1 |
ZHOU X T , LI N , LUO Y Z , et al. Emergence of African swine fever in China, 2018[J]. Transbound Emerg Dis, 2018, 65 (6): 1482- 1484.
doi: 10.1111/tbed.12989
|
2 |
石建州, 何健, 刘阳坤, 等. 非洲猪瘟疫苗研究进展[J]. 中国兽医学报, 2022, 42 (5): 1057-1065, 1076.
|
|
SHI J Z , HE J , LIU Y K , et al. Progress in development of vaccine against African swine fever[J]. Chinese Journal of Veterinary Medicine, 2022, 42 (5): 1057-1065, 1076.
|
3 |
王西西, 陈青, 吴映彤, 等. 非洲猪瘟疫苗研究进展[J]. 中国动物传染病学报, 2018, 26 (2): 89- 94.
|
|
WANG X X , CHEN Q , WU Y T , et al. Recent progress on vaccine development against African swine fever[J]. Chinese Journal of Animal Infectious Diseases, 2018, 26 (2): 89- 94.
|
4 |
SÁNCHEZ-CORDÓN P J , MONTOYA M , REIS A L , et al. African swine fever: a re-emerging viral disease threatening the global pig industry[J]. Vet J, 2018, 233, 41- 48.
doi: 10.1016/j.tvjl.2017.12.025
|
5 |
ARIAS M , DE LA TORRE A , DIXON L , et al. Approaches and perspectives for development of African swine fever virus vaccines[J]. Vaccines (Basel), 2017, 5 (4): 35.
doi: 10.3390/vaccines5040035
|
6 |
RAMIREZ-MEDINA E , VUONO E , O'DONNELL V , et al. Differential effect of the deletion of African swine fever virus virulence-associated genes in the induction of attenuation of the highly virulent Georgia strain[J]. Viruses, 2019, 11 (7): 599.
doi: 10.3390/v11070599
|
7 |
TEKLUE T , SUN Y , ABID M , et al. Current status and evolving approaches to African swine fever vaccine development[J]. Transbound Emerg Dis, 2020, 67 (2): 529- 542.
doi: 10.1111/tbed.13364
|
8 |
GÓMEZ-PUERTAS P , RODRÍGUEZ F , OVIEDO J M , et al. The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response[J]. Virology, 1998, 243 (2): 461- 471.
doi: 10.1006/viro.1998.9068
|
9 |
BARDERAS M G , RODRÍGUEZ F , GÓMEZ-PUERTAS P , et al. Antigenic and immunogenic properties of a chimera of two immunodominant African swine fever virus proteins[J]. Arch Virol, 2001, 146 (9): 1681- 1691.
doi: 10.1007/s007050170056
|
10 |
BRÖKER M , COSTANTINO P , DETORA L , et al. Biochemical and biological characteristics of cross-reacting material 197 (CRM197), a non-toxic mutant of diphtheria toxin: use as a conjugation protein in vaccines and other potential clinical applications[J]. Biologicals, 2011, 39 (4): 195- 204.
doi: 10.1016/j.biologicals.2011.05.004
|
11 |
MALITO E , BURSULAYA B , CHEN C , et al. Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197[J]. Proc Natl Acad Sci U S A, 2012, 109 (14): 5229- 5234.
doi: 10.1073/pnas.1201964109
|
12 |
陈柯. 白喉毒素突变体CRM197的研究及应用[J]. 微生物学免疫学进展, 2022, 50 (3): 70- 76.
|
|
CHEN K . Research and application of diphtheria toxin mutant CRM197[J]. Progress in Microbiology and Immunology, 2022, 50 (3): 70- 76.
|
13 |
GRUBER W C , SCOTT D A , EMINI E A . Development and clinical evaluation of Prevnar 13, a 13-valent pneumocococcal CRM197 conjugate vaccine[J]. Ann N Y Acad Sci, 2012, 1263, 15- 26.
doi: 10.1111/j.1749-6632.2012.06673.x
|
14 |
DAGAN R , POOLMAN J , SIEGRIST C A . Glycoconjugate vaccines and immune interference: a review[J]. Vaccine, 2010, 28 (34): 5513- 5523.
doi: 10.1016/j.vaccine.2010.06.026
|
15 |
TOBIAS J , JASINSKA J , BAIER K , et al. Enhanced and long term immunogenicity of a Her-2/neu multi-epitope vaccine conjugated to the carrier CRM197 in conjunction with the adjuvant Montanide[J]. BMC Cancer, 2017, 17 (1): 118.
doi: 10.1186/s12885-017-3098-7
|
16 |
TANG X Z , YU W L , SHEN L J , et al. Conjugation with 8-arm PEG and CRM197 enhances the immunogenicity of SARS-CoV-2 ORF8 protein[J]. Int Immunopharmacol, 2022, 109, 108922.
doi: 10.1016/j.intimp.2022.108922
|
17 |
GUTTORMSEN H K , SHARPE A H , CHANDRAKER A K , et al. Cognate stimulatory B-cell-T-cell interactions are critical for T-cell help recruited by glycoconjugate vaccines[J]. Infect Immun, 1999, 67 (12): 6375- 6384.
doi: 10.1128/IAI.67.12.6375-6384.1999
|
18 |
WANG K H , ZHOU L Z , ZHANG X , et al. Hepatitis E vaccine candidate harboring a non-particulate immunogen of E2 fused with CRM197 fragment A[J]. Antiviral Res, 2019, 164, 154- 161.
doi: 10.1016/j.antiviral.2019.02.013
|
19 |
LIU L Q , CHEN T T , ZHOU L Z , et al. A bacterially expressed SARS-CoV-2 receptor binding domain fused with cross-reacting material 197 a-domain elicits high level of neutralizing antibodies in mice[J]. Front Microbiol, 2022, 13, 854630.
doi: 10.3389/fmicb.2022.854630
|
20 |
赵旭阳, 靳家鑫, 路闻龙, 等. 非洲猪瘟病毒免疫逃逸分子机制研究进展[J]. 畜牧兽医学报, 2022, 53 (7): 2074- 2082.
doi: 10.11843/j.issn.0366-6964.2022.07.005
|
|
ZHAO X Y , JIN J X , LU W L , et al. Advances in the molecular mechanism of immune escape of African swine fever virus[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (7): 2074- 2082.
doi: 10.11843/j.issn.0366-6964.2022.07.005
|
21 |
黄剑, 李国新, 童光志. 非洲猪瘟的流行病学及疫苗研究新进展[J]. 中国动物传染病学报, 2022, 30 (4): 197- 205.
|
|
HUANG J , LI G X , TONG G Z . Epidemiology of African swine fever and progress in vaccine research[J]. Chinese Journal of Animal Infectious Diseases, 2022, 30 (4): 197- 205.
|
22 |
GÓMEZ-PUERTAS P , RODRÍGUEZ F , OVIEDO J M , et al. Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization[J]. J Virol, 1996, 70 (8): 5689- 5694.
doi: 10.1128/jvi.70.8.5689-5694.1996
|
23 |
徐娅玲. ASFV亚单位疫苗和多肽疫苗免疫效力的评估[D]. 贵阳: 贵州大学, 2022.
|
|
XU Y L. Assessment of the immune efficacy of ASFV subunit vaccines and peptide vaccines[D]. Guiyang: Guizhou University, 2022. (in Chinese)
|