畜牧兽医学报 ›› 2020, Vol. 51 ›› Issue (5): 943-951.doi: 10.11843/j.issn.0366-6964.2020.05.006
戴学宇, 张乾义, 徐璐, 赵启祖, 王琴, 夏应菊*
收稿日期:
2019-12-30
出版日期:
2020-05-25
发布日期:
2020-05-16
通讯作者:
夏应菊,主要从事猪瘟免疫致病机制及非洲猪瘟检测技术研究,E-mail:vet_xiayj@163.com
作者简介:
戴学宇(1996-),女,湖南常德人,硕士生,主要从事猪瘟病毒感染与免疫机制研究,E-mail:dxy_vet@outlook.com
基金资助:
DAI Xueyu, ZHANG Qianyi, XU Lu, ZHAO Qizu, WANG Qin, XIA Yingju*
Received:
2019-12-30
Online:
2020-05-25
Published:
2020-05-16
摘要: 规律成簇的间隔短回文重复序列系统(clustered regularly interspaced short palindromic repeat,CRISPR)是一种广泛存在于古细菌和细菌中,由RNA介导在Cas蛋白协助下发挥作用的获得性免疫系统,目前,已发现的CRISPR系统中以CRISPR/Cas9应用最为广泛,本文主要对CRISPR/Cas9系统的基本原理和研究进展进行概述,着重介绍其在重要猪病毒病防控中的应用,包括改造宿主和改造病毒两方面,该技术为研究病毒致病机制、新型疫苗研发以及抗病育种研究等提供了强有力的工具,对疫病的控制有着深远的影响。
中图分类号:
戴学宇, 张乾义, 徐璐, 赵启祖, 王琴, 夏应菊. CRISPR/Cas9基因编辑技术在重要猪病毒病防控中的研究与应用[J]. 畜牧兽医学报, 2020, 51(5): 943-951.
DAI Xueyu, ZHANG Qianyi, XU Lu, ZHAO Qizu, WANG Qin, XIA Yingju. Research Progress and Application of CRISPR/Cas9 Gene Editing Technology in Prevention and Control of Important Swine Virus Diseases[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(5): 943-951.
[1] | HORVATH P, BARRANGOU R. CRISPR/Cas, the immune system of bacteria and archaea[J]. Science, 2010, 327(5962):167-170. |
[2] | 杨发誉, 葛香连, 谷峰. 新型靶向基因组编辑技术研究进展[J]. 中国生物工程杂志, 2014, 34(2):98-103.YANG F Y, GE X L, GU F. Progress of next-generation targeted gene-editing techniques[J]. China Biotechnology, 2014, 34(2):98-103. (in Chinese) |
[3] | EBINA H, MISAWA N, KANEMURA Y, et al. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus[J]. Sci Rep, 2013, 3:2510. |
[4] | HU W H, KAMINSKI R, YANG F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection[J]. Proc Natl Acad Sci U S A, 2014, 111(31):11461-11466. |
[5] | 李晓开, 龙科任, 麦苗苗, 等. CRISPR-Cas9技术的原理及其在猪研究中的应用[J]. 生命科学, 2018, 30(6):690-700.LI X K, LONG K R, MAI M M, et al. The principle of CRISPR-Cas9 technology and its application in pig research[J]. Chinese Bulletin of Life Sciences, 2018, 30(6):690-700. (in Chinese) |
[6] | INUI M, MIYADO M, IGARASHI M, et al. Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system[J]. Sci Rep, 2015, 4:5396. |
[7] | HECKL D, KOWALCZYK M S, YUDOVICH D, et al. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing[J]. Nat Biotechnol, 2014, 32(9):941-946. |
[8] | SOREK R, KUNIN V, HUGENHOLTZ P. CRISPR-a widespread system that provides acquired resistance against phages in bacteria and archaea[J]. Nat Rev Microbiol, 2008, 6(3):181-186. |
[9] | MAKAROVA K S, ARAVIND L, WOLF Y I, et al. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems[J]. Biol Direct, 2011, 6:38. |
[10] | MAKAROVA K S, HAFT D H, BARRANGOU R, et al. Evolution and classification of the CRISPR-Cas systems[J]. Nat Rev Microbiol, 2011, 9(6):467-477. |
[11] | MAKAROVA K S, WOLF Y I, ALKHNBASHI O S, et al. An updated evolutionary classification of CRISPR-Cas systems[J]. Nat Rev Microbiol, 2015, 13(11):722-736. |
[12] | MAKAROVA K S, WOLF Y I, KOONIN E V. Classification and nomenclature of CRISPR-cas systems:where from here?[J]. CRISPR J, 2018, 1(5):325-336. |
[13] | ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. J Bacteriol, 1987, 169(12):5429-5433. |
[14] | JANSEN R, VAN EMBDEN J D A, GAASTRA W, et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Mol Microbiol, 2002, 43(6):1565-1575. |
[15] | BOLOTIN A, QUINQUIS B, SOROKIN A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin[J]. Microbiology, 2005, 151(8):2551-2561. |
[16] | BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819):1709-1712. |
[17] | MARRAFFINI L A, SONTHEIMER E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA[J]. Science, 2008, 322(5909):1843-1845. |
[18] | RAN F A, HSU P D, WRIGHT J, et al. Genome engineering using the CRISPR-Cas9 system[J]. Nat Protoc, 2013, 8(11):2281-2308. |
[19] | JINEK M, EAST A, CHENG A, et al. RNA-programmed genome editing in human cells[J]. eLife, 2013, 2:e00471. |
[20] | HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6):1262-1278. |
[21] | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-Guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. |
[22] | LIEBER M R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway[J]. Ann Rev Biochem, 2010, 79:181-211. |
[23] | RUDIN N, SUGARMAN E, HABER J E. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae[J]. Genetics, 1989, 122(3):519-534. |
[24] | JAO L E, WENTE S R, CHEN W B. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system[J]. Proc Natl Acad Sci U S A, 2013, 110(34):13904-13909. |
[25] | PORT F, CHEN H M, LEE T, et al. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila[J]. Proc Natl Acad Sci U S A, 2014, 111(29):E2967-E2976. |
[26] | CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823. |
[27] | MALI P, YANG L H, ESVELT K M, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121):823-826. |
[28] | XU L, WANG J, LIU Y L, et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia[J]. N Engl J Med, 2019, 381(13):1240-1247. |
[29] | FAO. World agriculture:towards 2015/2030[DB/OL].[2020-01-18] http://www.fao.org/3/Y4252E/y4252e05b.htm#P3_3. |
[30] | 杜金芳, 王慧. 转基因猪的研究进展[J]. 猪业科学, 2009, 26(9):82-84.DU J F, WANG H. Research progress of transgenic swine[J]. Swine Industry Science, 2009, 26(9):82-84. (in Chinese) |
[31] | HAI T, TENG F, GUO R F, et al. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system[J]. Cell Res, 2014, 24(3):372-375. |
[32] | WANG K P, JIN Q, RUAN D G, et al. Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing[J]. Genome Res, 2017, 27(12):2061-2071. |
[33] | YANG H Q, WU Z F. Genome editing of pigs for agriculture and biomedicine[J]. Front Genet, 2018, 9:360. |
[34] | NIU D, WEI H J, LIN L, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9[J]. Science, 2017, 357(6357):1303-1307. |
[35] | HAUSCHILD J, PETERSEN B, SANTIAGO Y, et al. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases[J]. Proc Natl Acad Sci U S A, 2011, 108(29):12013-12017. |
[36] | CARLSON D F, TAN W F, LILLICO S G, et al. Efficient TALEN-mediated gene knockout in livestock[J]. Proc Natl Acad Sci U S A, 2012, 109(43):17382-17387. |
[37] | WHITWORTH K M, LEE K, BENNE J A, et al. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos[J]. Biol Reprod, 2014, 91(3):78. |
[38] | PRATHER R S, WELLS K D, WHITWORTH K M, et al. Knockout of maternal CD163 protects fetuses from infection with porcine reproductive and respiratory syndrome virus (PRRSV)[J]. Sci Rep, 2017, 7(1):13371. |
[39] | BURKARD C, LILLICO S G, REID E, et al. Precision engineering for PRRSV resistance in pigs:macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function[J]. PLoS Pathog, 2017, 13(2):e1006206. |
[40] | CHEN J Y, WANG H T, BAI J H, et al. Generation of pigs resistant to highly pathogenic-porcine reproductive and respiratory syndrome virus through gene editing of CD163[J]. Int J Biol Sci, 2019, 15(2):481-492. |
[41] | XIE Z C, PANG D X, YUAN H M, et al. Genetically modified pigs are protected from classical swine fever virus[J]. PLoS Pathog, 2018, 14(12):e1007193. |
[42] | XU D, DU Q, HAN C, et al. P53 signaling modulation of cell cycle arrest and viral replication in porcine circovirus type 2 infection cells[J]. Vet Res, 2016, 47:120. |
[43] | LI P F, ZHANG X L, CAO W J, et al. RIG-I is responsible for activation of type I interferon pathway in Seneca Valley virus-infected porcine cells to suppress viral replication[J]. Virol J, 2018, 15(1):162. |
[44] | SUI C, JIANG D D, WU X J, et al. CRISPR-Cas9 mediated RNase L knockout regulates cellular function of PK-15 cells and increases PRV replication[J]. BioMed Res Int, 2019, 2019:7398208. |
[45] | HVBNER A, PETERSEN B, KEIL G M, et al. Efficient inhibition of African swine fever virus replication by CRISPR/Cas9 targeting of the viral p30 gene (CP204L)[J]. Sci Rep, 2018, 8:1449. |
[46] | LIANG X, SUN L Q, YU T, et al. A CRISPR/Cas9 and Cre/Lox system-based express vaccine development strategy against re-emerging pseudorabies virus[J]. Sci Rep, 2016, 6:19176. |
[47] | BORCA M V, HOLINKA L G, BERGGREN K A, et al. CRISPR-Cas9, a tool to efficiently increase the development of recombinant African swine fever viruses[J]. Sci Rep, 2018, 8(1):3154. |
[48] | TANG Y D, LIU J T, WANG T T, et al. CRISPR/Cas9-mediated multiple single guide RNAs potently abrogate pseudorabies virus replication[J]. Arch Virol, 2017, 162(12):3881-3886. |
[49] | PENG Q, FANG L R, DING Z, et al. Rapid manipulation of the porcine epidemic diarrhea virus genome by CRISPR/Cas9 technology[J]. J Virol Methods, 2020, 276:113772. |
[50] | TONG G Z, ZHOU Y J, HAO X F, et al. Highly pathogenic porcine reproductive and respiratory syndrome, China[J]. Emerg Infect Dis, 2007, 13(9):1434-1436. |
[51] | 赵鸿远, 彭金美, 安同庆, 等. 猪伪狂犬病病毒变异株的分离鉴定及其gE基因的分子特征[J]. 中国预防兽医学报, 2014, 36(7):506-509.ZHAO H Y, PENG J M, AN T Q, et al.Identification of glycoprotein E characteristic in pseudorabies virus variants from swine[J]. Chinese Journal of Preventive Veterinary Medicine, 2014, 36(7):506-509.(in Chinese) |
[52] | 施标, 董世娟, 朱于敏, 等. 中国猪流行性腹泻病毒分子流行病学研究进展[J]. 中国农业科学, 2013, 46(20):4362-4369.SHI B, DONG S J, ZHU Y M, et al. Advances in study of molecular epidemiology of porcine epidemic diarrhea virus in China[J]. Scientia Agricultura Sinica, 2013, 46(20):4362-4369. (in Chinese) |
[53] | PALINSKI R, PIÑEYRO P, SHANG P C, et al. A novel porcine circovirus distantly related to known circoviruses is associated with porcine dermatitis and nephropathy syndrome and reproductive failure[J]. J Virol, 2017, 91(1):e01879-16. |
[54] | ZHU Z, YANG F, CHEN P, et al. Emergence of novel Seneca Valley virus strains in China, 2017[J]. Transbound Emerg Dis, 2017, 64(4):1024-1029. |
[55] | HAUSE B M, COLLIN E A, PEDDIREDDI L, et al. Discovery of a novel putative atypical porcine pestivirus in pigs in the USA[J]. J Gen Virol, 2015, 96(10):2994-2998. |
[56] | WANG T, SUN Y, QIU H J. African swine fever:an unprecedented disaster and challenge to China[J]. Infect Dis Poverty, 2018, 7(1):111. |
[57] | MARCEAU C D, PUSCHNIK A S, MAJZOUB K et al. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens[J]. Nature, 2016, 535(7610):159-163. |
[58] | SAVIDIS G, MCDOUGALL W M, MERANER P, et al. Identification of zika virus and dengue virus dependency factors using functional genomics[J]. Cell Rep, 2016, 16(1):232-246. |
[59] | PUSCHNIK A S, MAJZOUB K, OOI Y S, et al. A CRISPR toolbox to study virus-host interactions[J]. Nat Rev Microbiol, 2017, 15(6):351-364. |
[60] | FU Y F, FODEN J A, KHAYTER C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nat Biotechnol, 2013, 31(9):822-826. |
[61] | HSU P D, SCOTT D A, WEINSTEIN J A, et al. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat Biotechnol, 2013, 31(9):827-832. |
[62] | ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3):759-771. |
[63] | ENGREITZ J, ABUDAYYEH O, GOOTENBERG J, et al. CRISPR tools for systematic studies of RNA regulation[J]. Cold Spring Harb Perspect Biol, 2019, 11(8):a035386. |
[64] | WANG Q X, LIU X, ZHOU J H, et al. The CRISPR-Cas13a gene-editing system induces collateral cleavage of RNA in glioma cells[J]. Adv Sci, 2019, 6(20):1901299. |
[1] | 李剑南, 袁利明, 华进联. CD46基因在家畜抗病育种中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1866-1874. |
[2] | 邱梅玉, 张雪梅, 张宁, 刘明军. 引导编辑技术的研究进展及应用[J]. 畜牧兽医学报, 2024, 55(4): 1345-1355. |
[3] | 王家丽, 杨帆, 邵文华, 黄梦瑶, 曹伟军, 蒲秀瑛, 张伟, 郑海学. Tollip敲除猪肾细胞系的构建[J]. 畜牧兽医学报, 2024, 55(4): 1810-1818. |
[4] | 武上杰, 栾园园, 王明坤, 张贺春, 于波, 马月辉, 蒋琳, 何晓红. 绵羊布鲁氏菌病抗病育种研究进展[J]. 畜牧兽医学报, 2024, 55(3): 882-893. |
[5] | 张晨俭, 李隐侠, 丁强, 刘伟佳, 王慧利, 何南, 吴家顺, 曹少先. CRISPR/Cas9技术高效制备山羊SOCS2基因编辑胚胎[J]. 畜牧兽医学报, 2024, 55(1): 129-141. |
[6] | 费晓钰, 石超群, 刘雪明, 苏峰, 姜运良. CRISPR/Cas9系统介导的猪MRC1修饰基因降低PCV2复制的研究[J]. 畜牧兽医学报, 2023, 54(3): 934-946. |
[7] | 刘铃, 王丹丹, 崔凯, 马月辉, 蒋琳. 猪繁殖与呼吸综合征抗病育种研究进展[J]. 畜牧兽医学报, 2023, 54(2): 434-442. |
[8] | 陈俊贞, 权冉, 付强, 葛丽娟, 袁圆圆, 张成远, 李建林, 史慧君. 热休克蛋白HSP90B1影响牛病毒性腹泻病毒复制的研究[J]. 畜牧兽医学报, 2023, 54(2): 683-693. |
[9] | 张硕, 周雨潇, 吴海波, 索伦. 长效CRISPR/Cas9基因编辑结局的动态追踪研究[J]. 畜牧兽医学报, 2023, 54(10): 4196-4208. |
[10] | 邓敏儿, 李娜, 郭亚琼, 冯耀宇, 肖立华. CRISPR/Cas9系统在寄生原虫基因编辑中的应用[J]. 畜牧兽医学报, 2023, 54(1): 69-79. |
[11] | 赵为民, 王慧利, 曹少先, 郭日红, 王泽平, 陈哲, 徐奎, 付言峰, 李碧侠, 任守文, 程金花. 猪CD163基因的单碱基编辑研究[J]. 畜牧兽医学报, 2022, 53(4): 1041-1050. |
[12] | 李兆龙, 张惠芳, 丰志华, 方舟. 携带CRISPR/Cas9的重组腺联病毒对伪狂犬病病毒感染小鼠的治疗效应[J]. 畜牧兽医学报, 2022, 53(3): 834-846. |
[13] | 罗俊, 刘金玲, 郑鹿平, 罗琴, 滕蔓. 家禽疱疹病毒CRISPR/Cas9基因编辑最新研究进展[J]. 畜牧兽医学报, 2022, 53(10): 3335-3344. |
[14] | 王沛, 王萌, 李婷婷, 郑晓楠, 梁勤立, 陈小庆. 弓形虫4个假定蛋白基因缺失株的构建及其基本生物功能学研究[J]. 畜牧兽医学报, 2022, 53(10): 3598-3608. |
[15] | 李琛, 何文峰, 赵丽娜, 凡启, 杨国庆, 刘慧敏. PK-15细胞的ISG15基因敲除促进PRV的复制[J]. 畜牧兽医学报, 2022, 53(10): 3621-3630. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||