

畜牧兽医学报 ›› 2013, Vol. 44 ›› Issue (11): 1781-1789.doi: 10.11843/j.issn.0366-6964.2013.11.012
孔令蕊,王远孝,李伟,董丽,张婧菲,王恬*
收稿日期:2013-05-08
出版日期:2013-11-23
发布日期:2013-11-23
通讯作者:
王恬,教授,博士生导师,E-mail: tianwang@njau.edu.cn
作者简介:孔令蕊(1985-),女,山东聊城人,博士生,主要从事动物生长发育的营养调控研究,E-mail: konglingrui1123@126.com
基金资助:国家自然科学基金资助项目(30771569)
KONG Ling-rui, WANG Yuan-xiao, LI Wei, DONG Li, ZHANG Jing-fei, WANG Tian*
Received:2013-05-08
Online:2013-11-23
Published:2013-11-23
摘要:
本试验旨在研究L-精氨酸(L-Arg)对子宫内发育迟缓(IUGR)仔猪胰腺生长发育的调控。试验选取12头IUGR仔猪和6头正常仔猪,哺乳至7 d时断奶,将IUGR仔猪随机分为2组,分别饲喂基础人工乳(IUGR组)、基础人工乳+0.6% Arg(IUGR+Arg组),正常仔猪饲喂基础人工乳(NBW组)。饲喂至14 d时每组选取4头屠宰取样,并对胰腺发育相关指标进行测定。结果表明:受IUGR影响,仔猪胰腺组织中胰岛素(Ins)含量、胰岛面积及β细胞质量均显著降低(P<0.05),胰岛细胞数目、Ins染色阳性率、Ins阳性表达面积及Ins阳性表达细胞数目均极显著减少(P<0.01)。IUGR猪补充Arg后,胰腺绝对重量显著增加(P<0.05);Ins含量、胰岛面积、胰岛细胞数目、β细胞质量、Ins染色阳性率、Ins阳性表达面积也明显增加(P<0.01),且均与NBW猪相比差异不显著(P>0.05);胰岛平均染色光密度明显增加(P<0.01),且显著高于NBW猪(P<0.01)。结果提示,IUGR损害仔猪胰腺发育,补充Arg后,IUGR仔猪胰岛结构得到改善,胰岛β细胞数量增加,胰岛素合成增多。
中图分类号:
孔令蕊,王远孝,李伟,董丽,张婧菲,王恬. L-精氨酸对IUGR仔猪胰岛结构及功能的调控研究[J]. 畜牧兽医学报, 2013, 44(11): 1781-1789.
KONG Ling-rui, WANG Yuan-xiao, LI Wei, DONG Li, ZHANG Jing-fei, WANG Tian. Effects of L-Arg Supplementation on Pancreatic Islet Structure and Function in Intrauterine Growth Retardation Piglets[J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2013, 44(11): 1781-1789.
| [1]WU G, BAZER F W, WALLACE J M, et al. Board-invited review: intrauterine growth retardation: implications for the animal sciences[J]. J Anim Sci, 2006, 84(9):2316-2337. [2]WU G, BAZER F W, CUDD T A, et al. Maternal nutrition and fetal development[J]. J Nutr, 2004, 134(9):2169-2172. [3]WANG T, HUO Y J, SHI F, et al. Effects of intrauterine growth retardation on development of the gastrointestinal tract in neonatal pigs[J]. Biol Neonate, 2005, 88(1):66-72. [4]石现瑞. 子宫内生长阻滞对新生仔猪胰腺及胃发育的影响[D].南京:南京农业大学,2003. [5]HARADA E, SHIZUYAMA M, IHARA N, et al. Impaired pancreatic endocrine and exocrine responses in growth-retarded piglets[J]. J Vet Med, 2003, 50(9):433-441. [6]STYRUD J, ERIKSSON U J, GRILL V, et al. Experimental intrauterine growth retardation in the rat causes a reduction of pancreatic B-cell mass, which persists into adulthood[J]. Biol Neonate, 2005, 88(2):122-128. [7]INOUE T, KIDO Y, ASAHARA S, et al. Effect of intrauterine undernutrition during late gestation on pancreatic beta cell mass[J]. Biomed Res, 2009, 30(6):325-330. [8]DUMORTIER O, BLONDEAU B, DUVILLIE B, et al. Different mechanisms operating during different critical time-windows reduce rat fetal beta cell mass due to a maternal low-protein or low-energy diet[J]. Diabetologia, 2007, 50(12):2495-2503. [9]LIMESAND S W, JENSEN J, HUTTON J C, et al. Diminished beta-cell replication contributes to reduced beta-cell mass in fetal sheep with intrauterine growth restriction[J]. Am J Physiol Regul Integr Comp Physiol, 2005, 288(5):R1297-1305. [10]LIMESAND S W, ROZANCE P J, ZERBE G O, et al. Attenuated insulin release and storage in fetal sheep pancreatic islets with intrauterine growth restriction[J]. Endocrinology, 2006, 147(3):1488-1497. [11]YUAN Q X, ZHOU J Y, TENG L P, et al. Intrauterine growth retardation leads to the functional change of insulin secretion in the newborn rats[J]. Horm Metab Res, 2010, 42(7):491-495. [12]REUSENS B, REMACLE C. Programming of the endocrine pancreas by the early nutritional environment[J]. Int J Biochem Cell Biol, 2006, 38(5-6):913-922. [13]SCHWITZGEBEL V M, SOMM E, KLEE P. Modeling intrauterine growth retardation in rodents: Impact on pancreas development and glucose homeostasis[J]. Mol Cell Endocrinol, 2009, 304(1-2):78-83. [14]陈才勇, 周根来, 王恬. 以猪为动物模型对子宫内生长阻滞的研究进展[J]. 实验动物科学与管理, 2003, (1):33-36, 45. [15]WU G, BAZER F W, DAVIS T A, et al. Arginine metabolism and nutrition in growth, health and disease[J]. Amino Acids, 2009, 37(1):153-168. [16]KIM S W, WU G. Dietary arginine supplementation enhances the growth of milk-fed young pigs[J]. J Nutr, 2004, 134(3):625-630. [17]COCHARD A, GUILHERMET R, BONNEAU M. Effects of arginine, growth hormone-releasing hormone (GHRH) and neostigmine administered singly or in paired combinations on growth hormone (GH) release in pigs[J]. Reprod Nutr Dev, 1997, 37(5):589-598. [18]MATEO R D, WU G, BAZER F W, et al. Dietary L-arginine supplementation enhances the reproductive performance of gilts[J]. J Nutr, 2007, 137(3):652-656. [19]MATEO R D, WU G, MOON H K, et al. Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets[J]. J Anim Sci, 2008, 86(4):827-835. [20]GIOVANNUCCI E. Insulin, insulin-like growth factors and colon cancer: a review of the evidence[J]. J Nutr, 2001, 131(11 Suppl):3109S-3120S. [21]姚康, 褚武英, 邓敦, 等. 不同精氨酸添加水平对哺乳仔猪生长性能的影响[J]. 天然产物研究与开发, 2008, (1):121-124. [22]BURKE C, SINCLAIR K, COWIN G, et al. Intrauterine growth restriction due to uteroplacental vascular insufficiency leads to increased hypoxia-induced cerebral apoptosis in newborn piglets[J]. Brain Res, 2006, 1098(1):19-25. [23]YAO K, YIN Y L, CHU W, et al. Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs[J]. J Nutr, 2008, 138(5):867-872. [24]孔祥峰, 尹富贵, 刘合军, 等. 早期断奶仔猪生理生化参数和脏器指数的变化[J]. 中国实验动物学报, 2006, (4):298-302. [25]YAMAMOTO M, KATAOKA K. An electron microscope study of the development of the exocrine and endocrine pancreas with special reference to intercellular junctions[J]. Arch Histol Cytol, 1988, 51(4):315-325. [26]REHFELDT C, KUHN G. Consequences of birth weight for postnatal growth performance and carcass quality in pigs as related to myogenesis[J]. J Anim Sci, 2006, 84 (Suppl): E113-123. [27]XU R J, MELLOR D J, BIRTLES M J, et al. Impact of intrauterine growth retardation on the gastrointestinal tract and the pancreas in newborn pigs[J]. J Pediatr Gastroenterol Nutr, 1994, 18(2):231-240. [28]WOLTER B F, ELLIS M, CORRIGAN B P, et al. The effect of birth weight and feeding of supplemental milk replacer to piglets during lactation on preweaning and postweaning growth performance and carcass characteristics[J]. J Anim Sci, 2002, 80(2):301-308. [29]FERNANDEZ-TWINN D S, OZANNE S E. Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic syndrome[J]. Physiol Behav, 2006, 88(3):234-243. [30]LUCAS A. Programming by early nutrition: an experimental approach[J]. J Nutr, 1998, 128(2Suppl): 401S-406S. [31]VAN SCHRAVENDIJK C F, FORIERS A, HOOGHE-PETERS E L, et al. Pancreatic hormone receptors on islet cells[J]. Endocrinology, 1985, 117(3):841-848. [32]HARBECK M C, LOUIE D C, HOWLAND J, et al. Expression of insulin receptor mRNA and insulin receptor substrate 1 in pancreatic islet beta-cells[J]. Diabetes, 1996, 45(6):711-717. [33]BERTIN E, GANGNERAU M N, BAILBE D, et al. Glucose metabolism and beta-cell mass in adult offspring of rats protein and/or energy restricted during the last week of pregnancy[J]. Am J Physiol, 1999, 277(1 Pt 1):E11-17. [34]LEIBIGER B, WAHLANDER K, BERGGREN P O, et al. Glucose-stimulated insulin biosynthesis depends on insulin-stimulated insulin gene transcription[J]. J Biol Chem, 2000, 275(39):30153-30156. [35]ASPINWALL C A, LAKEY J R, KENNEDY R T. Insulin-stimulated insulin secretion in single pancreatic beta cells[J]. J Biol Chem, 1999, 274(10):6360-6365. [36]ASPINWALL C A, QIAN W J, ROPER M G, et al. Roles of insulin receptor substrate-1, phosphatidylinositol 3-kinase, and release of intracellular Ca2+ stores in insulin-stimulated insulin secretion in beta -cells[J]. J Biol Chem, 2000, 275(29):22331-22338. [37]王远孝, 张莉莉, 周根来, 等. 精氨酸对IUGR仔猪器官指数和血清激素水平的影响[C]//低碳经济与高效养殖——第六次全国饲料营养学术研讨会暨动物营养学分会成立三十周年大会,2010:1. [38]GRADWOHL G. Development of the endocrine pancreas[J]. Diabetes Metab, 2006, 32(5 Pt 2):532-533. [39]胡劲涛. 氧化损伤在低出生体重仔鼠发生代谢综合征过程中的作用及干预研究[D].长沙:中南大学,2008. |
| [1] | 牛乃琪, 赵润泽, 宗文成, 刘先策, 刘海, 石国华, 井西涛, 张龙超. 北京黑猪GREB1L和MIB1基因多态性与肋骨数及胴体性状的关联分析[J]. 畜牧兽医学报, 2024, 55(1): 79-86. |
| [2] | 祝雪丽, 张龙超, 王立贤, 蒲蕾, 刘欣. 北京黑猪AQP9和RPS10基因多态性及其与背膘厚的关联分析[J]. 畜牧兽医学报, 2024, 55(1): 87-98. |
| [3] | 时胜洁, 王立光, 高磊, 蔡传江, 何伟先, 褚瑰燕. miR-24-3p对猪颗粒细胞雌二醇合成的作用[J]. 畜牧兽医学报, 2024, 55(1): 169-178. |
| [4] | 杨凯, 卢倬达, 何健, 张瑞琪, 王素青, 李克标, 赵云翔, 朱晓萍, 郭金彪. 商品猪群体效应对纯种猪胴体性状基因组选择准确性的影响[J]. 畜牧兽医学报, 2023, 54(12): 4943-4951. |
| [5] | 李超, 赵雪艳, 王永军, 王彦平, 任一帆, 李菁璇, 王怀中, 王继英, 宋勤叶. 莱芜猪和杜长大猪盲肠和结肠微生物菌群结构组成和功能分析[J]. 畜牧兽医学报, 2023, 54(12): 5033-5045. |
| [6] | 徐婷婷, 齐芬芳, 黄世会, 牛熙, 李升, 冉雪琴, 王嘉福, 谢健. 香猪MAP3K4基因结构变异多态性和基因表达研究[J]. 畜牧兽医学报, 2023, 54(12): 5046-5055. |
| [7] | 薛鸿雁, 杨孟雨, 杨欢, 董丽君, 蔡霞清, 赵泽民, 王鲜忠. ALOX15B-JNK在热应激诱导支持细胞氧化应激和凋亡中的作用[J]. 畜牧兽医学报, 2023, 54(12): 5056-5065. |
| [8] | 胡紫平, 王立刚, 宗文成, 侯任达, 苏艳芳, 牛乃琪, 王立贤, 王源, 张龙超. 基于基因组SNP和ROH的剑白香猪群体遗传结构解析[J]. 畜牧兽医学报, 2023, 54(10): 4117-4125. |
| [9] | 季铮渝, 倪梦茹, 张兆博, 赵赶, 黄赞, 李平华, 黄瑞华, 侯黎明. 苏淮猪背最长肌FAPs细胞体外成脂能力及其基因表达模式的研究[J]. 畜牧兽医学报, 2023, 54(10): 4126-4142. |
| [10] | 毕欢, 覃海, 袁巍, 张雨丹, 张依裕, 陈伟. 敲降TYRP1基因对香猪表皮黑素细胞黑色素生成的影响[J]. 畜牧兽医学报, 2023, 54(10): 4143-4153. |
| [11] | 刘攀, 李瑞琦, 谭占坤, 王逸飞, 陈晓晨, 何伟先, 杜忍让, 马健, 褚瑰燕, 蔡传江. 高纤维日粮对生长育肥猪生长性能、肉品质及肠道微生物的影响[J]. 畜牧兽医学报, 2023, 54(10): 4247-4259. |
| [12] | 李平会, 蒲广, 王中宇, 周五朵, 牛培培, 吴承武, 侯黎明, 黄瑞华, 李平华. 日粮纤维水平对梅山猪血液和肠道免疫指标的影响及其机理初步解析[J]. 畜牧兽医学报, 2023, 54(10): 4260-4277. |
| [13] | 王慧, 冯保亮, 吴丹, 向光明, 王楠, 牟玉莲, 李奎, 刘志国. CD163基因在猪繁殖与呼吸综合征抗病育种中的研究进展[J]. 畜牧兽医学报, 2023, 54(8): 3127-3138. |
| [14] | 张万锋, 赵天枝, 李娇, 尤紫薇, 杨阳, 蔡春波, 高鹏飞, 曹果清, 郭晓红, 李步高. NR2F2基因调控猪PK15细胞增殖和凋亡的研究[J]. 畜牧兽医学报, 2023, 54(8): 3242-3251. |
| [15] | 连玉举, 张致远, 廖晓波, 魏红江, 印遇龙, 刘梅. 医用小型猪选育方法和应用进展[J]. 畜牧兽医学报, 2023, 54(7): 2667-2682. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||