畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (8): 3787-3801.doi: 10.11843/j.issn.0366-6964.2025.08.020
任千姿1(), 张佰忠2(
), 王真勍1, 王向林3, 龚颖1, 胡仁科2, 浦亚斌1, 苏鹏1, 李业芳1, 马月辉1, 李昊帮2,*(
), 蒋琳1,*(
)
收稿日期:
2025-01-15
出版日期:
2025-08-23
发布日期:
2025-08-28
通讯作者:
李昊帮,蒋琳
E-mail:renqianzi677@gmail.com;705048333@qq.com;lhb.m2002@163.com;jianglin@caas.cn
作者简介:
任千姿(1998-),女,山西运城人,硕士,主要从事种质资源保护的研究,E-mail: renqianzi677@gmail.com基金资助:
REN Qianzi1(), ZHANG Baizhong2(
), WANG Zhenqing1, WANG Xianglin3, GONG Ying1, HU Renke2, PU Yabin1, SU Peng1, LI Yefang1, MA Yuehui1, LI Haobang2,*(
), JIANG Lin1,*(
)
Received:
2025-01-15
Online:
2025-08-23
Published:
2025-08-28
Contact:
LI Haobang, JIANG Lin
E-mail:renqianzi677@gmail.com;705048333@qq.com;lhb.m2002@163.com;jianglin@caas.cn
摘要:
旨在深入了解武雪山羊的群体结构,探究种群内部的遗传变异与分化和种群间的遗传差异及地理分布特征,为该品种的种质资源利用与开发提供重要依据。本研究采集18只武雪山羊(WXG)、9只湘东黑山羊(XDB)、9只合川白山羊(HCW)、9只大足黑山羊(DZB)、11只马关无角山羊(MGG)以及10只云岭山羊(YLG)的耳组织样本,用于全基因组重测序,平均测序深度约为10×。本研究基于全基因组数据分别利用GCTA、Plink、Admixture、Vcftools及PopLDdecay软件对6个群体进行了主成分分析、系统发育分析、群体遗传结构分析、杂合度分析、群体分化分析以及连锁不平衡分析。主成分分析的结果显示,武雪山羊与湘东黑山羊被聚为同一大类,表明这两个山羊品种遗传背景相似。系统进化分析的结果显示,武雪山羊与其他品种山羊群体单独聚为一支,在进化树上与湘东黑山羊的遗传距离较近。群体遗传结构分析的结果显示,当CV值最小时(K=3),武雪山羊与湘东黑山羊具有相同的遗传组分,说明两个群体间遗传分化指数程度较小,遗传背景相似。杂合度分析的结果显示,武雪山羊的核苷酸多态性(π)较低,观测杂合度(Ho)最低,且低于期望杂合度(He);ROH(runs of homozygosity)分析显示,武雪山羊的ROH数量和长度也明显高于其他品种,且基因组近交系数(FROH)明显高于其他5个群体,这表明武雪山羊在基因组水平上存在明显的纯合片段积累和遗传多样性降低的现象。连锁不平衡分析的结果显示,武雪山羊表现出最高程度的连锁不平衡,进一步证实了该群体较低的遗传多样性。总之,这项研究系统解析了武雪山羊的遗传特性和群体结构,发现武雪山羊与湘东黑山羊遗传背景相似,其群体的遗传多样性较低,且存在一定的近交趋势,结果提示在后续的保种工作中需重点关注群体规模的扩大和近交系数的控制。这些发现不仅为深入了解其遗传背景提供了科学依据,同时为该品种的遗传资源保护与合理开发利用提供了重要理论参考。
中图分类号:
任千姿, 张佰忠, 王真勍, 王向林, 龚颖, 胡仁科, 浦亚斌, 苏鹏, 李业芳, 马月辉, 李昊帮, 蒋琳. 基于全基因组重测序对武雪山羊的遗传进化分析[J]. 畜牧兽医学报, 2025, 56(8): 3787-3801.
REN Qianzi, ZHANG Baizhong, WANG Zhenqing, WANG Xianglin, GONG Ying, HU Renke, PU Yabin, SU Peng, LI Yefang, MA Yuehui, LI Haobang, JIANG Lin. Genetic Evolutionary Analysis of Wuxue Goat Based on Whole Genome Resequencing[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3787-3801.
表 2
所有SNPs注释信息"
类型Type (alphabetical order) | 数量Count | 占比/% Percent |
DOWNSTREAM | 2 135 800 | 5.031 |
EXON | 270 736 | 0.638 |
INTERGENIC | 9 102 451 | 21.440 |
INTRON | 14 166 150 | 33.367 |
SPLICE_SITE_ACCEPTOR | 239 | 0.001 |
SPLICE_SITE_DONOR | 252 | 0.001 |
SPLICE_SITE_REGION | 22 952 | 0.054 |
TRANSCRIPT | 14 442 290 | 34.018 |
UPSTREAM | 2 107 844 | 4.965 |
UTR_3_PRIME | 164 145 | 0.387 |
UTR_5_PRIME | 42 447 | 0.100 |
3_prime_UTR_variant | 164 145 | 0.386 |
5_prime_UTR_premature_start_codon_gain_variant | 6 098 | 0.014 |
5_prime_UTR_variant | 36 349 | 0.086 |
downstream_gene_variant | 2 135 800 | 5.028 |
initiator_codon_variant | 9 | 0.000 |
intergenic_region | 9 102 451 | 21.428 |
intragenic_variant | 168 001 | 0.395 |
intron_variant | 14 185 337 | 33.394 |
missense_variant | 69 583 | 0.164 |
non_coding_transcript_exon_variant | 53 867 | 0.127 |
non_coding_transcript_variant | 14 274 289 | 33.603 |
splice_acceptor_variant | 239 | 0.001 |
splice_donor_variant | 263 | 0.001 |
splice_region_variant | 24 149 | 0.057 |
start_lost | 78 | 0.000 |
start_retained_variant | 30 | 0.000 |
stop_gained | 648 | 0.002 |
stop_lost | 92 | 0.000 |
stop_retained_variant | 127 | 0.000 |
synonymous_variant | 149 823 | 0.353 |
upstream_gene_variant | 2 107 844 | 4.962 |
表 3
6个山羊群体的遗传多样性"
品种 Breed | 核苷酸多态性 π(mean) | 观测杂合度 Observed heterozygosity(Ho) | 期望杂合度 Expected heterozygosity(He) |
大足黑山羊DZB | 0.001 671 572 | 0.253 802 | 0.272 038 |
合川白山羊HCW | 0.001 481 751 | 0.242 553 | 0.242 862 |
马关无角山羊MGG | 0.001 706 207 | 0.296 721 | 0.275 427 |
武雪山羊WXG | 0.001 585 495 | 0.235 027 | 0.261 443 |
湘东黑山羊XDB | 0.001 637 571 | 0.265 953 | 0.264 043 |
云岭山羊YLG | 0.001 523 224 | 0.238 900 | 0.250 394 |
1 |
姚华清,田斌,秦茂.浅析龙山县武雪山羊遗传资源保护与利用[J].湖南畜牧兽医,2023(2):1-3.
doi: 10.3969/j.issn.1006-4907.2023.02.001 |
YAOH Q,TIANB,QINM.Conservation and utilisation of genetic resources of Wuxue goats in Longshan County[J].Hunan Animal Husbandry and Veterinary Medicine,2023(2):1-3.
doi: 10.3969/j.issn.1006-4907.2023.02.001 |
|
2 |
石琦,杨建昌.武雪山羊[J].湖南农业,2022(6):29.
doi: 10.3969/j.issn.1005-362X.2022.06.027 |
SHIQ,YANGJ C.Wuxue goats[J].Hunan Agriculture,2022(6):29.
doi: 10.3969/j.issn.1005-362X.2022.06.027 |
|
3 | 林泽榜.武雪山羊林间养殖发展现状及思路[J].基层农技推广,2013,1(11):59-62. |
LINZ B.Current situation and ideas for the development of forest farming of Wuxue goats[J].Grassroots Agricultural Extension,2013,1(11):59-62. | |
4 |
IAMARTINOD,BRUZZONEA,LANZAA,et al.Genetic diversity of Southern Italian goat populations assessed by microsatellite markers[J].Small Ruminant Res,2005,57(2-3):249-255.
doi: 10.1016/j.smallrumres.2004.08.003 |
5 |
DALYK G,MATTIANGELIV,HAREA J,et al.Herded and hunted goat genomes from the dawn of domestication in the Zagros Mountains[J].Proc Natl Acad Sci,2021,118(25):e2100901118.
doi: 10.1073/pnas.2100901118 |
6 |
HANOTTEO,BRADLEYD G,OCHIENGJ W,et al.African pastoralism: genetic imprints of origins and migrations[J].Science,2002,296(5566):336-339.
doi: 10.1126/science.1069878 |
7 |
LVF H,CAOY H,LIUG J,et al.Whole-genome resequencing of worldwide wild and domestic sheep elucidates genetic diversity, introgression, and agronomically important loci[J].Mol Biol Evol,2022,39(2):msab353.
doi: 10.1093/molbev/msab353 |
8 |
CHENN B,CAIY D,CHENQ M,et al.Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia[J].Nat Commun,2018,9(1):2337.
doi: 10.1038/s41467-018-04737-0 |
9 |
BRUNO-DE-SOUSAC,MARTINEZA,GINJAC,et al.Genetic diversity and population structure in Portuguese goat breeds[J].Livest Sci,2011,135(2-3):131-139.
doi: 10.1016/j.livsci.2010.06.159 |
10 |
SENCZUKG,MACRÌM,DI CIVITAM,et al.The demographic history and adaptation of Canarian goat breeds to environmental conditions through the use of genome-wide SNP data[J].Genet Select Evol,2024,56(1):2.
doi: 10.1186/s12711-023-00869-0 |
11 |
YANGJ,WANGD F,HUANGJ H,et al.Structural variant landscapes reveal convergent signatures of evolution in sheep and goats[J].Genome Biol,2024,25(1):148.
doi: 10.1186/s13059-024-03288-6 |
12 |
CHANGL,ZHENGY,LIS,et al.Identification of genomic characteristics and selective signals in Guizhou black goat[J].BMC Genomics,2024,25(1):164.
doi: 10.1186/s12864-023-09954-6 |
13 |
ZHENGZ Q,WANGX H,LIM,et al.The origin of domestication genes in goats[J].Sci Adv,2020,6(21):eaaz5216.
doi: 10.1126/sciadv.aaz5216 |
14 |
LEIC Z,CHENH,ZHANGH C,et al.Origin and phylogeographical structure of Chinese cattle[J].Anim Genet,2006,37(6):579-582.
doi: 10.1111/j.1365-2052.2006.01524.x |
15 |
BAH,JIAB,WANGG,et al.Genome-wide SNP discovery and analysis of genetic diversity in farmed sika deer (Cervus nippon) in northeast China using double-digest restriction site-associated DNA sequencing[J].G3: Genes, Genomes, Genetics,2017,7(9):3169-3176.
doi: 10.1534/g3.117.300082 |
16 |
刘珍妮,李建军,连海,等.基于全基因组重测序对赣州番鸭的群体进化分析[J].畜牧兽医学报,2024,55(11):4992-5002.
doi: 10.11843/j.issn.0366-6964.2024.11.018 |
LIUZ N,LIJ J,LIANH,et al.Population evolution analysis of ganzhou muscovy duck based on whole genome resequencing[J].Acta Veterinaria et Zootechnica Sinica,2024,55(11):4992-5002.
doi: 10.11843/j.issn.0366-6964.2024.11.018 |
|
17 |
SAITBEKOVAN,GAILLARDC,OBEXER-RUFFG,et al.Genetic diversity in Swiss goat breeds based on microsatellite analysis[J].Anim Genet,1999,30(1):36-41.
doi: 10.1046/j.1365-2052.1999.00429.x |
18 |
CHENS F,ZHOUY Q,CHENY R,et al.fastp: an ultra-fast all-in-one FASTQ preprocessor[J].Bioinformatics,2018,34(17):i884-i890.
doi: 10.1093/bioinformatics/bty560 |
19 |
LIH,DURBINR.Fast and accurate short read alignment with Burrows-Wheeler transform[J].Bioinformatics,2009,25(14):1754-1760.
doi: 10.1093/bioinformatics/btp324 |
20 |
BICKHARTD M,ROSENB D,KORENS,et al.Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome[J].Nat Genet,2017,49(4):643-650.
doi: 10.1038/ng.3802 |
21 |
LIH,HANDSAKERB,WYSOKERA,et al.The sequence alignment/map format and SAMtools[J].Bioinformatics,2009,25(16):2078-2079.
doi: 10.1093/bioinformatics/btp352 |
22 |
MCKENNAA,HANNAM,BANKSE,et al.The genome analysis toolkit: a mapReduce framework for analyzing next-generation DNA sequencing data[J].Genome Research,2010,20(9):1297-1303.
doi: 10.1101/gr.107524.110 |
23 |
CINGOLANIP,PLATTSA,WANG LEL,et al.A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3[J].Fly (Austin),2012,6(2):80-92.
doi: 10.4161/fly.19695 |
24 | CHANGC C,CHOWC C,TELLIERL C,et al.Second-generation PLINK: rising to the challenge of larger and richer datasets[J].Gigascience,2015,4(1):s13742-13015-10047-13748. |
25 |
YANGJ,LEES H,GODDARDM E,et al.GCTA: a tool for genome-wide complex trait analysis[J].Am J Hum Genet,2011,88(1):76-82.
doi: 10.1016/j.ajhg.2010.11.011 |
26 | RACINEJ S.RStudio: a platform-independent IDE for R and Sweave[J].J Appl Econom,2012(1):167-172. |
27 |
TAMURAK,STECHERG,KUMARS.MEGA11: molecular evolutionary genetics analysis version 11[J].Mol Biol Evol,2021,38(7):3022-3027.
doi: 10.1093/molbev/msab120 |
28 | TREESR P.The neighbor-joining method: a new method for[J].Mol Biol Evol,1987,4(4):406-425. |
29 |
PRITCHARDJ K,STEPHENSM,DONNELLYP.Inference of population structure using multilocus genotype data[J].Genetics,2000,155(2):945-959.
doi: 10.1093/genetics/155.2.945 |
30 |
LAWSOND J,VAN DORPL,FALUSHD.A tutorial on how not to over-interpret STRUCTURE and ADMIXTURE bar plots[J].Nat Commun,2018,9(1):3258.
doi: 10.1038/s41467-018-05257-7 |
31 |
GOODALL-COPESTAKEW,TARLINGG,MURPHYE.On the comparison of population-level estimates of haplotype and nucleotide diversity: a case study using the gene cox1 in animals[J].Heredity,2012,109(1):50-56.
doi: 10.1038/hdy.2012.12 |
32 |
CEBALLOSF C,JOSHIP K,CLARKD W,et al.Runs of homozygosity: windows into population history and trait architecture[J].Nat Rev Genet,2018,19(4):220-234.
doi: 10.1038/nrg.2017.109 |
33 | WEIRB S,COCKERHAMC C.Estimating F-statistics for the analysis of population structure[J].Evolution,1984,38(6):1358-1370. |
34 |
HILLW,ROBERTSONA.Linkage disequilibrium in finite populations[J].Theor Appl Genet,1968,38,226-231.
doi: 10.1007/BF01245622 |
35 |
ZHANGC,DONGS S,XUJ Y,et al.PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files[J].Bioinformatics,2019,35(10):1786-1788.
doi: 10.1093/bioinformatics/bty875 |
36 |
王浩宇,马克岩,李讨讨,等.基于简化基因组测序评估小骨山羊群体遗传多样性和群体结构[J].畜牧兽医学报,2025,56(3):1170-1179.
doi: 10.11843/j.issn.0366-6964.2025.03.018 |
WANGH Y,MAK Y,LIT T,et al.Population genetic diversity and population structure analysis of small-boned goat based on specific-locus amplified fragment sequencing[J].Acta Veterinaria et Zootechnica Sinica,2025,56(3):1170-1179.
doi: 10.11843/j.issn.0366-6964.2025.03.018 |
|
37 |
胡紫平,王立刚,宗文成,等.基于基因组SNP和ROH的剑白香猪群体遗传结构解析[J].畜牧兽医学报,2023,54(10):4117-4125.
doi: 10.11843/j.issn.0366-6964.2023.10.011 |
HUZ P,WANGL G,ZONGW C,et al.Genetic structure analysis of Jianbai Xiang Pig population based on genomic SNP and ROH[J].Acta Veterinaria et Zootechnica Sinica,2023,54(10):4117-4125.
doi: 10.11843/j.issn.0366-6964.2023.10.011 |
|
38 | 余道宁,王佟,马晓明,等.西藏牦牛群体遗传多样性及遗传结构分析[J].中国草食动物科学,2024,44(2):39-43. |
YUD N,WANGT,MAX M,et al.Study on genetic diversity and genetic structure of Tibetan yak populations[J].Chinese Herbivore Science,2024,44(2):39-43. | |
39 | 王心彤,张艳丽,龚颖,等.基于世界家马群体遗传结构构建藏马特异性遗传标签[J].中国畜牧兽医,2025,52(1):238-248. |
WANGX T,ZHANGY L,GONGY,et al.Construction of specific genetic markers for tibetan horses through population structure analysis of global domestic horses[J].China Animal Husbandry & Veterinary Medicine,2025,52(1):238-248. | |
40 |
徐扩卫,李卓辉,冷堂健,等.基于全基因组重测序SNP分析宁蒗高原鸡保种群的群体遗传多样性和群体遗传结构[J].畜牧兽医学报,2024,55(12):5498-5510.
doi: 10.11843/j.issn.0366-6964.2024.12.016 |
XUK W,LIZ H,LENGT J,et al.Analysis of population genetic diversity and population genetic structure of conservation population in ninglang plateau chickens based on whole-genome resequencing SNP[J].Acta Veterinaria et Zootechnica Sinica,2024,55(12):5498-5510.
doi: 10.11843/j.issn.0366-6964.2024.12.016 |
|
41 |
RINGNÉRM.What is principal component analysis?[J].Nat Biotechnol,2008,26(3):303-304.
doi: 10.1038/nbt0308-303 |
42 |
NOVEMBREJ,STEPHENSM.Interpreting principal component analyses of spatial population genetic variation[J].Nat Genet,2008,40(5):646-649.
doi: 10.1038/ng.139 |
43 |
MENOZZIP,PIAZZAA,CAVALLI-SFORZAL.Synthetic maps of human gene frequencies in Europeans: These maps indicate that early farmers of the Near East spread to all of Europe in the Neolithic[J].Science,1978,201(4358):786-792.
doi: 10.1126/science.356262 |
44 |
TAMURAK,NEIM,KUMARS.Prospects for inferring very large phylogenies by using the neighbor-joining method[J].Proc Natl Acad Sci,2004,101(30):11030-11035.
doi: 10.1073/pnas.0404206101 |
45 |
杨章平,毛永江,马月辉,等.中国南方地区7个山羊群体的遗传分化与基因流分析[J].畜牧兽医学报,2008,39(5):562-569.
doi: 10.3321/j.issn:0366-6964.2008.05.006 |
YANGZ P,MAOY J,MAY H,et al.Genetic differentiation and gene flow among seven indigenous goat populations in South of China[J].Acta Veterinaria et Zootechnica Sinica,2008,39(5):562-569.
doi: 10.3321/j.issn:0366-6964.2008.05.006 |
|
46 |
LIC,WANGX,LIH,et al.Whole-genome resequencing reveals diversity and selective signals in the Wuxue goat[J].Anim Genet,2024,55(4):575-587.
doi: 10.1111/age.13437 |
47 | 毛永江. 中国牛亚科家畜六个群体遗传多样性与遗传分化及其统计方法的研究[D]. 扬州: 扬州大学, 2006. |
MAO Y J. The genetic diversity, genetic differentiation of six cattle populations in bovidae in China and the statistical methods of genetic diversity research[D]. Yangzhou: Yangzhou University, 2006. (in Chinese) | |
48 |
HANSSONB,WESTERBERGL.On the correlation between heterozygosity and fitness in natural populations[J].Mol Ecol,2002,11(12):2467-2474.
doi: 10.1046/j.1365-294X.2002.01644.x |
49 | 李超杰,蒙萌,李博,等.利用微卫星标记分析山西3个地方牛群体的遗传多样性和遗传分化[J].中国畜牧兽医,2025,52(1):226-237. |
LIC J,MENGM,LIB,et al.Analysis of genetic diversity and genetic differentiation in 3 local cattle populations of shanxi province using microsatellite markers[J].China Animal Husbandry & Veterinary Medicine,2025,52(1):226-237. | |
50 | 贾小姣,陈亚乐,王诗佳,等.9个山羊品种微卫星DNA遗传多样性分析[J].安徽农业大学学报,2019,46(5):779-784. |
JIAX J,CHENY L,WANGS J,et al.Genetic diversity analysis of microsatellite DNA of nine goat breeds[J].Journal of Anhui Agricultural University,2019,46(5):779-784. | |
51 |
BERTOLINIF,CARDOSOT F,MARRASG,et al.Genome-wide patterns of homozygosity provide clues about the population history and adaptation of goats[J].Genet Sel Evol,2018,50,1-12.
doi: 10.1186/s12711-018-0374-1 |
52 |
MEIRMANSP G,HEDRICKP W.Assessing population structure: FST and related measures[J].Mol Ecol Resources,2011,11(1):5-18.
doi: 10.1111/j.1755-0998.2010.02927.x |
53 |
CALDWELLK S,RUSSELLJ,LANGRIDGEP,et al.Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare[J].Genetics,2006,172(1):557-567.
doi: 10.1534/genetics.104.038489 |
54 | GARCÍA-GÁMEZE,SAHANAG,GUTIÉRREZ-GILB,et al.Linkage disequilibrium and inbreeding estimation in Spanish Churra sheep[J].BMC Genet,2012,13,1-11. |
[1] | 刘莎, 杨彩春, 张晓雨, 陈琼, 刘雄, 陈洪波, 周焕焕, 史良玉. 基于80K SNP芯片的梅花星猪群体遗传结构解析及全基因组连续纯合片段特征研究[J]. 畜牧兽医学报, 2025, 56(8): 3749-3760. |
[2] | 缪俊杰, 张日泉, 吴厚义, 游新明, 黄奕雯, 黄小英, 郭震洋, 刘建林, 肖卫华, 郭田华, 陈浩, 康冬柳. 全基因组SNPs揭示井冈黑掌鹅种质资源特性与遗传多样性特征[J]. 畜牧兽医学报, 2025, 56(7): 3199-3209. |
[3] | 王勤倩, 高振东, 陆颖, 马若珊, 邓卫东, 和晓明. 全基因组重测序在中国地方黄牛上的研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2026-2037. |
[4] | 姚婷婷, 李昊, 阎卉萱, 曹一凡, 次仁罗布, 索朗曲吉, 尼玛仓决, 赵丽, 旦增洛桑, 斯朗旺姆, 巴桑珠扎, 陈宁博. 西藏自治区10个黄牛群体的mtDNA遗传多样性与母系起源研究[J]. 畜牧兽医学报, 2025, 56(5): 2194-2202. |
[5] | 王浩宇, 马克岩, 李讨讨, 栗登攀, 赵箐, 马友记. 基于简化基因组测序评估小骨山羊群体遗传多样性和群体结构[J]. 畜牧兽医学报, 2025, 56(3): 1170-1179. |
[6] | 胡鑫, 游伟, 姜富贵, 成海建, 孙志刚, 宋恩亮. 基于全基因组重测序分析西门塔尔牛遗传多样性与群体结构[J]. 畜牧兽医学报, 2025, 56(3): 1189-1202. |
[7] | 刘思宇, 张曼, 张岩, 魏稚彤, 祁兴磊, 高腾云, 刘贤, 梁栋, 付彤. 基于重测序数据评估南阳牛保种效果[J]. 畜牧兽医学报, 2024, 55(9): 3876-3886. |
[8] | 张涛, 李佳芪, 胥磊, 王丹, 张梦华, 张涛, 闫梦婕, 王玮韬, 范守民, 黄锡霞. 基于全基因组重测序数据的新疆褐牛基因组结构变异检测及群体结构分析[J]. 畜牧兽医学报, 2024, 55(8): 3427-3435. |
[9] | 宋科林, 闫尊强, 王鹏飞, 程文昊, 李杰, 白雅琴, 孙国虎, 滚双宝. 基于SNP芯片分析徽县青泥黑猪遗传多样性和遗传结构[J]. 畜牧兽医学报, 2024, 55(3): 995-1006. |
[10] | 任钰为, 陈星, 林燕宁, 黄潇仙, 洪玲玲, 王峰, 孙瑞萍, 张艳, 刘海隆, 郑心力, 晁哲. 基于全基因组重测序研究文昌鸡产蛋性能的影响因素[J]. 畜牧兽医学报, 2024, 55(2): 502-514. |
[11] | 程昕琰, 王诗媛, 吉叶标, 黄思秀, 杨杰, 孟繁明, 张茂, 蔡更元, 刘琅青. 基于50K SNP芯片评估广东省四类地方猪保种群体的遗传结构[J]. 畜牧兽医学报, 2024, 55(12): 5464-5477. |
[12] | 徐扩卫, 李卓辉, 冷堂健, 熊宝, 周杰珑, 郭盘江, 王禹, 陈粉粉. 基于全基因组重测序SNP分析宁蒗高原鸡保种群的群体遗传多样性和群体遗传结构[J]. 畜牧兽医学报, 2024, 55(12): 5498-5510. |
[13] | 梁慧丽, 解玉静, 司博文, 王桂英, 姜运良, 曹贵玲. 基于全基因组重测序分析大尾寒羊基因组变异特征和群体结构[J]. 畜牧兽医学报, 2024, 55(11): 4968-4979. |
[14] | 刘珍妮, 李建军, 连海, 雷小文, 谭东海, 曾庆远, 成笛, 田玉玲, 孔智伟, 谢华亮, 钟云平. 基于全基因组重测序对赣州番鸭的群体进化分析[J]. 畜牧兽医学报, 2024, 55(11): 4992-5002. |
[15] | 苟想珍, 杨军祥, 赵子惠, 冯玲霞, 陈万辉, 李玉洁, 张忠钰, 马克岩, 蒋东平, 常嵘, 文亚洲, 王珂, 马友记. 基于简化基因组测序(Super-GBS)的子午岭黑山羊保种群遗传结构评估[J]. 畜牧兽医学报, 2024, 55(10): 4334-4345. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||