畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (2): 513-522.doi: 10.11843/j.issn.0366-6964.2025.02.004
毛亚楠1,2(), 高铭1,2, 周欣霓1, 尤冬雪2, 彭本群1,2, 王松1,2,*(
)
收稿日期:
2024-03-13
出版日期:
2025-02-23
发布日期:
2025-02-26
通讯作者:
王松
E-mail:maoyn725@163.com;wscookie@163.com
作者简介:
毛亚楠(2000-),女,河南西平人,硕士生,主要从事预防兽医学研究,E-mail: maoyn725@163.com
基金资助:
MAO Yanan1,2(), GAO Ming1,2, ZHOU Xinni1, YOU Dongxue2, PENG Benqun1,2, WANG Song1,2,*(
)
Received:
2024-03-13
Online:
2025-02-23
Published:
2025-02-26
Contact:
WANG Song
E-mail:maoyn725@163.com;wscookie@163.com
摘要:
脂滴是从内质网膜形成的一种独特的动态细胞器,主要负责细胞内中性脂质的储存。脂滴还与其它细胞器相互作用,参与脂质代谢、膜生物合成、细胞信号转导、免疫反应等生物学过程。近年来越来越多的研究表明,脂滴在病原微生物感染,尤其是病毒感染过程中发挥着重要作用。本文综述了脂滴与病毒之间的相互作用,包括脂滴对病毒复制周期的影响以及脂滴在调节抗病毒免疫反应中发挥的作用。了解脂滴在病毒感染中的功能对于深入揭示病毒的致病机制、研发新型抗病毒药物以及预防病毒传播具有重要意义。
中图分类号:
毛亚楠, 高铭, 周欣霓, 尤冬雪, 彭本群, 王松. 脂滴在病毒感染中的功能研究进展[J]. 畜牧兽医学报, 2025, 56(2): 513-522.
MAO Yanan, GAO Ming, ZHOU Xinni, YOU Dongxue, PENG Benqun, WANG Song. Research Progress on the Function of Lipid Droplets in Virus Infection[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 513-522.
表 1
脂滴与病毒之间的调控关系"
病毒科属 Virus family | 病毒名称 Virus | 病毒蛋白 Viral proteins | 宿主因子 Host factors | 作用机制 Mechanism | 参考文献 Reference |
黄病毒科 Flavivirdae | 丙型肝炎 病毒 HCV | NS5A | TIP47 | NS5A与TIP47相互作用,将脂滴招募到内质网膜上 | [ |
NS5A Core | DGAT1 | DGAT1与NS5A和Core蛋白相互作用,促进二者转运到脂滴表面 | [ | ||
NDRG1、CE | NDRG1通过降低CE水平抑制脂滴的形成,从而限制HCV的组装 | [ | |||
登革热病毒 DENV | TAG、FFA | DENV感染诱导脂滴自噬,导致TAG的分解,释放FFA | [ | ||
NS3 | Rab18、FASN | Rab18参与FASN与NS3蛋白的相互作用,并将FASN定位到内质网和脂滴 | [ | ||
C蛋白 | K+ | DENV抑制Na+/K+-ATP酶导致C蛋白与脂滴解离 | [ | ||
猪瘟病毒 CSFV | NS4B | Rab18、FASN | Rab18调控NS4B与FASN的相互作用,并促进FASN的表达 | [ | |
寨卡病毒 ZIKV | EGFR信号通路、IFN-β、IFN-λ | 病毒感染早期,通过激活EGFR信号通路诱导脂滴生成,上调IFN-β和IFN-λ的表达 | [ | ||
DGAT1、ADRP、FASN、ATGL、HSL | 病毒感染后期,通过调控DGAT1、ADRP、FASN、ATGL、HSL的表达,促进脂滴的积累 | [ | |||
冠状病毒科 Coronavirdae | 严重急性呼吸系统综合征冠状病毒2型 SARS-CoV-2 | DGAT1、PPAR-γ、SREBP1 | SARS-CoV-2感染上调DGAT1、PPAR-γ、SREBP1的表达,促进脂滴的形成 | [ | |
DGAT、ADRP | 病毒核衣壳蛋白利用DGAT和ADRP调控脂滴的形成 | [ | |||
ORF6 | BAP31、USE1 | ORF6与BAP31和USE1结合促进脂滴的形成,并调节脂滴与ER的相互作用 | [ | ||
M蛋白 | STX18、ATG14、Viperin | M蛋白劫持STX18,抑制STX18-ATG14的相互作用,诱导ATG14介导的脂滴自噬降解Viperin蛋白 | [ | ||
猪肠道α冠状病毒 PEAV | NF-κB信号通路、IL-1β、IL-8 | PEAV感染促进脂滴的形成,并激活NF-κB信号通路,促进IL-1β和IL-8的产生 | [ | ||
疱疹病毒科 Herpesviridae | 马立克病病毒 MDV | FAS、ACC、FASN | MDV感染激活FAS途径,上调ACC和FASN表达,促进脂滴的积累 | [ | |
人类疱疹病毒8型 HHV-8 | CE | HHV-8促进脂滴的形成和CE的积累 | [ | ||
单纯疱疹病毒1型 HSV-1 | EGFR信号通路、IFN-β、IFN-λ | HSV-1感染早期激活EGFR信号通路诱导脂滴形成,脂滴增加上调IFN-β和IFN-λ的表达 | [ | ||
动脉炎病毒科 Arterividae | 猪繁殖与呼吸综合征病毒 PRRSV | NDRG1 | PRRSV下调NDRG1表达,诱导脂滴发生自噬(脂噬),增加细胞中FFA含量 | [ | |
TC、TAG、FFA | EGCG通过抑制PRRSV感染所上调的TC、TAG和FFA的表达来抑制脂滴的形成和脂质合成 | [ | |||
小核糖核酸病毒科 Picornaviridae | 脊髓灰质炎病毒 PV | RC、FA | 病毒蛋白与RC和脂滴相互作用,使脂滴分解释放FA | [ | |
弹状病毒科 Rhabdoviridae | 狂犬病病毒 RABV | RABV-M RABV-G | NDRG1、DGAT1/2 | NDRG1上调DGAT1/2的活性,促进脂滴的形成。RABV-M和RABV-G则利用脂滴作为载体运输到细胞膜 | [ |
呼肠孤病毒科 Reoviridae | 轮状病毒 RV | NSP2 NSP5 | PLIN1、ADRP | 非结构蛋白NSP2和NSP5通过PLIN1和ADRP与脂滴相互作用 | [ |
正黏病毒科 Orthomyxoviridae | 甲型流感病毒 IAV | ROS | IAV感染激活ER应激反应,促进ROS的产生、诱导自噬并促进脂滴的形成 | [ |
1 |
AWADH A A . The role of cytosolic lipid droplets in hepatitis C virus replication, assembly, and release[J]. Biomed Res Int, 2023, 2023, 5156601.
doi: 10.1155/2023/5156601 |
2 |
LIU Y Y , LIANG X D , LIU C C , et al. Fatty acid synthase is involved in classical swine fever virus replication by interaction with NS4B[J]. J Virol, 2021, 95 (17): e0078121.
doi: 10.1128/JVI.00781-21 |
3 |
DIAS S S G , SOARES V C , FERREIRA A C , et al. Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators[J]. PLoS Pathog, 2020, 16 (12): e1009127.
doi: 10.1371/journal.ppat.1009127 |
4 |
CHEUNG W , GILL M , ESPOSITO A , et al. Rotaviruses associate with cellular lipid droplet components to replicate in viroplasms, and compounds disrupting or blocking lipid droplets inhibit viroplasm formation and viral replication[J]. J Virol, 2010, 84 (13): 6782- 6798.
doi: 10.1128/JVI.01757-09 |
5 |
YUAN Z , CAI K , LI J J , et al. ATG14 targets lipid droplets and acts as an autophagic receptor for syntaxin18-regulated lipid droplet turnover[J]. Nat Commun, 2024, 15 (1): 631.
doi: 10.1038/s41467-024-44978-w |
6 |
MONSON E A , HELBIG K J . Host upregulation of lipid droplets drives antiviral responses[J]. Cell Stress, 2021, 5 (9): 143- 145.
doi: 10.15698/cst2021.09.256 |
7 |
BOSCH M , SÁNCHEZ-ÁLVAREZ M , FAJARDO A , et al. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense[J]. Science, 2020, 370 (6514): eaay8085.
doi: 10.1126/science.aay8085 |
8 |
GREENBERG A S , EGAN J J , WEK S A , et al. Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets[J]. J Biol Chem, 1991, 266 (17): 11341- 11346.
doi: 10.1016/S0021-9258(18)99168-4 |
9 |
LIU P S , YING Y S , ZHAO Y M , et al. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic[J]. J Biol Chem, 2004, 279 (5): 3787- 3792.
doi: 10.1074/jbc.M311945200 |
10 |
ZHANG C Y , LIU P S . The lipid droplet: a conserved cellular organelle[J]. Protein Cell, 2017, 8 (11): 796- 800.
doi: 10.1007/s13238-017-0467-6 |
11 |
KRAHMER N , GUO Y , FARESE R V Jr , et al. SnapShot: lipid droplets[J]. Cell, 2009, 139 (5): 1024- 1024. e1.
doi: 10.1016/j.cell.2009.11.023 |
12 |
POL A , GROSS S P , PARTON R G . Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites[J]. J Cell Biol, 2014, 204 (5): 635- 646.
doi: 10.1083/jcb.201311051 |
13 |
OHSAKI Y , KAWAI T , YOSHIKAWA Y , et al. PML isoform Ⅱ plays a critical role in nuclear lipid droplet formation[J]. J Cell Biol, 2016, 212 (1): 29- 38.
doi: 10.1083/jcb.201507122 |
14 |
BICKEL P E , TANSEY J T , WELTE M A . PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores[J]. Biochim Biophys Acta, 2009, 1791 (6): 419- 440.
doi: 10.1016/j.bbalip.2009.04.002 |
15 |
BARLETTA A B F , ALVES L R , SILVA M C L N , et al. Emerging role of lipid droplets in Aedes aegypti immune response against bacteria and Dengue virus[J]. Sci Rep, 2016, 6, 19928.
doi: 10.1038/srep19928 |
16 |
WALTHER T C , CHUNG J , FARESE R V Jr . Lipid droplet biogenesis[J]. Annu Rev Cell Dev Biol, 2017, 33, 491- 510.
doi: 10.1146/annurev-cellbio-100616-060608 |
17 |
WILFLING F , HAAS J T , WALTHER T C , et al. Lipid droplet biogenesis[J]. Curr Opin Cell Biol, 2014, 29, 39- 45.
doi: 10.1016/j.ceb.2014.03.008 |
18 |
WILFLING F , WANG H J , HAAS J T , et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets[J]. Dev Cell, 2013, 24 (4): 384- 399.
doi: 10.1016/j.devcel.2013.01.013 |
19 |
JACKSON C L . Lipid droplet biogenesis[J]. Curr Opin Cell Biol, 2019, 59, 88- 96.
doi: 10.1016/j.ceb.2019.03.018 |
20 |
ZADOORIAN A , DU X M , YANG H Y . Lipid droplet biogenesis and functions in health and disease[J]. Nat Rev Endocrinol, 2023, 19 (8): 443- 459.
doi: 10.1038/s41574-023-00845-0 |
21 |
NGUYEN T B , LOUIE S M , DANIELE J R , et al. DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy[J]. Dev Cell, 2017, 42 (1): 9- 21. e5.
doi: 10.1016/j.devcel.2017.06.003 |
22 | SINGH R , CUERVO A M . Lipophagy: connecting autophagy and lipid metabolism[J]. Int J Cell Biol, 2012, 2012, 282041. |
23 |
DICHLBERGER A , SCHLAGER S , MAANINKA K , et al. Adipose triglyceride lipase regulates eicosanoid production in activated human mast cells[J]. J Lipid Res, 2014, 55 (12): 2471- 2478.
doi: 10.1194/jlr.M048553 |
24 |
YANG L , DING Y F , CHEN Y , et al. The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans[J]. J Lipid Res, 2012, 53 (7): 1245- 1253.
doi: 10.1194/jlr.R024117 |
25 |
LARSSON S , RESJÖ S , GOMEZ M F , et al. Characterization of the lipid droplet proteome of a clonal insulin-producing β-cell line (INS-1 832/13)[J]. J Proteome Res, 2012, 11 (2): 1264- 1273.
doi: 10.1021/pr200957p |
26 |
DING Y F , YANG L , ZHANG S Y , et al. Identification of the major functional proteins of prokaryotic lipid droplets[J]. J Lipid Res, 2012, 53 (3): 399- 411.
doi: 10.1194/jlr.M021899 |
27 | SZTALRYD C , BRASAEMLE D L . The perilipin family of lipid droplet proteins: gatekeepers of intracellular lipolysis[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2017, 1862 (10 Pt B): 1221- 1232. |
28 |
SATHYANARAYAN A , MASHEK M T , MASHEK D G . ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism[J]. Cell Rep, 2017, 19 (1): 1- 9.
doi: 10.1016/j.celrep.2017.03.026 |
29 |
SZTALRYD C , XU G H , DORWARD H , et al. Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation[J]. J Cell Biol, 2003, 161 (6): 1093- 1103.
doi: 10.1083/jcb.200210169 |
30 | OZEKI S , CHENG J L , TAUCHI-SATO K , et al. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane[J]. J Cell Sci, 2005, 118 (Pt 12): 2601- 2611. |
31 |
OLZMANN J A , CARVALHO P . Dynamics and functions of lipid droplets[J]. Nat Rev Mol Cell Biol, 2019, 20 (3): 137- 155.
doi: 10.1038/s41580-018-0085-z |
32 |
WANG H , SREENIVASAN U , HU H , et al. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria[J]. J Lipid Res, 2011, 52 (12): 2159- 2168.
doi: 10.1194/jlr.M017939 |
33 |
KONIGE M , WANG H , SZTALRYD C . Role of adipose specific lipid droplet proteins in maintaining whole body energy homeostasis[J]. Biochim Biophys Acta, 2014, 1842 (3): 393- 401.
doi: 10.1016/j.bbadis.2013.05.007 |
34 |
VIEYRES G , REICHERT I , CARPENTIER A , et al. The ATGL lipase cooperates with ABHD5 to mobilize lipids for hepatitis C virus assembly[J]. PLoS Pathog, 2020, 16 (6): e1008554.
doi: 10.1371/journal.ppat.1008554 |
35 |
GREENBERG A S , COLEMAN R A , KRAEMER F B , et al. The role of lipid droplets in metabolic disease in rodents and humans[J]. J Clin Invest, 2011, 121 (6): 2102- 2110.
doi: 10.1172/JCI46069 |
36 | 王群, 孙雨欣, 王海峰. 脂滴表面蛋白perilipin家族在癌症中的研究进展[J]. 昆明医科大学学报, 2023, 44 (8): 139- 144. |
WANG Q , SUN Y X , WANG H F . Research progress of perilipin family of lipid droplet surface proteins in cancer[J]. Journal of Kunming Medical University, 2023, 44 (8): 139- 144. | |
37 |
ROINGEARD P , MELO R C N . Lipid droplet hijacking by intracellular pathogens[J]. Cell Microbiol, 2017, 19 (1): e12688.
doi: 10.1111/cmi.12688 |
38 |
CARVALHO F A , CARNEIRO F A , MARTINS I C , et al. Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins[J]. J Virol, 2012, 86 (4): 2096- 2108.
doi: 10.1128/JVI.06796-11 |
39 |
QU Y F , WANG W L , XIAO M Z X , et al. The interplay between lipid droplets and virus infection[J]. J Med Virol, 2023, 95 (7): e28967.
doi: 10.1002/jmv.28967 |
40 |
VOGT D A , CAMUS G , HERKER E , et al. Lipid droplet-binding protein TIP47 regulates hepatitis C Virus RNA replication through interaction with the viral NS5A protein[J]. PLoS Pathog, 2013, 9 (4): e1003302.
doi: 10.1371/journal.ppat.1003302 |
41 |
ZHAO J Q , ZENG Z H , CHEN Y X , et al. Lipid droplets are beneficial for rabies virus replication by facilitating viral budding[J]. J Virol, 2022, 96 (2): e0147321.
doi: 10.1128/JVI.01473-21 |
42 |
YANG Y L , LUO Y Z , YI S Q , et al. Porcine reproductive and respiratory syndrome virus regulates lipid droplet accumulation in lipid metabolic pathways to promote viral replication[J]. Virus Res, 2023, 333, 199139.
doi: 10.1016/j.virusres.2023.199139 |
43 |
LEIER H C , MESSER W B , TAFESSE F G . Lipids and pathogenic flaviviruses: an intimate union[J]. PLoS Pathog, 2018, 14 (5): e1006952.
doi: 10.1371/journal.ppat.1006952 |
44 |
MARTÍN-ACEBES M A , VÁZQUEZ-CALVO Á , SAIZ J C . Lipids and flaviviruses, present and future perspectives for the control of dengue, Zika, and West Nile viruses[J]. Prog Lipid Res, 2016, 64, 123- 137.
doi: 10.1016/j.plipres.2016.09.005 |
45 |
SHIMOTOHNO K . HCV assembly and egress via modifications in host lipid metabolic systems[J]. Cold Spring Harb Perspect Med, 2021, 11 (1): a036814.
doi: 10.1101/cshperspect.a036814 |
46 |
MARTINS A S , MARTINS I C , SANTOS N C . Methods for lipid droplet biophysical characterization in Flaviviridae infections[J]. Front Microbiol, 2018, 9, 1951.
doi: 10.3389/fmicb.2018.01951 |
47 |
MASAKI T , SUZUKI R , MURAKAMI K , et al. Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the production of infectious virus particles[J]. J Virol, 2008, 82 (16): 7964- 7976.
doi: 10.1128/JVI.00826-08 |
48 |
CAMUS G , HERKER E , MODI A A , et al. Diacylglycerol acyltransferase-1 localizes hepatitis C virus NS5A protein to lipid droplets and enhances NS5A interaction with the viral capsid core[J]. J Biol Chem, 2013, 288 (14): 9915- 9923.
doi: 10.1074/jbc.M112.434910 |
49 | SCHWEITZER C J , ZHANG F , BOYER A , et al. N-Myc downstream-regulated gene 1 restricts hepatitis C virus propagation by regulating lipid droplet biogenesis and viral assembly[J]. J Virol, 2018, 92 (2): e01166- 17. |
50 |
HEATON N S , RANDALL G . Dengue virus-induced autophagy regulates lipid metabolism[J]. Cell Host Microbe, 2010, 8 (5): 422- 432.
doi: 10.1016/j.chom.2010.10.006 |
51 |
TONGLUAN N , RAMPHAN S , WINTACHAI P , et al. Involvement of fatty acid synthase in dengue virus infection[J]. Virol J, 2017, 14 (1): 28.
doi: 10.1186/s12985-017-0685-9 |
52 |
TANG W C , LIN R J , LIAO C L , et al. Rab18 facilitates dengue virus infection by targeting fatty acid synthase to sites of viral replication[J]. J Virol, 2014, 88 (12): 6793- 6804.
doi: 10.1128/JVI.00045-14 |
53 |
SAMSA M M , MONDOTTE J A , IGLESIAS N G , et al. Dengue virus capsid protein usurps lipid droplets for viral particle formation[J]. PLoS Pathog, 2009, 5 (10): e1000632.
doi: 10.1371/journal.ppat.1000632 |
54 |
ZHANG J S , LAN Y , LI M Y , et al. Flaviviruses exploit the lipid droplet protein AUP1 to trigger lipophagy and drive virus production[J]. Cell Host Microbe, 2018, 23 (6): 819- 831.
doi: 10.1016/j.chom.2018.05.005 |
55 |
QIN Z L , YAO Q F , REN H , et al. Lipid droplets and their participation in Zika virus infection[J]. Int J Mol Sci, 2022, 23 (20): 12584.
doi: 10.3390/ijms232012584 |
56 |
DIAS S S G , CUNHA-FERNANDES T , SOUZA-MOREIRA L , et al. Metabolic reprogramming and lipid droplets are involved in Zika virus replication in neural cells[J]. J Neuroinflammation, 2023, 20 (1): 61.
doi: 10.1186/s12974-023-02736-7 |
57 |
ZHU N , ZHANG D Y , WANG W L , et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. N Engl J Med, 2020, 382 (8): 727- 733.
doi: 10.1056/NEJMoa2001017 |
58 |
YUAN S F , YAN B P , CAO J L , et al. SARS-CoV-2 exploits host DGAT and ADRP for efficient replication[J]. Cell Discov, 2021, 7 (1): 100.
doi: 10.1038/s41421-021-00338-2 |
59 |
YUE M Z , HU B , LI J J , et al. Coronaviral ORF6 protein mediates inter-organelle contacts and modulates host cell lipid flux for virus production[J]. EMBO J, 2023, 42 (13): e112542.
doi: 10.15252/embj.2022112542 |
60 |
GAO Q , FENG Y Z , GONG T , et al. Porcine enteric alphacoronavirus infection increases lipid droplet accumulation to facilitate the virus replication[J]. J Integr Agric, 2024, 23 (3): 988- 1005.
doi: 10.1016/j.jia.2023.10.010 |
61 |
ACCIOLY M T , PACHECO P , MAYA-MONTEIRO C M , et al. Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells[J]. Cancer Res, 2008, 68 (6): 1732- 1740.
doi: 10.1158/0008-5472.CAN-07-1999 |
62 | BOODHOO N , KAMBLE N , KAUFER B B , et al. Replication of Marek's disease virus is dependent on synthesis of De novo fatty acid and prostaglandin E2[J]. J Virol, 2019, 93 (13): e00352- 19. |
63 |
ANGIUS F , UDA S , PIRAS E , et al. Neutral lipid alterations in human herpesvirus 8-infected HUVEC cells and their possible involvement in neo-angiogenesis[J]. BMC Microbiol, 2015, 15, 74.
doi: 10.1186/s12866-015-0415-7 |
64 |
LASS A , ZIMMERMANN R , OBERER M , et al. Lipolysis- a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores[J]. Prog Lipid Res, 2011, 50 (1): 14- 27.
doi: 10.1016/j.plipres.2010.10.004 |
65 |
DONG H , ZHOU L , GE X N , et al. Antiviral effect of 25-hydroxycholesterol against porcine reproductive and respiratory syndrome virus in vitro[J]. Antivir Ther, 2018, 23 (5): 395- 404.
doi: 10.3851/IMP3232 |
66 | WANG J , LIU J Y , SHAO K Y , et al. Porcine reproductive and respiratory syndrome virus activates lipophagy to facilitate viral replication through downregulation of NDRG1 expression[J]. J Virol, 2019, 93 (17): e00526- 19. |
67 | NANCE C L , SIWAK E B , SHEARER W T . Preclinical development of the green tea catechin, epigallocatechin gallate, as an HIV-1 therapy[J]. J Allergy Clin Immunol, 2009, 123 (2): 459- 465. |
68 | YU P W , FU P F , ZENG L , et al. EGCG restricts PRRSV proliferation by disturbing lipid metabolism[J]. Microbiol Spectr, 2022, 10 (2): e0227621. |
69 | LAUFMAN O , PERRINO J , ANDINO R . Viral generated inter-organelle contacts redirect lipid flux for genome replication[J]. Cell, 2019, 178 (2): 275- 289. e16. |
70 | BELOV G A , VAN KUPPEVELD F J M . Lipid droplets grease enterovirus replication[J]. Cell Host Microbe, 2019, 26 (2): 149- 151. |
71 | PATTON J T , SILVESTRI L S , TORTORICI M A , et al. Rotavirus genome replication and morphogenesis: role of the viroplasm[J]. Curr Top Microbiol Immunol, 2006, 309, 169- 187. |
72 | CRIGLAR J M , ESTES M K , CRAWFORD S E . Rotavirus-induced lipid droplet biogenesis is critical for virus replication[J]. Front Physiol, 2022, 13, 836870. |
73 | ZHOU Y , PU J , WU Y P . The role of lipid metabolism in influenza A virus infection[J]. Pathogens, 2021, 10 (3): 303. |
74 | EPISCOPIO D , AMINOV S , BENJAMIN S , et al. Atorvastatin restricts the ability of influenza virus to generate lipid droplets and severely suppresses the replication of the virus[J]. FASEB J, 2019, 33 (8): 9516- 9525. |
75 | MONSON E A , CROSSE K M , DUAN M , et al. Intracellular lipid droplet accumulation occurs early following viral infection and is required for an efficient interferon response[J]. Nat Commun, 2021, 12 (1): 4303. |
[1] | 于江玮, 程慧敏, 林健, 杨宝琳, 黄程, 杨志远, 胡格. 鸭瘟病毒TaqMan荧光定量PCR检测方法的建立及应用[J]. 畜牧兽医学报, 2025, 56(2): 765-773. |
[2] | 于泽坤, 姜承源, 袁洪兴, 周生, 段笑笑, 李彦, 宋勤叶. B亚型禽偏肺病毒B1分离株感染性克隆的构建与鉴定[J]. 畜牧兽医学报, 2025, 56(2): 788-802. |
[3] | 卢娜, 高钰, 赵嘉伟, 苏迪, 陈家磊, 罗忠礼. 猫传染性腹膜炎病毒mRNA疫苗转录载体的构建与鉴定[J]. 畜牧兽医学报, 2025, 56(2): 803-813. |
[4] | 刘健, 于泽海, 张玫瑜, 李丹, 王君, 刘芳琴, 张群, 徐守振. 一株牛肠病毒F型的全基因组分析及抗体检测间接ELISA方法的建立[J]. 畜牧兽医学报, 2025, 56(2): 814-825. |
[5] | 赵龙, 林静怡, 豆薇, 徐婷萱, 顾庆云, 高海慧, 李生庆, 郭抗抗. 体外对牛冠状病毒复制具有抑制效应藏药的筛选[J]. 畜牧兽医学报, 2025, 56(2): 826-838. |
[6] | 张冬萱, 王智豪, 乔岩, 赵肖肖, 范松杰, 张超. 猪流行性腹泻病毒S1蛋白的原核表达及其核酸适配体的筛选[J]. 畜牧兽医学报, 2025, 56(2): 839-850. |
[7] | 邵永恒, 倪民婷, 高梦玲, 汤娇, 张耕馨, 林圣宇, 刘光亮, 陈佳宁, 王雯慧. 猪捷申病毒5型VP1蛋白的原核表达及间接ELISA检测方法的建立[J]. 畜牧兽医学报, 2025, 56(2): 883-889. |
[8] | 张素, 孙丽芳, 李兰兰, 吴琳娇, 陈磊清, 吴允昆. 非洲猪瘟病毒结构蛋白与宿主蛋白相互作用研究进展[J]. 畜牧兽医学报, 2025, 56(1): 95-106. |
[9] | 张蕾, 陈亮, 冯万宇, 兰世捷, 苗艳, 田秋丰, 白长胜, 张备, 董佳强, 江波涛, 王洪宝, 史同瑞, 黄宣凯. 生物被膜在动物细菌感染致病机理中的作用[J]. 畜牧兽医学报, 2025, 56(1): 107-114. |
[10] | 蔡云凤, 李宏, 黄小铭, 何庆, 丁振宇, 余婉婷, 罗施乐, 陈方志, 王乃东, 杨毅, 湛洋. 猪圆环病毒2型病毒样颗粒三倍轴区域嵌合猪细小病毒抗原表位的展示策略及免疫原性[J]. 畜牧兽医学报, 2025, 56(1): 307-318. |
[11] | 曾苗苗, 杨小曼, 张鑫, 刘大凯, 时洪艳, 张记宇, 张燎原, 陈建飞, 冯廷帅, 李修文, 石达, 冯力. 猪急性腹泻综合征冠状病毒N蛋白间接ELISA抗体检测方法的建立及初步应用[J]. 畜牧兽医学报, 2025, 56(1): 319-326. |
[12] | 刘建华, 撒瑞雪, 张嗣玉, 李银涛, 邓智超, 贾晗铎, 赵敏, 付玉, 杨一明, 冉多良, 加尔肯. 马疱疹病毒1型分离毒株对叙利亚金黄地鼠的致病性[J]. 畜牧兽医学报, 2025, 56(1): 327-334. |
[13] | 王星月, 杨志远, 林健, 张紫萱, 周雨婷, 程慧敏, 刘月焕, 胡格. 鸽圆环病毒荧光定量PCR检测方法的建立及应用[J]. 畜牧兽医学报, 2025, 56(1): 335-342. |
[14] | 汪芳洲, 谭凌云, 李燕, 谷宏婧, 王慧. 亨尼帕病毒编码蛋白的特征及致病机制[J]. 畜牧兽医学报, 2024, 55(9): 3802-3811. |
[15] | 高语馨, 刘青, 陈继兰, 麻慧. miRNAs介导寄生虫和宿主互作机制的研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3812-3823. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||