畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (3): 914-923.doi: 10.11843/j.issn.0366-6964.2023.03.006
周璇, 谢跃*, 陈舜*
收稿日期:
2022-08-08
出版日期:
2023-03-23
发布日期:
2023-03-21
通讯作者:
谢跃,主要从事寄生虫病学和肠道微生物研究,E-mail:xyue1985@126.com;陈舜,主要从事兽医微生物学基础研究,E-mail:shunchen@sicau.edu.cn
作者简介:
周璇(1988-),女,重庆潼南人,博士生,主要从事寄生虫病与肠道微生物互作研究,E-mail: zhouxuan198866@163.com
基金资助:
ZHOU Xuan, XIE Yue*, CHEN Shun*
Received:
2022-08-08
Online:
2023-03-23
Published:
2023-03-21
摘要: 动物寄生性线虫与其共生菌的相互关系是防控该类寄生虫的关键和基础。随着宏基因组测序、生物信息学分析以及细菌分离培养技术的不断发展,动物寄生性线虫与其共生菌间的复杂关系正逐渐被人们揭示。研究表明,动物寄生性线虫与其共生菌群间存在诸如营养互济、免疫互作、生态位效应等密切关系,这些互利互惠关系促进二者在宿主体内的共存。然而受目前试验目的、实验技术、宿主与动物寄生性线虫种类不同等因素影响,有关动物寄生性线虫与其共生菌相互关系的研究十分零散,缺乏系统、全面的归纳、分析和总结。为此,本论文拟结合现有最新文献知识,对动物寄生性线虫与其共生菌关系研究现状和进展进行综述,以期增加人们对该领域的认识和了解,并为发现新的寄生虫疾病干预措施提供信息参考。
中图分类号:
周璇, 谢跃, 陈舜. 动物寄生性线虫与其共生菌相互关系[J]. 畜牧兽医学报, 2023, 54(3): 914-923.
ZHOU Xuan, XIE Yue, CHEN Shun. The Interactions between Animal-parasitic Nematodes and Their Symbiotic Bacteria[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 914-923.
[1] | 杨光友.兽医寄生虫病学[M].北京:中国农业出版社, 2017.YANG G Y. Veterinary parasitology[M]. Beijing:China Agriculture Press, 2017.(in Chinese) |
[2] | MOYA A, GIL R, LATORRE A. The evolutionary history of symbiotic associations among bacteria and their animal hosts:a model[J]. Clin Microbiol Infect, 2009, 15(S1):11-13. |
[3] | FRAUNE S, BOSCH T C G. Why bacteria matter in animal development and evolution[J]. Bioessays, 2010, 32(7):571-580. |
[4] | EDELMAN S M, KASPER D L. Symbiotic commensal bacteria direct maturation of the host immune system[J]. Curr Opin Gastroenterol, 2008, 24(6):720-724. |
[5] | ASHOUR D S, OTHMAN A A. Parasite-bacteria interrelationship[J]. Parasitol Res, 2020, 119(10):3145-3164. |
[6] | LANDMANN F. The wolbachia endosymbionts[J]. Microbiol Spectr, 2019, 7(2):BAI-0018-2019. |
[7] | BOUCHERY T, LEFOULON E, KARADJIAN G, et al. The symbiotic role of Wolbachia in Onchocercidae and its impact on filariasis[J]. Clin Microbiol Infect, 2013, 19(2):131-140. |
[8] | 邓雯文,李才武,晋蕾,等.大熊猫粪便中微生物与寄生虫的宏转录组学分析[J].畜牧兽医学报, 2020, 51(11):2812-2824.DENG W W, LI C W, JIN L, et al. Transcriptome analysis of microbiome and parasites in feces of giant pandas[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(11):2812-2824.(in Chinese) |
[9] | CORTÉS A, PEACHEY L, SCOTTI R, et al. Helminth-microbiota cross-talk-A journey through the vertebrate digestive system[J]. Mol Biochem Parasitol, 2019, 233:111222. |
[10] | JACKSON J A, FRIBERG I M, LITTLE S, et al. Review series on helminths, immune modulation and the hygiene hypothesis:immunity against helminths and immunological phenomena in modern human populations:coevolutionary legacies?[J]. Immunology, 2009, 126(1):18-27. |
[11] | LI R W, WU S T, LI W Z, et al. Alterations in the porcine colon microbiota induced by the gastrointestinal nematode Trichuris suis[J]. Infect Immun, 2012, 80(6):2150-2157. |
[12] | HOGAN G, WALKER S, TURNBULL F, et al. Microbiome analysis as a platform R&D tool for parasitic nematode disease management[J]. ISME J, 2019, 13(11):2664-2680. |
[13] | BROADHURST M J, ARDESHIR A, KANWAR B, et al. Therapeutic helminth infection of macaques with idiopathic chronic diarrhea alters the inflammatory signature and mucosal microbiota of the colon[J]. PLoS Pathog, 2012, 8(11):e1003000. |
[14] | CHEN C C, LOUIE S, MCCORMICK B, et al. Concurrent infection with an intestinal helminth parasite impairs host resistance to enteric Citrobacter rodentium and enhances Citrobacter-induced colitis in mice[J]. Infect Immun, 2005, 73(9):5468-5481. |
[15] | MCDERMOTT J R, BARTRAM R E, KNIGHT P A, et al. Mast cells disrupt epithelial barrier function during enteric nematode infection[J]. Proc Natl Acad Sci U S A, 2003, 100(13):7761-7766. |
[16] | FRIBERG I M, LITTLE S, RALLI C, et al. Macroparasites at peripheral sites of infection are major and dynamic modifiers of systemic antimicrobial pattern recognition responses[J]. Mol Ecol, 2013, 22(10):2810-2826. |
[17] | INCE M N, ELLIOTT D E, SETIAWAN T, et al. Cutting edge:Heligmosomoides polygyrus induces TLR4 on murine mucosal T cells that produce TGFβ after lipopolysaccharide stimulation[J]. J Immunol, 2006, 176(2):726-729. |
[18] | CHUDNOVSKIY A, MORTHA A, KANA V, et al. Host-protozoan interactions protect from mucosal infections through activation of the inflammasome[J]. Cell, 2016, 167(2):444-456.e14. |
[19] | BROSSCHOT T P, REYNOLDS L A. The impact of a helminth-modified microbiome on host immunity[J]. Mucosal Immunol, 2018, 11(4):1039-1046. |
[20] | DEA-AYUELA M A, RAMA-IÑIGUEZ S, BOLÁS-FERNANDEZ F. Enhanced susceptibility to Trichuris muris infection of B10Br mice treated with the probiotic Lactobacillus casei[J]. Int Immunopharmacol, 2008, 8(1):28-35. |
[21] | GRAINGER J R, SMITH K A, HEWITSON J P, et al. Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway[J]. J Exp Med, 2010, 207(11):2331-2341. |
[22] | OHNMACHT C, PARK J H, CORDING S, et al. The microbiota regulates type 2 immunity through RORγt+ T cells[J]. Science, 2015, 349(6251):989-993. |
[23] | HONDA K, LITTMAN D R. The microbiota in adaptive immune homeostasis and disease[J]. Nature, 2016, 535(7610):75-84. |
[24] | MCSORLEY H J, HEWITSON J P, MAIZELS R M. Immunomodulation by helminth parasites:Defining mechanisms and mediators[J]. Int J Parasitol, 2013, 43(3-4):301-310. |
[25] | PEACHEY L E, JENKINS T P, CANTACESSI C. This gut ain't big enough for both of us. Or is it?Helminth-microbiota interactions in veterinary species[J]. Trends Parasitol, 2017, 33(8):619-632. |
[26] | WAMMES L J, MPAIRWE H, ELLIOTT A M, et al. Helminth therapy or elimination:epidemiological, immunological, and clinical considerations[J]. Lancet Infect Dis, 2014, 14(11):1150-1162. |
[27] | RAPIN A, HARRIS N L. Helminth-bacterial interactions:cause and consequence[J]. Trends Immunol, 2018, 39(9):724-733. |
[28] | REYNOLDS L A, SMITH K A, FILBEY K J, et al. Commensal-pathogen interactions in the intestinal tract:Lactobacilli promote infection with, and are promoted by, helminth parasites[J]. Gut Microbes, 2014, 5(4):522-532. |
[29] | 李亮,张路平.寄生虫的起源与进化[J].生物学通报, 2006, 41(4):15-16.LI L, ZHANG L P. Origin and evolution of parasites[J]. Bulletin of Biology, 2006, 41(4):15-16.(in Chinese) |
[30] | TAYLOR M J, BANDI C, HOERAUF A. Wolbachia. Bacterial endosymbionts of filarial nematodes[J]. Adv Parasitol, 2005, 60:245-284. |
[31] | FOSTER J, GANATRA M, KAMAL I, et al. The Wolbachia genome of Brugia malayi:endosymbiont evolution within a human pathogenic nematode[J]. PLoS Biol, 2005, 3(4):e121. |
[32] | CHUNG M, SMALL S T, SERRE D, et al. Draft genome sequence of the Wolbachia endosymbiont of Wuchereria bancrofti wWb[J]. Pathog Dis, 2017, 75(9):ftx115. |
[33] | IOANNIDIS P, JOHNSTON K L, RILEY D R, et al. Extensively duplicated and transcriptionally active recent lateral gene transfer from a bacterial Wolbachia endosymbiont to its host filarial nematode Brugia malayi[J]. BMC Genomics, 2013, 14:639. |
[34] | DESJARDINS C A, CERQUEIRA G C, GOLDBERG J M, et al. Genomics of Loa loa, a Wolbachia-free filarial parasite of humans[J]. Nat Genet, 2013, 45(5):495-500. |
[35] | NASH M J, FRANK D N, FRIEDMAN J E. Early microbes modify immune system development and metabolic homeostasis-the"restaurant"hypothesis revisited[J]. Front Endocrinol, 2017, 8:349. |
[36] | CORTÉS A, TOLEDO R, CANTACESSI C. Classic models for new perspectives:delving into helminth-microbiota-immune system interactions[J]. Trends Parasitol, 2018, 34(8):640-654. |
[37] | HANSEN R D E, TREES A J, BAH G S, et al. A worm's best friend:recruitment of neutrophils by Wolbachia confounds eosinophil degranulation against the filarial nematode Onchocerca ochengi[J]. Proc Biol Sci, 2011, 278(1716):2293-2302. |
[38] | WHITE E C, HOULDEN A, BANCROFT A J, et al. Manipulation of host and parasite microbiotas:survival strategies during chronic nematode infection[J]. Sci Adv, 2018, 4(3):eaap7399. |
[39] | HAYES K S, BANCROFT A J, GOLDRICK M, et al. Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris[J]. Science, 2010, 328(5984):1391-1394. |
[40] | EL-ASHRAM S, SUO X. Exploring the microbial community (microflora) associated with ovine Haemonchus contortus(macroflora) field strains[J]. Sci Rep, 2017, 7:70. |
[41] | SINNATHAMBY G, HENDERSON G, UMAIR S, et al. The bacterial community associated with the sheep gastrointestinal nematode parasite Haemonchus contortus[J]. PLoS One, 2018, 13(3):e0192164. |
[42] | CÉRIAC S, DURBANT P, GODARD X, et al. Effect of the nutritional status of Creole goats on the density-dependent prolificacy of Haemonchus contortus[J]. Vet Parasitol, 2019, 276:108973. |
[43] | MYHILL L J, STOLZENBACH S, HANSEN T V A, et al. Mucosal barrier and Th2 immune responses are enhanced by dietary inulin in pigs infected with Trichuris suis[J]. Front Immunol, 2018, 9:2557. |
[44] | RAMANAN D, BOWCUTT R, LEE S C, et al. Helminth infection promotes colonization resistance via type 2 immunity[J]. Science, 2016, 352(6285):608-612. |
[45] | JENKINS T P, BRINDLEY P J, GASSER R B, et al. Helminth microbiomes-a hidden treasure trove?[J]. Trends Parasitol, 2019, 35(1):13-22. |
[46] | TAILFORD L E, CROST E H, KAVANAUGH D, et al. Mucin glycan foraging in the human gut microbiome[J]. Front Genet, 2015, 6:81. |
[47] | HOLM J B, SOROBETEA D, KIILERICH P, et al. Chronic Trichuris muris infection decreases diversity of the intestinal microbiota and concomitantly increases the abundance of lactobacilli[J]. PLoS One, 2015, 10(5):e0125495. |
[48] | HOULDEN A, HAYES K S, BANCROFT A J, et al. Chronic Trichuris muris infection in C57BL/6 mice causes significant changes in host microbiota and metabolome:effects reversed by pathogen clearance[J]. PLoS One, 2015, 10(5):e0125945. |
[49] | CHAVEZ I N, BROWN T M, ASSIÉ A, et al. Skin-penetrating nematodes exhibit life-stage-specific interactions with host-associated and environmental bacteria[J]. BMC Biol, 2021, 19(1):221. |
[50] | HAQUE M, KOSKI K G, SCOTT M E. A gastrointestinal nematode in pregnant and lactating mice alters maternal and neonatal microbiomes[J]. Int J Parasitol, 2021, 51(11):945-957. |
[51] | RAUSCH S, HELD J, FISCHER A, et al. Small intestinal nematode infection of mice is associated with increased enterobacterial loads alongside the intestinal tract[J]. PLoS One, 2013, 8(9):e74026. |
[52] | FRICKE W F, SONG Y, WANG A J, et al. Type 2 immunity-dependent reduction of segmented filamentous bacteria in mice infected with the helminthic parasite Nippostrongylus brasiliensis[J]. Microbiome, 2015, 3:40. |
[53] | CATTADORI I M, SEBASTIAN A, HAO H, et al. Impact of helminth infections and nutritional constraints on the small intestine microbiota[J]. PLoS One, 2016, 11(7):e0159770. |
[54] | WU S T, LI R W, LI W Z, et al. Worm burden-dependent disruption of the porcine colon microbiota by Trichuris suis infection[J]. PLoS One, 2012, 7(4):e35470. |
[55] | WANG Y Y, LIU F, URBAN J F JR, et al. Ascaris suum infection was associated with a worm-independent reduction in microbial diversity and altered metabolic potential in the porcine gut microbiome[J]. Int J Parasitol, 2019, 49(3-4):247-256. |
[56] | LI R W, LI W Z, SUN J J, et al. The effect of helminth infection on the microbial composition and structure of the caprine abomasal microbiome[J]. Sci Rep, 2016, 6:20606. |
[57] | CORRÊA P S, MENDES L W, LEMOS L N, et al. The effect of Haemonchus contortus and Trichostrongylus colubriforms infection on the ruminal microbiome of lambs[J]. Exp Parasitol, 2021, 231:108175. |
[58] | LI R W, WU S T, LI W Z, et al. Metagenome plasticity of the bovine abomasal microbiota in immune animals in response to Ostertagia ostertagi infection[J]. PLoS One, 2011, 6(9):e24417. |
[59] | DUARTE A M, JENKINS T P, LATROFA M S, et al. Helminth infections and gut microbiota-a feline perspective[J]. Parasit Vectors, 2016, 9(1):625. |
[60] | MCGARRY H F, EGERTON G L, TAYLOR M J. Population dynamics of Wolbachia bacterial endosymbionts in Brugia malayi[J]. Mol Biochem Parasitol, 2004, 135(1):57-67. |
[61] | TURNER J D, MARRIOTT A E, HONG D, et al. Novel anti-Wolbachia drugs, a new approach in the treatment and prevention of veterinary filariasis?[J]. Vet Parasitol, 2020, 279:109057. |
[62] | JOHNSTON K L, HONG W D, TURNER J D, et al. Anti-Wolbachia drugs for filariasis[J]. Trends Parasitol, 2021, 37(12):1068-1081. |
[63] | LENTZ C S, HALLS V, HANNAM J S, et al. A selective inhibitor of heme biosynthesis in endosymbiotic bacteria elicits antifilarial activity in vitro[J]. Chem Biol, 2013, 20(2):177-187. |
[64] | LENTZ C S, HALLS V S, HANNAM J S, et al. wALADin benzimidazoles differentially modulate the function of porphobilinogen synthase orthologs[J]. J Med Chem, 2014, 57(6):2498-2510. |
[65] | HVBNER M P, KOSCHEL M, STRUEVER D, et al. In vivo kinetics of Wolbachia depletion by ABBV-4083 IN L. sigmodontis adult worms and microfilariae[J]. PLoS Negl Trop Dis, 2019, 13(8):e0007636. |
[66] | RAVERDY S, FOSTER J M, ROOPENIAN E, et al. The Wolbachia endosymbiont of Brugia malayi has an active pyruvate phosphate dikinase[J]. Mol Biochem Parasitol, 2008, 160(2):163-166. |
[67] | SAIDIN S, OTHMAN N, NOORDIN R. In vitro testing of potential Entamoeba histolytica pyruvate phosphate dikinase inhibitors[J]. Am J Trop Med Hyg, 2017, 97(4):1204-1213. |
[68] | SLATKO B E, LUCK A N, DOBSON S L, et al. Wolbachia endosymbionts and human disease control[J]. Mol Biochem Parasitol, 2014, 195(2):88-95. |
[69] | WANJI S, TENDONGFOR N, NJI T, et al. Community-directed delivery of doxycycline for the treatment of onchocerciasis in areas of co-endemicity with loiasis in Cameroon[J]. Parasit Vectors, 2009, 2(1):39. |
[70] | TAYLOR M J, VON GELDERN T W, FORD L, et al. Preclinical development of an oral anti-Wolbachia macrolide drug for the treatment of lymphatic filariasis and onchocerciasis[J]. Sci Trans Med, 2019, 11(483):eaau2086. |
[71] | VON GELDERN T W, MORTON H E, CLARK R F, et al. Discovery of ABBV-4083, a novel analog of Tylosin A that has potent anti-Wolbachia and anti-filarial activity[J]. PLoS Negl Trop Dis, 2019, 13(2):e0007159. |
[72] | MURPHY C, RETTEDAL E, LEHOURITIS P, et al. Intratumoural production of TNFα by bacteria mediates cancer therapy[J]. PLoS One, 2017, 12(6):e0180034. |
[73] | LEHOURITIS P, STANTON M, MCCARTHY F O, et al. Activation of multiple chemotherapeutic prodrugs by the natural enzymolome of tumour-localised probiotic bacteria[J]. J Control Release, 2016, 222:9-17. |
[74] | LEHOURITIS P, HOGAN G, TANGNEY M. Designer bacteria as intratumoural enzyme biofactories[J]. Adv Drug Deliv Rev, 2017, 118:8-23. |
[75] | CRONIN M, LE BOEUF F, MURPHY C, et al. Bacterial-mediated knockdown of tumor resistance to an oncolytic virus enhances therapy[J]. Mol Ther, 2014, 22(6):1188-1197. |
[1] | 王乐乐, 王礼跃, 蔡为民, 康喜龙, 冯茜茜, 张知之, 范雪莲, 朱玉, 刘丹丹, 许金俊, 潘志明, 陶建平. 鸡球虫重组蛋白rEnApiAP2对鸡免疫保护效果的观察[J]. 畜牧兽医学报, 2024, 55(4): 1716-1727. |
[2] | 彭月梅, 叶状, 汪飞燕, 王礼跃, 冯永翠, 王乐乐, 候照峰, 许金俊, 陶建平, 刘丹丹. 毒害艾美耳球虫谷胱甘肽过氧化物酶EnGPX的原核表达与分析[J]. 畜牧兽医学报, 2024, 55(2): 846-853. |
[3] | 眭玉珍, 陈桂珍, 左守军, 汪海东, 宋鹏涛, 栗亮亮, 张龙现, 董海聚, 刘芳. 河南省宠物猫华支睾吸虫和其他肠道寄生虫感染状况分析[J]. 畜牧兽医学报, 2023, 54(7): 3022-3030. |
[4] | 伍雪梅, 杨新, 原亚杰, 尹艳玲, 赖鹏, 宋军科, 史怀平, 赵光辉. C5a/C5aR信号在微小隐孢子虫感染中的免疫调节作用研究[J]. 畜牧兽医学报, 2022, 53(8): 2621-2632. |
[5] | 叶状, 王乐乐, 汪飞燕, 刘悦, 彭月梅, 宿世杰, 候照峰, 许金俊, 陶建平, 刘丹丹. 毒害艾美耳球虫氧化还原酶EnOXIO1的原核表达与定位分析[J]. 畜牧兽医学报, 2022, 53(5): 1553-1561. |
[6] | 杨琴, 邓肖玉, 谢珊珊, 易继海, 王勇, 张倩, 王震, 陈创夫. 牛种布鲁氏菌Ⅳ型分泌系统对巨噬细胞内质网应激和细胞凋亡的影响[J]. 畜牧兽医学报, 2022, 53(4): 1192-1200. |
[7] | 蔡为民, 李文静, 王乐乐, 苏丁泽阳, 朱玉, 刘丹丹, 许金俊, 陶建平. 毒害艾美耳球虫配子体抗原EnGAM22单克隆抗体的制备与鉴定[J]. 畜牧兽医学报, 2022, 53(3): 875-882. |
[8] | 付明, 贺君君, 朱兴全, 丛伟. 弓形虫卵囊感染小鼠的急性期与慢性期的脑组织蛋白质组变化[J]. 畜牧兽医学报, 2022, 53(2): 556-566. |
[9] | 邹扬, 郑文斌, 张金鹏, 路义鑫, 朱兴全. 犬弓首蛔虫感染比格犬不同阶段肝circRNAs表达模式的分析[J]. 畜牧兽医学报, 2021, 52(12): 3524-3534. |
[10] | 李霞, 李志, 曹天行, 殷宏, 罗建勋, 关贵全, 刘军龙, 赵洪喜. 基于靶向代谢组学研究环形泰勒虫对宿主细胞能量代谢的影响[J]. 畜牧兽医学报, 2021, 52(12): 3535-3545. |
[11] | 聂雪伊, 刘蕾, 郑雪迪, 杨易, 徐金瑞, 王玉炯. BCG感染巨噬细胞后内质网应激对细胞焦亡的调控作用[J]. 畜牧兽医学报, 2021, 52(10): 2842-2851. |
[12] | 向阳, 袁东波, 侯巍, 莫茜, 尹杰, 阳爱国, 郝力力. 羊蜱蝇携带巴尔通体和斑点热群立克次体PCR检测及遗传关系分析[J]. 畜牧兽医学报, 2021, 52(6): 1700-1708. |
[13] | 刘林科, 王朋林, 菅忆晨, 李世杰, 王占铭, 王荣军, 张龙现, 宁长申, 菅复春. 我国部分地区羊芽囊原虫流行病学调查[J]. 畜牧兽医学报, 2021, 52(4): 1061-1068. |
[14] | 赫秀甜, 向阳, 袁东波, 阳爱国, 范小虎, 谭雄, 钟叶青, 郝力力. 四川省松潘县牦牛体表蜱、高原鼠兔携带巴尔通体和无形体的PCR检测与进化分析[J]. 畜牧兽医学报, 2020, 51(6): 1438-1446. |
[15] | 赵学亮, 王姝懿, 孙柯, 苏倩, 王文龙, 刘春霞. 捻转血矛线虫阿苯达唑敏感株和耐药株比较转录组学分析[J]. 畜牧兽医学报, 2019, 50(9): 1940-1944. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||