

畜牧兽医学报 ›› 2026, Vol. 57 ›› Issue (1): 108-119.doi: 10.11843/j.issn.0366-6964.2026.01.010
收稿日期:2025-04-10
出版日期:2026-01-23
发布日期:2026-01-26
通讯作者:
左儒楠
E-mail:2820354323@stu.ahau.edu.cn;zrn910314@ahau.edu.cn
作者简介:孙泽远,硕士生,主要从事兽医药理与毒理学研究,E-mail:2820354323@stu.ahau.edu.cn
基金资助:
SUN Zeyuan(
), XIANG Lingxian, LI Lin, ZUO Runan(
)
Received:2025-04-10
Online:2026-01-23
Published:2026-01-26
Contact:
ZUO Runan
E-mail:2820354323@stu.ahau.edu.cn;zrn910314@ahau.edu.cn
摘要:
沙门菌(Salmonella)是全球范围内常见的食源性病原体,随着抗生素的推广和使用,越来越多的沙门菌通过垂直传递以及基因水平转移(horizontal gene transfer, HGT)获得抗生素耐药基因(antibiotic resistance genes, ARGs),导致抗生素耐药性的广泛传播。ARG发生水平转移过程中,主要由相关移动遗传元件(mobile genetic element, MGE)所携带。MGE是HGT的重要介质,可促进ARG的传播。其中,MGE主要包括质粒、整合子、接合元件、转座子、插入序列和噬菌体等。不同MGE相关的转移机制、附属基因组成、ARG的复制扩散与动物来源以及环境因素之间存在显著差异。本综述旨在概述沙门菌中ARG的HGT机制、不同MGE介导的HGT机制和HGT发生与发展的影响因素,对深入探究沙门菌耐药基因通过HGT传播的机制具有重要的指导意义。
中图分类号:
孙泽远, 向令娴, 李琳, 左儒楠. 沙门菌耐药基因水平转移机制及影响因素[J]. 畜牧兽医学报, 2026, 57(1): 108-119.
SUN Zeyuan, XIANG Lingxian, LI Lin, ZUO Runan. Mechanisms and Influencing Factors of Horizontal Transfer of Drug-resistant Genes in Salmonella[J]. Acta Veterinaria et Zootechnica Sinica, 2026, 57(1): 108-119.
表1
不同接合性质粒在沙门菌中携带的ARG及其来源"
质粒 Plasmid | 耐药性基因 ARGs | 来源 Source | 引用 Cite |
|---|---|---|---|
| IncA/C | strAB、sul2、tetAR、blaCMY-2、floR | 动物(牛) | [ |
| IncF | blaTEM-1、cmlA、aadA1、aadA2、sul3 | 人/动物(禽类) | [ |
| strAB、tetA、tetC、tetD、aphA | 人/动物(猪) | [ | |
| IncHI | tetB、tetAR、cat、sul2、blaTEM-1 | 人/动物(牛) | [ |
| IncI | mcr-1(与多种质粒相关) | 人 | [ |
| aadA、aac(3')-IId、sul1、blaTEM-1、tetA | 动物(火鸡) | [ | |
| IncN/IncX | qnr | 人 | [ |
| [1] | LU J E,WU H,WU S B,et al.Salmonella:Infection mechanism and control strategies[J].Microbiol Res,2025,292:128013. |
| [2] | GBD 2021 Antimicrobial Resistance Collaborators.Global burden of bacterial antimicrobial resistance 1990-2021:a systematic analysis with forecasts to 2050[J].Lancet (London,England),2024,404(10459):1199-1226. |
| [3] | COOK M A,WRIGHT G D.The past,present,and future of antibiotics[J].Sci Transl Med,2022,14(657):eabo7793. |
| [4] | CAREY M E,DYSON Z A,INGLE D J,et al.Global diversity and antimicrobial resistance of typhoid fever pathogens:Insights from a meta-analysis of 13,000 Salmonella Typhi genomes[J].eLife,2023,12:e85867. |
| [5] | LIU H B,ZHENG L J,FAN H M,et al.Genomic analysis of antibiotic resistance genes and mobile genetic elements in eight strains of nontyphoid Salmonella[J].mSystems,2024,9(9):e00586-24. |
| [6] | POLZ M F,ALM E J,HANAGE W P.Horizontal gene transfer and the evolution of bacterial and archaeal population structure[J].Trends Genet,2013,29(3):170-175. |
| [7] | TOYOFUKU M,SCHILD S,KAPARAKIS-LIASKOS M,et al.Composition and functions of bacterial membrane vesicles[J].Nat Rev Microbiol,2023,21(7):415-430. |
| [8] | RODRÍGUEZ-BELTRÁN J,DELAFUENTE J,LEÓN-SAMPEDRO R,et al.Beyond horizontal gene transfer:the role of plasmids in bacterial evolution[J].Nat Rev Microbiol,2021,19(6):347-359. |
| [9] | PARTRIDGE S R,KWONG S M,FIRTH N,et al.Mobile genetic elements associated with antimicrobial resistance[J].Clin Microbiol Rev,2018,31(4):e00088-17. |
| [10] | ABUKHATTAB S,HOSCH S,ABU-RMEILEH N M E,et al.Whole-genome sequencing for One Health surveillance of antimicrobial resistance in conflict zones:a case study of Salmonella spp.and Campylobacter spp.in the West Bank,Palestine[J].Appl Environ Microbiol,2023,89(9):e0065823. |
| [11] | TANSIRICHAIYA S,GOODMAN R N,GUO X,et al.Intracellular transposition and capture of mobile genetic elements following intercellular conjugation of multidrug resistance conjugative plasmids from clinical enterobacteriaceae isolates[J].Microbiol Spect,2022,10(1):e0214021. |
| [12] | MOLLENKOPF D F,MATHYS D A,DARGATZ D A,et al.Genotypic and epidemiologic characterization of extended-spectrum cephalosporin resistant Salmonella enterica from US beef feedlots[J].Prev Vet Med,2017,146:143-149. |
| [13] | LEÓN-SAMPEDRO R,DELAFUENTE J,DÍAZ-AGERO C,et al.Pervasive transmission of a carbapenem resistance plasmid in the gut microbiota of hospitalized patients[J].Nat Microbiol,2021,6(5):606-616. |
| [14] | ACMAN M,WANG R,VAN DORP L,et al.Role of mobile genetic elements in the global dissemination of the carbapenem resistance gene blaNDM[J].Nat Commun,2022,13(1) 1131. |
| [15] | ROBERTS A P,MULLANY P.Tn916-like genetic elements:a diverse group of modular mobile elements conferring antibiotic resistance[J].FEMS Microbiol Rev,2011,35(5):856-871. |
| [16] | 赵秋云,沈焕钧,宋厚辉,等.一株携带耐药基因blaCTX-M-27沙门菌P1-CTX噬菌体-质粒的分离及生物学特性分析[J].畜牧兽医学报,2025,56(7):3519-3527. |
| ZHAO Q Y,SHEN H J,SONG H H,et al.Isolation and characterization of Salmonella phage P1-CTX carrying blaCTX-M-27[J].Acta Veterinaria et Zootechnica Sinica,2025,56(7):3519-3527.(in Chinese) | |
| [17] | EMOND-RHEAULT J G,HAMEL J,JEUKENS J,et al.The Salmonella enterica plasmidome as a reservoir of antibiotic resistance[J].Microorganisms,2020,8(7):1016. |
| [18] | 张 鹏.抗菌药物促进携带质粒细菌的体外进化、小鼠肠道定殖及其肠道菌群影响机制的研究[D].天津:南开大学,2021. |
| ZHANG P.Antibacterial agents catalized the evolution ofplasmid-carrying bacteria,facilitated their gutcolonization,and induced the intestinal injuryvia disturbing gut microbiota[D].Tianjin:Nankai University,2021.(in Chinese) | |
| [19] | RODRIGUES G L,PANZENHAGEN P,FERRARI R G,et al.Frequency of antimicrobial resistance genes in Salmonella from Brazil by in silico whole-genome sequencing analysis:An overview of the last four decades[J].Front Microbiol,2020,11:1864. |
| [20] | CHEN K,DONG N,ZHAO S,et al.Identification and characterization of conjugative plasmids that encode ciprofloxacin resistance in Salmonella[J].Antimicrob Agents Chemother,2018,62(8):e00575-18. |
| [21] | GUINEY D G,FIERER J.The role of the spv genes in Salmonella pathogenesis[J].Front Microbiol,2011,2:129. |
| [22] | ROZWANDOWICZ M,BROUWER M S M,FISCHER J,et al.Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae[J].J Antimicrob Chemother,2018,73(5):1121-1137. |
| [23] | LIU Y Y,WANG Y,WALSH T R,et al.Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China:a microbiological and molecular biological study[J].Lancet Infect Dis,2016,16(2):161-168. |
| [24] | HAN J,LYNNE A M,DAVID D E,et al.DNA sequence analysis of plasmids from multidrug resistant Salmonella enterica serotype Heidelberg isolates[J].PloS One,2012,7(12):e51160. |
| [25] | CHEN K,CHAN E W C,CHEN S.Evolution and transmission of a conjugative plasmid encoding both ciprofloxacin and ceftriaxone resistance in Salmonella[J].Emerg Microbes Infect,2019,8(1):396-403. |
| [26] | ALIKHAN N F,MORENO L Z,CASTELLANOS L R,et al.Dynamics of Salmonella enterica and antimicrobial resistance in the Brazilian poultry industry and global impacts on public health[J].PLoS Genet,2022,18(6):e1010174. |
| [27] | XIE M,CHEN K,CHAN E W C,et al.Identification and genetic characterization of two conjugative plasmids that confer azithromycin resistance in Salmonella[J].Emerg Microbes Infect,2022,11(1):1049-1057. |
| [28] | CHEN K,YANG C,DONG N,et al.Evolution of ciprofloxacin resistance-encoding genetic elements in Salmonella[J].mSystems,2020,5(6):e01234-20. |
| [29] | ZHAO Y,CAO Z,CUI L,et al.Enrofloxacin promotes plasmid-mediated conjugation transfer of fluoroquinolone-resistance gene qnrS[J].Front Microbiol,2021,12:773664. |
| [30] | YU F,CHEN Q,YU X,et al.High prevalence of plasmid-mediated quinolone resistance determinant aac(6′)-Ib-cr amongst Salmonella enterica serotype Typhimurium isolates from hospitalised paediatric patients with diarrhoea in China[J].Int J Antimicrob Agents,2011,37(2):152-155. |
| [31] | CHAUDHARI R,SINGH K,KODGIRE P.Biochemical and molecular mechanisms of antibiotic resistance in Salmonella spp[J].Res Microbiol,2023,174(1-2):103985. |
| [32] | 苏志国,张 衍,代天娇,等.环境中抗生素抗性基因与Ⅰ型整合子的研究进展[J].微生物学通报,2018,45(10):2217-2233. |
| SU Z G,ZHANG Y,DAI T J,et al.Antibiotic resistance genes and class 1 integron in the environment:research progressSU[J].Microbiology China,2018,45(10):2217-2233.(in Chinese) | |
| [33] | MA J,AN N,LI W,et al.Antimicrobial resistance and molecular characterization of gene cassettes from class 1 integrons in Salmonella strains[J].J Med Microbiol,2022,71(9):doi:10.1099/jmm.0.001574. |
| [34] | 田禹齐.鼠伤寒沙门菌单相变异体SugE外排泵抵御季铵盐消毒剂的机制及其对毒力的影响[D].扬州:扬州大学,2024. |
| TIAN Y Q.Mechanism of resistance to quaternary ammonium salt disinfectant by SugE effector pump of monophase variant of Salmonella typhimurium and its influence on virulence [D].Yangzhou:Yangzhou University,2024.(in Chinese) | |
| [35] | 李彦媚,赵喜红,徐泽智,等.新型细菌耐药元件——整合子系统[J].中国抗生素杂志,2012,37(1):1-7. |
| LI Y M,ZHAO X H,XU Z Z,et al.Novel bacterial drug resistance components:integrated subsystem [J].Chinese Journal of Antibiotics,2012,37(01):1-7.(in Chinese) | |
| [36] | VILLA L,CARATTOLI A.Integrons and transposons on the Salmonella enterica serovar typhimurium virulence plasmid[J].Antimicrob Agents Chemother,2005,49(3):1194-1197. |
| [37] | LAI J,WANG Y,SHEN J,et al.Unique class 1 integron and multiple resistance genes co-located on IncHI2 plasmid is associated with the emerging multidrug resistance of Salmonella Indiana isolated from chicken in China[J].Foodborne Pathog Dis,2013,10(7):581-588. |
| [38] | WANG X,KONG N,CAO M,et al.Comparison of class 2 integron integrase activities[J].Curr Microbiol,2021,78(3):967-978. |
| [39] | WEI Q,HU Q,LI S,et al.A novel functional class 2 integron in clinical Proteus mirabilis isolates[J].J Antimicrob Chemother,2014,69(4):973-976. |
| [40] | ARGÜELLO H,GUERRA B,RODRÍGUEZ I,et al.Characterization of antimicrobial resistance determinants and Class 1 and Class 2 integrons in Salmonella enterica spp.,multidrug-resistant isolates from pigs[J].Genes,2018,9(5):256. |
| [41] | HANSSON K,SUNDSTRÖM L,PELLETIER A,et al.IntI2 integron integrase in Tn7[J].J Bacteriol,2002,184(6):1712-1721. |
| [42] | RAMÍREZ M S,QUIROGA C,CENTRÓN D.Novel rearrangement of a class 2 integron in two non-epidemiologically related isolates of Acinetobacter baumannii[J].Antimicrob Agents Chemother,2005,49(12):5179-5181. |
| [43] | KIM S,KIM S H,KIM J,et al.Occurrence and distribution of various genetic structures of class 1 and class 2 integrons in Salmonella enterica isolates from foodborne disease patients in Korea for 16 years[J].Foodborne Pathog Dis,2011,8(2):319-324. |
| [44] | VAN T T H,NGUYEN H N K,SMOOKER P M,et al.The antibiotic resistance characteristics of non-typhoidal Salmonella enterica isolated from food-producing animals,retail meat and humans in South East Asia[J].Int J Food Microbiol,2012,154(3):98-106. |
| [45] | DELAVAT F,MIYAZAKI R,CARRARO N,et al.The hidden life of integrative and conjugative elements[J].FEMS Microbiol Rev,2017,41(4):512-537. |
| [46] | TOKUDA M,SHINTANI M.Microbial evolution through horizontal gene transfer by mobile genetic elements[J].Microb Biotechnol,2024,17(1):e14408. |
| [47] | 丁瑞雪.乳源大肠杆菌耐药基因blaCTX-M的定位及水平转移分子机制研究[D].沈阳:沈阳农业大学,2023. |
| DING R X.Localization and molecular mechanism of horizontal transfer of blaCTX-M gene in milk-derived Escherichia coli [D].Shenyang:Shenyang Agricultural University,2023.(in Chinese) | |
| [48] | DE CURRAIZE C,SIEBOR E,NEUWIRTH C.Genomic islands related to Salmonella genomic island 1; integrative mobilisable elements in trmE mobilised in trans by A/C plasmids[J].Plasmid,2021,114:102565. |
| [49] | DOUBLET B,BOYD D,MULVEY M R,et al.The Salmonella genomic island 1 is an integrative mobilizable element[J].Mol Microbiol,2005,55(6):1911-1924. |
| [50] | 于润浩.可移动元件促进肠杆菌科细菌替加环素耐药基因传播及耐药水平增强的机制[D].郑州:河南农业大学,2024. |
| YU R H.Mechanism of mobile elements promoting the spread and enhancement of tigacycline resistance gene in Enterobacteriaceae[D].Zhengzhou:Henan Agricultural University,2024.(in Chinese) | |
| [51] | NIGRO S,HALL R M.Distribution of the blaOXA-23-containing transposons Tn2006 and Tn2008 in Australian carbapenem-resistant Acinetobacter baumannii isolates[J].J Antimicrob Chemother,2015,70(8):2409-2411. |
| [52] | 唐敏嘉,何卓琳,蒲万霞.获得性16S rRNA甲基化酶的研究进展[J].畜牧兽医学报,2021,52(9):2369-2383. |
| TANG M J,HE Z L,PU W X.The research progress of acquired 16S rRNA methyltransferases[J].Acta Veterinaria et Zootechnica Sinica,2021,52(9):2369-2383.(in Chinese) | |
| [53] | GU Y,LÜ Z,CAO C,et al.Cunning plasmid fusion mediates antibiotic resistance genes represented by ESBLs encoding genes transfer in foodborne Salmonella[J].Int J Food Microbiol,2021,355:109336. |
| [54] | LIEBERT C A,HALL R M,SUMMERS A O.Transposon Tn21,flagship of the floating genome[J].Microbiol Mol Biol Rev,1999,63(3):507-522. |
| [55] | CHEN C L,SU L H,JANAPATLA R P,et al.Genetic analysis of virulence and antimicrobial-resistant plasmid pOU7519 in Salmonella enterica serovar Choleraesuis[J].J Microbiol Immunol Infect,2020,53(1):49-59. |
| [56] | ZHOU L,HAN Y Y,YANG X,et al.Whole genome sequence of Salmonella Rissen SCSW714,a porcine strain harbouring a novel multidrug-resistant Tn7-like pco- and sil-containing transposon[J].J Glob Antimicrob Resist,2022,29:307-309. |
| [57] | SUN Y,HAN Y,QIAN C,et al.A novel transposon Tn7540 carrying blaNDM-9 and fosA3 in chromosome of a pathogenic multidrug-resistant Salmonella enterica serovar Indiana isolated from human faeces[J].J Glob Antimicrob Resist,2023,33:72-77. |
| [58] | HARMER C J,HALL R M.IS26 and the IS26 family:versatile resistance gene movers and genome reorganizers[J].Microbiol Mol Biol Rev,2024,88(2):e0011922. |
| [59] | CHE Y,YANG Y,XU X,et al.Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes[J].Proc Natl Acad Sci U S A,2021,118(6):e2008731118. |
| [60] | VARANI A,HE S,SIGUIER P,et al.The IS6 family,a clinically important group of insertion sequences including IS26[J].Mobile DNA,2021,12(1):11. |
| [61] | KRÜGER G I,PARDO-ESTÉ C,ZEPEDA P,et al.Mobile genetic elements drive the multidrug resistance and spread of Salmonella serotypes along a poultry meat production line[J].Front Microbiol,2023,14:1072793. |
| [62] | GRIFFITH F.The significance of pneumococcal types[J].J Hyg (Lond),1928,27(2):113-159. |
| [63] | GARRIDO V,ARRIETA-GISASOLA A,MIGURA-GARCÍA L,et al.Multidrug resistance in Salmonella isolates of swine origin:mobile genetic elements and plasmids associated with cephalosporin resistance with potential transmission to humans[J].App Environ Microbiol,2024,90(5):e0026424. |
| [64] | ZHANG P,DU Q,WANG Y,et al.Systematic representation and optimization enable the inverse design of cross-species regulatory sequences in bacteria[J].Nat Commun,2025,16(1):1763. |
| [65] | HUMPHREY S,FILLOL-SALOM A,QUILES-PUCHALT N,et al.Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements[J].Nat Commun,2021,12(1):6509. |
| [66] | HU J,CHEN J,NIE Y,et al.Characterizing the gut phageome and phage-borne antimicrobial resistance genes in pigs[J].Microbiome,2024,12(1):102. |
| [67] | ZHANG S,ABBAS M,REHMAN M U,et al.Updates on the global dissemination of colistin-resistant Escherichia coli:An emerging threat to public health[J].Sci Total Environ,2021,799:149280. |
| [68] | WAN Y,WICK R R,ZOBEL J,et al.GeneMates:an R package for detecting horizontal gene co-transfer between bacteria using gene-gene associations controlled for population structure[J].BMC Genomics,2020,21(1):658. |
| [69] | 冉红丽,温 馨,胥娇娇,等.种养循环模式中黏菌素抗性基因mcr-1的归趋[J].畜牧兽医学报,2025,56(10):4851-4862. |
| RAN H L,WEN X,XU J J,et al.Fate of the colistin resistance gene mcr-1 in crop-livestock integrated farming systems[J].Acta Veterinaria et Zootechnica Sinica,2025,56(10):4851-4862.(in Chinese) | |
| [70] | JI Y,XI H,ZHAO Z,et al.Metagenomics analysis reveals potential pathways and drivers of piglet gut phage-mediated transfer of ARGs[J].Sci Total Environ,2023,859(Pt 2):160304. |
| [71] | LI L,ZHANG M,WANG W,et al.Identification and characterization of two novel ISCR1-associated genes dfrA42 and dfrA43 encoding trimethoprim resistant dihydrofolate reductases[J].Antimicrob Agents Chemother,2023,95(5):e02010-20,AAC.02010-20. |
| [72] | GEORJON H,BERNHEIM A.The highly diverse antiphage defence systems of bacteria[J].Nat Rev Microbiol,2023,21(10):686-700. |
| [73] | HUSSAIN F A,DUBERT J,ELSHERBINI J,et al.Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages[J].Science (New York,N.Y.),2021,374(6566):488-492. |
| [74] | HUANG J,DAI X,WU Z,et al.Conjugative transfer of streptococcal prophages harboring antibiotic resistance and virulence genes[J].ISME J,2023,17(9):1467-1481. |
| [75] | LIAO H,LIU C,ZHOU S,et al.Prophage-encoded antibiotic resistance genes are enriched in human-impacted environments[J].Nat Commun,2024,15(1):8315. |
| [76] | SIMON A J,ELLINGTON A D,FINKELSTEIN I J.Retrons and their applications in genome engineering[J].Nucleic Acids Res,2019,47(21):11007-11019. |
| [77] | MILLMAN A,BERNHEIM A,STOKAR-AVIHAIL A,et al.Bacterial retrons function in anti-phage defense[J].Cell,2020,183(6):1551-1561.e12. |
| [78] | SASAKI T,TAKITA S,FUJISHIRO T,et al.Phage single-stranded DNA-binding protein or host DNA damage triggers the activation of the AbpAB phage defense system[J].mSphere,2023,8(6):e0037223. |
| [79] | WANG M,YAO Y,YANG Y,et al.The characterization of outer membrane vesicles (OMVs) and their role in mediating antibiotic-resistance gene transfer through natural transformation in Riemerella anatipestifer[J].Poult Sci,2025,104(2):104730. |
| [80] | XU H,TAN C,LI C,et al.ESBL-Escherichia coli extracellular vesicles mediate bacterial resistance to β-lactam and mediate horizontal transfer of blaCTX-M-55[J].Int J Antimicrob Agents,2024,63(5):107145. |
| [81] | SCHWECHHEIMER C,KUEHN M J.Outer-membrane vesicles from Gram-negative bacteria:biogenesis and functions[J].Nat Rev Microbiol,2015,13(10):605-619. |
| [82] | KAPARAKIS-LIASKOS M,FERRERO R L.Immune modulation by bacterial outer membrane vesicles[J].Nat Rev Immunol,2015,15(6):375-387. |
| [83] | MARCHANT P,VIVANCO E,SILVA A,et al.β-lactam-induced OMV release promotes polymyxin tolerance in Salmonella enterica sv.Typhi[J].Front Microbiol,2024,15:1389663. |
| [84] | MARINACCI B,KRZYŻEK P,PELLEGRINI B,et al.Latest update on outer membrane vesicles and their role in horizontal gene transfer:A mini-review[J].Membranes,2023,13(11):860. |
| [85] | FULSUNDAR S,HARMS K,FLATEN G E,et al.Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation[J].App Environ Microbiol,2014,80(11):3469-3483. |
| [86] | BIELASZEWSKA M,DANIEL O,KARCH H,et al.Dissemination of the blaCTX-M-15 gene among Enterobacteriaceae via outer membrane vesicles[J].J Antimicrob Chemother,2020,75(9):2442-2451. |
| [87] | MARTÍNEZ M M B,BONOMO R A,VILA A J,et al.On the offensive:the role of outer membrane vesicles in the successful dissemination of new delhi metallo-β-lactamase (NDM-1)[J].mBio,2021,12(5):e0183621. |
| [88] | NEVERMANN J,SILVA A,OTERO C,et al.Identification of genes involved in biogenesis of outer membrane vesicles (OMVs) in Salmonella enterica Serovar Typhi[J].Front Microbiol,2019,10:104. |
| [89] | MARCHANT P,CARREÑO A,VIVANCO E,et al.“One for all”:Functional transfer of OMV-mediated polymyxin B resistance from Salmonella enterica sv.Typhi ΔtolR and ΔdegS to susceptible bacteria[J].Front Microbiol,2021,12:672467. |
| [90] | LU J,LI L,PAN F,et al.PagC is involved in salmonella pullorum OMVs production and affects biofilm production[J].Vet Microbiol,2020,247:108778. |
| [91] | HILLE F,RICHTER H,WONG S P,et al.The biology of CRISPR-Cas:Backward and forward[J].Cell,2018,172(6):1239-1259. |
| [92] | HU K,CHOU C W,WILKE C O,et al.Distinct horizontal transfer mechanisms for type I and type V CRISPR-associated transposons[J].Nat Commun,2024,15(1):6653. |
| [93] | STRECKER J,LADHA A,GARDNER Z,et al.RNA-guided DNA insertion with CRISPR-associated transposases[J].Science (New York,N.Y.),2019,365(6448):48-53. |
| [94] | PETASSI M T,HSIEH S C,PETERS J E.Guide RNA categorization enables target site choice in Tn7-CRISPR-Cas transposons[J].Cell,2020,183(7):1757-1771.e18. |
| [95] | KLOMPE S E,VO P L H,HALPIN-HEALY T S,et al.Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration[J].Nature,2019,571(7764):219-225. |
| [96] | SAITO M,LADHA A,STRECKER J,et al.Dual modes of CRISPR-associated transposon homing[J].Cell,2021,184(9):2441-2453.e18. |
| [97] | YANG X Y,SHEN Z,WANG C,et al.DdmDE eliminates plasmid invasion by DNA-guided DNA targeting[J].Cell,2024,187(19):5253-5266.e16. |
| [98] | WANG Y,LIU B,GRENIER D,et al.Regulatory mechanisms of the LuxS/AI-2 system and bacterial resistance[J].Antimicrob Agents Chemother,2019,63(10):e01186-19. |
| [99] | ZENG X,LIN J.Factors influencing horizontal gene transfer in the intestine[J].Anim Health Res Rev,2017,18(2):153-159. |
| [100] | 于艳超,王莉莉,潘 巧,等.肠炎沙门菌luxS缺失株的构建及其生物学特性研究[J].畜牧兽医学报,2018,49(6):1291-1298. |
| YU Y C,WANG L L,PAN Q,et al.Construction and biological characteristics of Salmonella Enterica serovar enteritidis luxS mutant[J].Acta Veterinaria et Zootechnica Sinica,2018,49(6):1291-1298.(in Chinese) | |
| [101] | WANG Y,LU J,MAO L,et al.Antiepileptic drug carbamazepine promotes horizontal transfer of plasmid-borne multi-antibiotic resistance genes within and across bacterial genera[J].ISME J,2019,13(2):509-522. |
| [102] | CHINEMEREM NWOBODO D,UGWU M C,OLISELOKE ANIE C,et al.Antibiotic resistance:The challenges and some emerging strategies for tackling a global menace[J].J Clin Lab Anal,2022,36(9):e24655. |
| [103] | PORNSUKAROM S,THAKUR S.Horizontal dissemination of antimicrobial resistance determinants in multiple Salmonella serotypes following isolation from the commercial swine operation environment after manure application[J].App Environ Microbiol,2017,83(20):e01503-17. |
| [104] | ALJAHDALI N H,SANAD Y M,HAN J,et al.Current knowledge and perspectives of potential impacts of Salmonella enterica on the profile of the gut microbiota[J].BMC Microbiol,2020,20(1):353. |
| [105] | FULAZ S,VITALE S,QUINN L,et al.Nanoparticle-biofilm interactions:The role of the EPS matrix[J].Trends Microbiol,2019,27(11):915-926. |
| [106] | SAHU P K,IYER P S,OAK A M,et al.Characterization of eDNA from the clinical strain Acinetobacter baumannii AIIMS 7 and its role in biofilm formation[J].Sci World J,2012,2012:973436. |
| [107] | BUZZO J R,DEVARAJ A,GLOAG E S,et al.Z-form extracellular DNA is a structural component of the bacterial biofilm matrix[J].Cell,2021,184(23):5740-5758.e17. |
| [108] | SHARMA D K,RAJPUROHIT Y S.Multitasking functions of bacterial extracellular DNA in biofilms[J].J Bacteriol,2024,206(4):e0000624. |
| [109] | GUO X P,YANG Y,LU D P,et al.Biofilms as a sink for antibiotic resistance genes (ARGs) in the Yangtze Estuary[J].Water Res,2018,129:277-286. |
| [110] | 任之行.土壤抗生素抗性基因转移风险识别与调控[D].哈尔滨:东北林业大学,2024. |
| REN Z X.Risk identification and regulation of soil antibiotic resistance gene transfer [D].Harbin:Northeast Forestry University,2024.(in Chinese) | |
| [111] | 沈 聪.养殖场粪污抗生素和抗性基因分布特征与土霉素降解菌筛选鉴定及降解能力研究[D].银川:宁夏大学,2024. |
| SHEN C.Distribution characteristics of antibiotic and resistance genes in manure and study on screening,identification and degradation ability of oxytetracycline degrading bacteria [D].Yinchuan:Ningxia University,2024.(in Chinese) | |
| [112] | HUANG H,FENG G,WANG M,et al.Nitric oxide:A neglected driver for the conjugative transfer of antibiotic resistance genes among wastewater microbiota[J].Environ Sci Technol,2022,56(10):6466-6478. |
| [113] | DIARD M,BAKKEREN E,CORNUAULT J K,et al.Inflammation boosts bacteriophage transfer between Salmonella spp[J].Science (New York,N.Y.),2017,355(6330):1211-1215. |
| [114] | BRAVO J P K,RAMOS D A,FREGOSO OCAMPO R,et al.Plasmid targeting and destruction by the DdmDE bacterial defence system[J].Nature,2024,630(8018):961-967. |
| [115] | PINILLA-REDONDO R,MAYO-MUÑOZ D,RUSSEL J,et al.Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids[J].Nucleic Acids Res,2020,48(4):2000-2012. |
| [116] | MAYO-MUÑOZ D,PINILLA-REDONDO R,BIRKHOLZ N,et al.A host of armor:Prokaryotic immune strategies against mobile genetic elements[J].Cell Rep,2023,42(7):112672. |
| [117] | LOEFF L,ADAMS D W,CHANEZ C,et al.Molecular mechanism of plasmid elimination by the DdmDE defense system[J].Science (New York,N.Y.),2024,385(6705):188-194. |
| [1] | 赵秋云, 沈焕钧, 宋厚辉, 蒋红霞, 许成钢. 一株携带耐药基因blaCTX-M-27沙门菌P1-CTX噬菌体-质粒的分离及生物学特性分析[J]. 畜牧兽医学报, 2025, 56(7): 3519-3527. |
| [2] | 董娇娇, 丁虹, 张寅梁, 张冉, 刘华格, 臧素敏, 张振红, 周荣艳, 李兰会. 鸡白痢沙门菌感染太行鸡盲肠菌群的差异及功能分析[J]. 畜牧兽医学报, 2025, 56(6): 2741-2751. |
| [3] | 葛雷, 仇汝龙, 范志宇, 胡波, 魏后军, 陈萌萌, 宋艳华, 李一鸣, 徐为中, 王芳. 鼠伤寒沙门菌ompW基因缺失株与回补株的构建及其生物学特性[J]. 畜牧兽医学报, 2025, 56(4): 1865-1875. |
| [4] | 孟闯, 金宣辰, 彭通通, 翟贤月, 康喜龙, 焦新安, 潘志明. 猪肉生产环节中沙门菌的污染调查及关键点的消减控制[J]. 畜牧兽医学报, 2025, 56(10): 5137-5147. |
| [5] | 刘炜, 马嘉怡, 耿浩宇, 谢添, 苗苏南, 廖宗杰, 耿士忠. 一株广谱沙门菌噬菌体的分离鉴定及其生物学特性[J]. 畜牧兽医学报, 2024, 55(9): 4061-4068. |
| [6] | 郑琳, 魏炳栋, 滑峰, 陈龙, 丁媛. 裂解性噬菌体对肉仔鸡感染肠炎沙门菌的治疗效果[J]. 畜牧兽医学报, 2024, 55(3): 1314-1327. |
| [7] | 王栋, 柳可欣, 何炎峻, 邓守翔, 刘云, 马卫明. 饲粮中添加腐殖酸钠对鼠伤寒沙门菌感染肉鸡肝组织炎症和抗氧化能力的影响[J]. 畜牧兽医学报, 2024, 55(2): 629-639. |
| [8] | 李兆龙, 孔祥瑞, 林锋强, 王秀萍, 赵冉, 彭小莉, 陈常颂. 冠突散囊菌Ec-12上清抑制小鼠的伤寒沙门菌机制的初步分析[J]. 畜牧兽医学报, 2024, 55(2): 739-750. |
| [9] | 蔡梦雷, 赵东旭, 张政钢, 刘东海, 姜婷婷, 苏士炫, 闫雪敏, 薛晓阳, 崔国林. GreA蛋白对肠炎沙门菌生物学特性及致病力影响[J]. 畜牧兽医学报, 2024, 55(11): 5173-5182. |
| [10] | 彭娜娜, 宁慧敏, 陈玉豪, 李欣颖, 祝福强, 于国滨, 董伟. 肠炎沙门菌菌毛重组蛋白对其细胞黏附的竞争性阻断效应[J]. 畜牧兽医学报, 2024, 55(11): 5183-5190. |
| [11] | 张萍, 庄林林, 张笛, 董永毅, 盛中伟, 王成明, 徐步, 窦新红, 龚建森. 沙门菌分子检测方法的研究进展[J]. 畜牧兽医学报, 2023, 54(8): 3217-3229. |
| [12] | 张倩文, 刘玉梅, 石丽辉, 梁文军, 李梦云, 王玉琴, 张自强. 生产母兔沙门菌感染的病理学变化及其药物敏感性分析[J]. 畜牧兽医学报, 2023, 54(8): 3510-3518. |
| [13] | 陈松彪, 尚珂, 杜付熙, 余祖华, 李静, 贾艳艳, 廖成水, 张春杰, 丁轲, 程相朝. 沙门菌VI型分泌系统组装、结构特征和分泌调控网络的研究进展[J]. 畜牧兽医学报, 2023, 54(6): 2252-2263. |
| [14] | 孙瑜凡, 于盼元, 陈虹宇, 谭怡青, 陈夏冰, 张腾飞, 高婷, 周锐, 黎璐. 二甲酸钾预防沙门菌感染小鼠的效果评价及对肠道菌群的影响[J]. 畜牧兽医学报, 2023, 54(5): 2101-2113. |
| [15] | 秦蕾, 吴慧敏, 徐琦琦, 陈万昭, 王东, 李宏博, 夏盼盼, 刘泽鹏, 夏利宁. 外源MDR鼠伤寒沙门菌对健康小鼠肠道菌群的影响[J]. 畜牧兽医学报, 2023, 54(5): 2158-2169. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||