畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (1): 71-78.doi: 10.11843/j.issn.0366-6964.2024.01.008
王鑫鑫1, 林树梅1*, 赵冬冬1, 王学生2
收稿日期:
2023-02-28
出版日期:
2024-01-23
发布日期:
2024-01-24
通讯作者:
林树梅,主要从事动物机能调控研究,E-mail:2004500035@syau.edu.cn
作者简介:
王鑫鑫(1998-),女,辽宁葫芦岛人,硕士生,主要从事动物机能调控研究,E-mail:1973039785@qq.com
基金资助:
WANG Xinxin1, LIN Shumei1*, ZHAO Dongdong1, WANG Xuesheng2
Received:
2023-02-28
Online:
2024-01-23
Published:
2024-01-24
摘要: 外泌体作为细胞间微环境中的信使,能够将信号在细胞之间进行传递。肺泡上皮细胞通过分泌外泌体来调节机体固有免疫反应。在特定的刺激条件下,肺泡上皮细胞分泌的外泌体通过传递不同效应活性物质,靶向调节巨噬细胞极化通路中的基因表达,参与控制肺部炎症反应的巨噬细胞极化调节。本篇综述主要阐述肺泡上皮细胞源性外泌体,通过靶向调节巨噬细胞极化,调控急性肺损伤(acute lung injury,ALI)作用的最新研究进展,为相关研究提供参考。
中图分类号:
王鑫鑫, 林树梅, 赵冬冬, 王学生. 肺泡上皮细胞分泌的外泌体调控巨噬细胞极化在急性肺损伤中的作用[J]. 畜牧兽医学报, 2024, 55(1): 71-78.
WANG Xinxin, LIN Shumei, ZHAO Dongdong, WANG Xuesheng. Role of Exosomes Secreted by Alveolar Epithelial Cells in Regulating Macrophage Polarization in Acute Lung Injury[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 71-78.
[1] | PARK I, KIM M, CHOE K, et al. Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung injury[J]. Eur Respir, 2019, 53(3):1800786. |
[2] | HUGHES K T, BEASLEY M B. Pulmonary manifestations of acute lung injury:more than just diffuse alveolar damage[J]. Arch Pathol Lab Med, 2017, 141(7):916-922. |
[3] | 林国斌. 猪呼吸道疾病综合征病因及防控[J]. 畜牧兽医科技信息, 2020(12):147-148.LIN G B. Etiology, prevention and control of porcine respiratory disease syndrome[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2020(12):147-148. (in Chinese) |
[4] | SAHEBNASAGH A, MOJTAHEDZADEH M, NAJMEDDIN F, et al. A perspective on erythropoietin as a potential adjuvant therapy for acute lung injury/acute respiratory distress syndrome in patients with COVID-19[J]. Arch Med Res, 2020, 51(7):631-635. |
[5] | KUMAR V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury[J]. Front Immunol, 2020, 11:1722. |
[6] | LEWIS S R, PRITCHARD M W, THOMAS C M, et al. Pharmacological agents for adults with acute respiratory distress syndrome[J]. Cochrane Database Syst Rev, 2019, 7(7):CD004477. |
[7] | NANCHAL R S, TRUWIT J D. Recent advances in understanding and treating acute respiratory distress syndrome[J]. F1000Res, 2018, 7:F1000 Faculty Rev-1322. |
[8] | MART M F, WARE L B. The long-lasting effects of the acute respiratory distress syndrome[J]. Expert Rev Respir Med, 2020, 14(6):577-586. |
[9] | XIA L J, ZHANG C L, LV N Y, et al. AdMSC-derived exosomes alleviate acute lung injury via transferring mitochondrial component to improve homeostasis of alveolar macrophages[J]. Theranostics, 2022, 12(6):2928-2947. |
[10] | ARORA S, DEV K, AGARWAL B, et al. Macrophages:Their role, activation and polarization in pulmonary diseases[J]. Immunobiology, 2018, 223(4-5):383-396. |
[11] | YANG H H, JIANG H L, TAO J H, et al. Mitochondrial citrate accumulation drives alveolar epithelial cell necroptosis in lipopolysaccharide-induced acute lung injury[J]. Exp Mol Med, 2022, 54(11):2077-2091. |
[12] | 卢姝言, 杨 松, 任李梅, 等. 不同来源外泌体保存方法的研究进展[J]. 中国现代应用药学, 2022, 39(3):410-416.LU S Y, YANG S, REN L M, et al. Research progress on preservation methods of exosomes from different sources[J]. Chinese Journal of Modern Applied Pharmacy, 2022, 39(3):410-416. (in Chinese) |
[13] | LU G D, CHENG P, LIU T, et al. BMSC-derived exosomal miR-29a promotes angiogenesis and osteogenesis[J]. Front Cell Dev Biol, 2020, 8:608521. |
[14] | SCHENA G J, MURRAY E K, HILDEBRAND A N, et al. Cortical bone stem cell-derived exosomes' therapeutic effect on myocardial ischemia-reperfusion and cardiac remodeling[J]. Am J Physiol Heart Circ Physiol, 2021, 321(6):H1014-H1029. |
[15] | XIONG Y Y, GONG Z T, TANG R J, et al. The pivotal roles of exosomes derived from endogenous immune cells and exogenous stem cells in myocardial repair after acute myocardial infarction[J]. Theranostics, 2021, 11(3):1046-1058. |
[16] | HARRELL C R, JOVICIC N, DJONOV V, et al. Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases[J]. Cells, 2019, 8(12):1605. |
[17] | SHEN Z W, HUANG W, LIU J, et al. Effects of mesenchymal stem cell-derived exosomes on autoimmune diseases[J]. Front Immunol, 2021, 12:749192. |
[18] | 胡细佑, 陈 波, 陈泽林. 巨噬细胞极化在脓毒症发生发展中的作用[J]. 中华危重病急救医学, 2022, 34(6):661-665.HU X Y, CHEN B, CHEN Z L. Role of macrophage polarization in the development of sepsis[J]. Chinese Critical Care Medicine, 2022, 34(6):661-665. (in Chinese) |
[19] | PUTTUR F, GREGORY L G, LLOYD C M. Airway macrophages as the guardians of tissue repair in the lung[J]. Immunol Cell Biol, 2019, 97(3):246-257. |
[20] | JOSHI N, WALTER J M, MISHARIN A V. Alveolar macrophages[J]. Cell Immunol, 2018, 330:86-90. |
[21] | EMING S A, MURRAY P J, PEARCE E J. Metabolic orchestration of the wound healing response[J]. Cell Metab, 2021, 33(9):1726-1743. |
[22] | 席 静, 王月丽, 邓肖玉, 等. STAT6介导的巨噬细胞极化对布鲁氏菌胞内存活的影响[J]. 畜牧兽医学报, 2022, 53(1):263-271.XI J, WANG Y L, DENG X Y, et al. Effect of STAT6 mediated macrophage polarization on intracellular survival of Brucella[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1):263-271. (in Chinese). |
[23] | COLIN S, CHINETTI-GBAGUIDI G, STAELS B. Macrophage phenotypes in atherosclerosis[J]. Immunol Rev, 2014, 262(1):153-166. |
[24] | WANG L X, ZHANG S X, WU H J, et al. M2b macrophage polarization and its roles in diseases[J]. J Leukoc Biol, 2019, 106(2):345-358. |
[25] | SHI T, DENNEY L, AN H Z, et al. Alveolar and lung interstitial macrophages:Definitions, functions, and roles in lung fibrosis[J]. J Leukoc Biol, 2021, 110(1):107-114. |
[26] | OISHI Y, MANABE I. Macrophages in inflammation, repair and regeneration[J]. Int Immunol, 2018, 30(11):511-528. |
[27] | JOHNSTON L K, RIMS C R, GILL S E, et al. Pulmonary macrophage subpopulations in the induction and resolution of acute lung injury[J]. Am J Respir Cell Mol Biol, 2012, 47(4):417-426. |
[28] | JIANG K F, YANG J, GUO S, et al. Peripheral circulating exosome-mediated delivery of miR-155 as a novel mechanism for acute lung inflammation[J]. Mol Ther, 2019, 27(10):1758-1771. |
[29] | 彭 巍. 脂多糖诱导肺泡上皮细胞外泌体通过miR-92a-3p调控肺泡巨噬细胞炎症反应[D]. 南昌:南昌大学, 2020.PENG W. LPS-induced exosomes derived from alveolar epithelial cells regulate the inflammatory response of alveolar macrophages via miR-92a-3p[D]. Nanchang:Nanchang University, 2020. (in Chinese) |
[30] | TIAN J K, CUI X Q, SUN J, et al. Retraction notice to "Exosomal microRNA-16-5p from adipose mesenchymal stem cells promotes TLR4-mediated M2 macrophage polarization in septic lung injury" [Int. Immunopharmacol. 98 (2021) 107835] [J]. Int Immunopharmacol, 2022, 111:109078. |
[31] | SONG Y X, DOU H, LI X J, et al. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis[J]. Stem Cells, 2017, 35(5):1208-1221. |
[32] | GU W, YAO L, LI L X, et al. ICAM-1 regulates macrophage polarization by suppressing MCP-1 expression via miR-124 upregulation[J]. Oncotarget, 2017, 8(67):111882-111901. |
[33] | MITTAL M, TIRUPPATHI C, NEPAL S, et al. TNF α-stimulated gene-6 (TSG6) activates macrophage phenotype transition to prevent inflammatory lung injury[J]. Proc Natl Acad Sci U S A, 2016, 113(50):E8151-E8158. |
[34] | SALTON F, CONFALONIERI P, MEDURI G U, et al. Prolonged low-dose methylprednisolone in patients with severe COVID-19 pneumonia[J]. Open Forum Infect Dis, 2020, 7(10):ofaa421. |
[35] | XIA H F, CHEN L, LIU H, et al. Protectin DX increases survival in a mouse model of sepsis by ameliorating inflammation and modulating macrophage phenotype[J]. Sci Rep, 2017, 7(1):99. |
[36] | SUGAHARA K, TOKUMINE J, TERUYA K, et al. Alveolar epithelial cells:differentiation and lung injury[J]. Respirology, 2006, 11(1):S28-S31. |
[37] | LEE H, ABSTON E, ZHANG D, et al. Extracellular vesicle:an emerging mediator of intercellular crosstalk in lung inflammation and injury[J]. Front Immunol, 2018, 9:924. |
[38] | BARKAUSKAS C E, CRONCE M J, RACKLEY C R, et al. Type 2 alveolar cells are stem cells in adult lung[J]. J Clin Invest, 2013, 123(7):3025-3036. |
[39] | DOBBS L G, JOHNSON M D, VANDERBILT J, et al. The great big alveolar TI cell:evolving concepts and paradigms[J]. Cell Physiol Biochem, 2010, 25(1):55-62. |
[40] | SCHNEIDER J P, WREDE C, HEGERMANN J, et al. On the topological complexity of human alveolar epithelial type 1 cells[J]. Am J Respir Crit Care Med, 2019, 199(9):1153-1156. |
[41] | KATHIRIYA J J, BRUMWELL A N, JACKSON J R, et al. Distinct airway epithelial stem cells hide among club cells but mobilize to promote alveolar regeneration[J]. Cell Stem Cell, 2020, 26(3):346-358. e4. |
[42] | ASPAL M, ZEMANS R L. Mechanisms of ATII-to-ATI cell differentiation during lung regeneration[J]. Int J Mol Sci, 2020, 21(9):3188. |
[43] | BONUCCI E. Fine structure of early cartilage calcification[J]. J Ultrastruct Res, 1967, 20(1-2):33-50. |
[44] | ANDERSON H C. Vesicles associated with calcification in the matrix of epiphyseal cartilage[J]. J Cell Biol, 1969, 41(1):59-72. |
[45] | STAHL P D, RAPOSO G. Extracellular vesicles:exosomes and microvesicles, integrators of homeostasis[J]. Physiology (Bethesda), 2019, 34(3):169-177. |
[46] | PEGTEL D M, GOULD S J. Exosomes[J]. Annu Rev Biochem, 2019, 88:487-514. |
[47] | SCHUMACKER P T, GILLESPIE M N, NAKAHIRA K, et al. Mitochondria in lung biology and pathology:more than just a powerhouse[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 306(11):L962-L974. |
[48] | SUPINSKI G S, SCHRODER E A, CALLAHAN L A. Mitochondria and critical illness[J]. Chest, 2020, 157(2):310-322. |
[49] | MORRISON T J, JACKSON M V, CUNNINGHAM E K, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer[J]. Am J Respir Crit Care Med, 2017, 196(10):1275-1286. |
[50] | SILVA J D, SU Y, CALFEE C S, et al. Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS[J]. Eur RESPIR J, 2021, 58(1):2002978. |
[51] | CHEN L, YANG Y, YUE R M, et al. Exosomes derived from hypoxia-induced alveolar epithelial cells stimulate interstitial pulmonary fibrosis through a HOTAIRM1-dependent mechanism[J]. Lab Invest, 2022, 102(9):935-944. |
[52] | YU Y, ZHOU Y, DI C X, et al. Increased airway epithelial cell-derived exosomes activate macrophage-mediated allergic inflammation via CD100 shedding[J]. J Cell Mol Med, 2021, 25(18):8850-8862. |
[53] | KULSHRESHTHA A, AHMAD T, AGRAWAL A, et al. Proinflammatory role of epithelial cell-derived exosomes in allergic airway inflammation[J]. J Allergy Clin Immunol, 2013, 131(4):1194-1203. e14. |
[54] | FENG Z Y, JING Z, LI Q, et al. Exosomal STIMATE derived from type II alveolar epithelial cells controls metabolic reprogramming of tissue-resident alveolar macrophages[J]. Theranostics, 2023, 13(3):991-1009. |
[55] | BISSONNETTE E Y, LAUZON-JOSET J F, DEBLEY J S, et al. Cross-talk between alveolar macrophages and lung epithelial cells is essential to maintain lung homeostasis[J]. Front Immunol, 2020, 11:583042. |
[56] | LEE H, ZHANG D, WU J X, et al. Lung Epithelial cell-derived microvesicles regulate macrophage migration via microRNA-17/221-induced integrin β1 recycling[J]. J Immunol, 2017, 199(4):1453-1464. |
[57] | MOON H G, CAO Y, YANG J, et al. Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway[J]. Cell Death Dis, 2015, 6(12):e2016. |
[58] | LIU F, PENG W, CHEN J Q, et al. Exosomes derived from alveolar epithelial cells promote alveolar macrophage activation mediated by miR-92a-3p in sepsis-induced acute lung injury[J]. Front Cell Infect Microbiol, 2021, 11:646546. |
[59] | 李建军, 吴素方, 白丰玺. Mtb感染Ⅱ型肺泡上皮细胞来源外泌体通过miR-145对巨噬细胞极化的影响[J]. 天津医学, 2020, 50(7):678-685.LI J J, WU S F, BAI F X. Effects of Mtb-infected type Ⅱ alveolar epithelial cells-derived exosome on the polarization of macrophages through miR-145[J]. Tianjin Medical Journal, 2020, 50(7):678-685. (in Chinese) |
[60] | BOURDONNAY E, ZASŁONA Z, PENKE L R K, et al. Transcellular delivery of vesicular SOCS proteins from macrophages to epithelial cells blunts inflammatory signaling[J]. J Exp Med, 2015, 212(5):729-742. |
[61] | SPETH J M, PENKE L R, BAZZILL J D, et al. Alveolar macrophage secretion of vesicular SOCS3 represents a platform for lung cancer therapeutics[J]. JCI Insight, 2019, 4(20):e131340. |
[1] | 戴帆, 刘占有, 张旭阳, 李武. 乌头酸脱羧酶1对BCG诱导巨噬细胞炎症反应的调控作用研究[J]. 畜牧兽医学报, 2024, 55(4): 1696-1706. |
[2] | 陈富斌, 徐国伟, 王磊, 刘琴, 冯海鹏, 张康, 郭志廷, 韩松伟, 刘佳惠, 古雪艳, 张景艳, 李建喜, Huub F. J. Savelkoul. 黄芪多糖对HD11鸡巨噬细胞转录组和代谢组的影响[J]. 畜牧兽医学报, 2024, 55(3): 1290-1301. |
[3] | 刘新新, 周恩友, 安智远, 蔡春霞, 张露洁, 李建增, 李转见, 闫峰宾, 康相涛, 高延玲, 韩瑞丽. 不同来源外泌体对骨骼发育及骨骼疾病的影响[J]. 畜牧兽医学报, 2024, 55(2): 419-426. |
[4] | 刘阳光, 章会斌, 文浩宇, 谢帆, 赵世明, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 猪卵泡液外泌体处理卵巢颗粒细胞的SNP/Indel筛选分析[J]. 畜牧兽医学报, 2024, 55(2): 576-586. |
[5] | 巩志国, 赵佳敏, 顾柏臣, 任佩佩, 于琢雅, 白云洁, 刘鑫煜, 王超, 刘博. 基于网络药理学分析党参减轻大肠杆菌感染小鼠急性肺损伤的作用机制[J]. 畜牧兽医学报, 2023, 54(8): 3571-3581. |
[6] | 安琪, 于嘉霖, 吴晓玲, 邓光存. 谷氨酰胺对BCG诱导小鼠传代巨噬细胞凋亡的调控作用[J]. 畜牧兽医学报, 2023, 54(7): 3054-3063. |
[7] | 王崇年, 于嘉霖, 宫照乾, 吴晓玲, 邓光存. 脂肪分化相关蛋白2对BCG诱导小鼠传代巨噬细胞自噬的调控作用[J]. 畜牧兽医学报, 2023, 54(5): 2134-2146. |
[8] | 陈永平, 寇玉红, 焦文静, 侯晓昱, 范宏刚. 辅酶Q10改善LPS诱导小鼠急性肺损伤的效应分析[J]. 畜牧兽医学报, 2023, 54(4): 1730-1741. |
[9] | 姚敏, 石博妹, 黄廷华. 沙门菌SptP调控巨噬细胞MAPK-CDK6-RB通路的初步分析[J]. 畜牧兽医学报, 2023, 54(3): 1187-1198. |
[10] | 郭心雨, 王昊天, 张雪梅, 王小龙, 李和平, 杨彦宾, 钟凯. 牛乳来源外泌体对巨噬细胞极化调控作用的研究[J]. 畜牧兽医学报, 2023, 54(11): 4754-4765. |
[11] | 陈璐, 常新宇, 沈嘉忱, 沈瑞廷, 赵振华, 侯晓林. 鸡传染性支气管炎病毒感染HD11细胞的转录组分析[J]. 畜牧兽医学报, 2023, 54(11): 4860-4865. |
[12] | 景丽荣, 张超, 乔杰, 海尼斯格, 杨英, 高珍珍. 硒对树突状细胞和巨噬细胞功能的调控作用[J]. 畜牧兽医学报, 2022, 53(9): 3231-3240. |
[13] | 刘倩, 李大鹏, 张宏, 刘琴, 王学智, 李建喜, 杨孝朴, 张景艳. 黄芪多糖降低脂多糖对鸡巨噬细胞促炎细胞因子和TLRs mRNA转录水平影响的效应分析[J]. 畜牧兽医学报, 2022, 53(9): 3251-3261. |
[14] | 丁军, 付子琳, 和俊豪, 段晓微, 马露, 卜登攀. 乳源外泌体研究进展[J]. 畜牧兽医学报, 2022, 53(4): 1019-1029. |
[15] | 匡婧靖, 贺艳娟, 胡群, 顾婷, 吴珍芳, 蔡更元, 洪林君. 猪子宫腔液外泌体来源的TIMP2蛋白对胚胎附植的影响[J]. 畜牧兽医学报, 2022, 53(4): 1122-1132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||