and characterization of a novel targeted plectasin against methicillin-resistant Staphylococcus aureus[J]. Appl Microbiol Biotechnol, 2013, 97(9):3991-4002. |
[36] | 王志明. 抗生素研发新方向:抗菌抗体药物[J]. 中国新药杂志, 2016, 25(19):2199-2204.WNG Z M. The new direction in the development of antibiotics:anti-bacterial antibody drugs[J]. Chinese Journal of New Drugs, 2016, 25(19):2199-2204. (in Chinese) |
[37] | HAZENBOS W L W, KAJIHARA K K, VANDLEN R, et al. Novel staphylococcal glycosyltransferases SdgA and SdgB mediate immunogenicity and protection of virulence-associated cell wall proteins[J]. PLoS Pathog, 2013, 9(10):e1003653. |
[38] | HORN M P, ZUERCHER A W, IMBODEN M A, et al. Preclinical in vitro and in vivo characterization of the fully human monoclonal IgM antibody KBPA101 specific for Pseudomonas aeruginosa serotype IATS-O11[J]. Antimicrob Agents Chemother, 2010, 54(6):2338-2344. |
[39] | TOUTI F, LAUTRETTE G, JOHNSON K D, et al. Antibody-bactericidal macrocyclic peptide conjugates to target gram-negative bacteria[J]. Chembiochem, 2018, 19(19):2039-2044. |
[40] | SOROKULOVA I B, OLSEN E V, CHEN I H, et al. Landscape phage probes for Salmonella typhimurium[J]. J Microbiol Methods, 2005, 63(1):55-72. |
[41] | HUANG J X, BISHOP-HURLEY S L, COOPER M A. Development of anti-infectives using phage display:biological agents against bacteria, viruses, and parasites[J]. Antimicrob Agents Chemother, 2012, 56(9):4569-4582. |
[42] | ANANDAKUMAR S, BOOSI K N, BUGATHA H, et al. Phage displayed short peptides against cells of Candida albicans demonstrate presence of species, morphology and region specific carbohydrate epitopes[J]. PLoS One, 2011, 6(2):e16868. |
[43] | MCCARTHY K A, KELLY M A, LI K C, et al. Phage display of dynamic covalent binding motifs enables facile development of targeted antibiotics[J]. J Am Chem Soc, 2018, 140(19):6137-6145. |
[44] | MISHRA B, NARAYANA J L, LUSHNIKOVA T, et al. Low cationicity is important for systemic in vivo efficacy of database-derived peptides against drug-resistant Gram-positive pathogens[J]. Proc Natl Acad Sci U S A, 2019, 116(27):13517-13522. |
[45] | ZHU X, SHAN A S, MA Z, et al. Bactericidal efficiency and modes of action of the novel antimicrobial peptide T9W against Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2015, 59(6):3008-3017. |
[46] | SHANG D J, ZHANG Q, DONG W B, et al. The effects of LPS on the activity of Trp-containing antimicrobial peptides against Gram-negative bacteria and endotoxin neutralization[J]. Acta Biomater, 2016, 33:153-165. |
[47] | MISHRA B, WANG G S. Ab initio design of potent anti-MRSA peptides based on database filtering technology[J]. J Am Chem Soc, 2012, 134(30):12426-12429. |
[48] | CHOU S L, WANG J J, SHANG L, et al. Short, symmetric-helical peptides have narrow-spectrum activity with low resistance potential and high selectivity[J]. Biomater Sci, 2019, 7(6):2394-2409. |
[49] | MIZUKAMI S, KASHIBE M, MATSUMOTO K, et al. Enzyme-triggered compound release using functionalized antimicrobial peptide derivatives[J]. Chem Sci, 2017, 8(4):3047-3053. |
[50] | LI L L, MA H L, QI G B, et al. Pathological-condition-driven construction of supramolecular nanoassemblies for bacterial infection detection[J]. Adv Mater, 2016, 28(2):254-262. |
[51] | WANG L, CHEN J J, ZENG X Z, et al. Mechanistic insights and rational design of a versatile surface with cells/bacteria recognition capability via orientated fusion peptides[J]. Adv Sci, 2019, 6(9):1801827. |
[52] | QI G B, ZHANG D, LIU F H, et al. An "On-Site Transformation" strategy for treatment of bacterial infection[J]. Adv Mater, 2017, 29(36):1703461. |
[53] | XIONG M H, BAO Y, XU X, et al. Selective killing of Helicobacter pylori with pH-responsive helix-coil conformation transitionable antimicrobial polypeptides[J]. Proc Natl Acad Sci U S A, 2017, 114(48):12675-12680. |
[54] | SONG J J, ZHANG W, KAI M, et al. Design of an acid-activated antimicrobial peptide for tumor therapy[J]. Mol Pharm, 2013, 10(8):2934-2941. |
[55] | HOLDBROOK D A, SINGH S, CHOONG Y K, et al. Influence of pH on the activity of thrombin-derived antimicrobial peptides[J]. Biochim Biophys Acta Biomembr, 2018, 1860(11):2374-2384. |
[56] | MAISETTA G, VITALI A, SCORCIAPINO M A, et al. pH-dependent disruption of Escherichia coli ATCC 25922 and model membranes by the human antimicrobial peptides hepcidin 20 and 25[J]. FEBS J, 2013, 280(12):2842-2854. |
[57] | LI L N, HE J, ECKERT R, et al. Design and characterization of an acid-activated antimicrobial peptide[J]. Chem Biol Drug Des, 2010, 75(1):127-132. |
[58] | DENNISON S R, MORTON L H, HARRIS F, et al. Low pH enhances the action of maximin H5 against staphylococcus aureus and helps mediate lysylated phosphatidylglycerol-induced resistance[J]. Biochemistry, 2016, 55(27):3735-3751. |
[59] | LAI Z H, TAN P, ZHU Y J, et al. Highly Stabilized α-helical coiled coils kill gram-negative bacteria by multicomplementary mechanisms under acidic condition[J]. ACS Appl Mater Interfaces, 2019, 11(25):22113-22128. |
[60] | DAI Z L, WU G, ZHU W Y. Amino acid metabolism in intestinal bacteria:links between gut ecology and host health[J]. Front Biosci (Landmark Ed), 2011, 16:1768-1786. |
[61] | 姜东京, 张丽,曹雨诞,等. 肠道菌群在中药研究中的应用[J]. 中国中药杂志, 2016, 41(17):3218-3225.JANG D J, ZHANG L, CAO Y D, et al. Application of gut microbiota in research of Chinese medicines[J]. China Journal of Chinese Materia Medica, 2016, 41(17):3218-3225. (in Chinese) |
[62] | SOLDAVINI J, KAUNITZ J D. Pathobiology and potential therapeutic value of intestinal short-chain fatty acids in gut inflammation and obesity[J]. Dig Dis Sci, 2013, 58(10):2756-2766. |
[63] | 杨泽冉, 辛毅,侯洁,等. 肠道菌群失调及其相关疾病研究进展[J]. 山东医药, 2016, 56(1):99-101.YNG Z R, XIN Y, HOU J, et al. Advances in research on intestinal flora imbalance and related diseases[J]. Shandong Medicine, 2016, 56(1):99-101. (in Chinese) |
[64] | SONG N N, ZHAO L Z, ZHU M L, et al. Recent progress in LyP-1-based strategies for targeted imaging and therapy[J]. Drug Deliv, 2019, 26(1):363-375. |
[1] | 韩福珍, 蔡李萌, 李卓然, 王雪莹, 解伟纯, 匡虹迪, 李佳璇, 崔文, 姜艳平, 李一经, 单智夫, 唐丽杰. 肠道菌群介导次级胆汁酸及其受体调节肠黏膜免疫机制的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1904-1913. |
[2] | 周梦婷, 宋银娟, 许健, 李斌, 冉多良, 储岳峰. 基于碳水化合物的佐剂作用机制研究进展[J]. 畜牧兽医学报, 2024, 55(2): 491-501. |
[3] | 白昀, 谢青云, 欧阳伟, 甘源, 袁厅, 赵东明, 步志高, 邵国青, 冯志新. 基于黏膜sIgA抗体的非洲猪瘟病毒感染早期血清学检测方法的建立[J]. 畜牧兽医学报, 2024, 55(1): 300-310. |
[4] | 宫浩阳, 吴佳鑫, 杨晓钰, 解伟纯, 王雪莹, 李佳璇, 姜艳平, 崔文, 李一经, 唐丽杰. 肠道菌群抗病毒机制研究进展[J]. 畜牧兽医学报, 2023, 54(12): 4910-4919. |
[5] | 郑若愚, 肖洁, 白鑫, 陈浩, 蒲家艳, 任永军, 杨光友. 大型艾美耳球虫重组蛋白GAPDH对兔的免疫保护效果评价[J]. 畜牧兽医学报, 2023, 54(10): 4338-4349. |
[6] | 王建东, 唐玉林, 王敏, 张宝锁, 杨富强, 高海慧, 于洋, 郭延生. 基于RNA-Seq技术研究枸杞多糖对环磷酰胺致雏鸡免疫抑制的拮抗机制[J]. 畜牧兽医学报, 2023, 54(8): 3519-3532. |
[7] | 陈鑫, 秦彤. mRNA疫苗及其在动物传染病中的研究展望[J]. 畜牧兽医学报, 2023, 54(7): 2732-2742. |
[8] | 刘弘毅, 罗霆宇, 李昌文, 于海波, 路小野, 陈洪岩, 夏长友, 高彩霞. 实验用荣昌猪SLA-1等位基因鉴定及分子遗传特征分析[J]. 畜牧兽医学报, 2023, 54(7): 3064-3077. |
[9] | 李昭燕, 高江, 郭时惠, 赵茹茜, 马文强. 猫过敏原检测方法与控制措施的研究进展[J]. 畜牧兽医学报, 2023, 54(6): 2272-2279. |
[10] | 郑若愚, 任永军, 肖洁, 白鑫, 蒲家艳, 陈浩, 杨光友. 斯氏艾美耳球虫3-磷酸甘油醛脱氢酶重组蛋白对兔的免疫保护效果评价[J]. 畜牧兽医学报, 2023, 54(6): 2581-2595. |
[11] | 刘青, 吴少鹏, 石彬, 邵红霞, 钱琨, 叶建强, 秦爱建. 鸡CTLA-4蛋白在昆虫细胞中的表达及其单克隆抗体的制备[J]. 畜牧兽医学报, 2023, 54(6): 2596-2604. |
[12] | 陈芳芳, 栗中华, 朱志伟, 李锦春, 刘翠艳. 恒定链的多功能研究新进展[J]. 畜牧兽医学报, 2023, 54(5): 1824-1833. |
[13] | 王子, 王年祥, 田长明, 赵福杰, 刘林涛, 马梦瑶, 贾鑫浩, 刘国星, 郑兰兰. 桥连双苯丙氨酸二肽增强灭活猪丁型冠状病毒在小鼠上的免疫效果分析[J]. 畜牧兽医学报, 2023, 54(4): 1590-1597. |
[14] | 李硕, 张韵, 白满元, 赵瑞翀, 宋河涛, 穆素雨, 滕志东, 董虎, 马娥宁, 孙世琪, 郭慧琛, 尹双辉. 生物矿化的口蹄疫病毒样颗粒疫苗的免疫原性评价[J]. 畜牧兽医学报, 2023, 54(4): 1598-1607. |
[15] | 李让, 翁翔, 李泉晓, 吴道澄, 曹辉, 张爱莲. 栽培一枝蒿粗多糖混合口蹄疫疫苗乳化方法及稳定性分析[J]. 畜牧兽医学报, 2023, 54(4): 1608-1615. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||