畜牧兽医学报 ›› 2022, Vol. 53 ›› Issue (10): 3326-3334.doi: 10.11843/j.issn.0366-6964.2022.10.006
侯博*, 王晨燕, 周伦江
收稿日期:
2022-01-18
出版日期:
2022-10-23
发布日期:
2022-10-26
通讯作者:
侯博,E-mail:houbohouwei@126.com
作者简介:
侯博(1986-),男,陕西凤翔人,博士,主要从事动物传染病研究,E-mail:houbohouwei@126.com
基金资助:
HOU Bo*,WANG Chenyan,ZHOU Lunjiang
Received:
2022-01-18
Online:
2022-10-23
Published:
2022-10-26
摘要: 毒素-抗毒素(toxin-antitoxin,T-A)系统广泛存在于细菌基因组和质粒中,调控细菌的多种生理活动。细菌生物被膜是细菌适应应激环境(不利环境)而采取的一种生存策略,其具有极强的耐药性及免疫逃逸性,广泛存在于自然界,具有广泛的危害性,严重威胁畜禽和人类的健康。本文对不同类型的T-A系统在细菌生物被膜形成中的作用和分子机制进行综述,旨在为更好地了解和掌握细菌T-A系统在生物被膜形成中的作用和调控关系,为生物被膜的清除和控制奠定基础。
中图分类号:
侯博, 王晨燕, 周伦江. 毒素-抗毒素系统在细菌生物被膜形成中的作用及调控机制[J]. 畜牧兽医学报, 2022, 53(10): 3326-3334.
HOU Bo,WANG Chenyan,ZHOU Lunjiang. The Roles and Regulatory Mechanisms of Toxin-antitoxin System in Bacterial Biofilm Formation[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3326-3334.
[1] | WEN Y R, BEHIELS E, DEVREESE B. Toxin-Antitoxin systems:their role in persistence, biofilm formation, and pathogenicity[J]. Pathog Dis, 2014, 70(3):240-249. |
[2] | PAGE R, PETI W. Toxin-antitoxin systems in bacterial growth arrest and persistence[J]. Nat Chem Biol, 2016, 12(4):208-214. |
[3] | OTTO M. Bacterial evasion of antimicrobial peptides by biofilm formation[J]. Curr Top Microbiol Immunol, 2006, 306:251-258. |
[4] | CIOFU O, MOSER C, JENSEN P Ø, et al. Tolerance and resistance of microbial biofilms[J]. Nat Rev Microbiol, 2022, doi:10. 1038/s41579-022-00682-4. |
[5] | ITO A, TANIUCHI A, MAY T, et al. Increased antibiotic resistance of Escherichia coli in mature biofilms[J]. Appl Environ Microbiol, 2009, 75(12):4093-4100. |
[6] | DONLAN R M. Role of biofilms in antimicrobial resistance[J]. ASAIO J, 2000, 46(6):S47-S52. |
[7] | CLUTTERBUCK A L, WOODS E J, KNOTTENBELT D C, et al. Biofilms and their relevance to veterinary medicine[J]. Vet Microbiol, 2007, 121(1-2):1-17. |
[8] | SREY S, JAHID I K, HA S D. Biofilm formation in food industries:A food safety concern[J]. Food Control, 2013, 31(2):572-585. |
[9] | HOLAH J T, BLOOMFIELD S F, WALKER A J, et al. Control of biofilms in the food industry[M]//WIMPENNY W, NICHOLS D, STICKER, et al. Bacterial Biofilms and Their Control in Medicine and Industry. Powys:Gregynog Hall, 1994. |
[10] | KUMAR C G, ANAND S K. Significance of microbial biofilms in food industry:a review[J]. Int J Food Microbiol, 1998, 42(1-2):9-27. |
[11] | TRACHOO N. Biofilms and the food industry[J]. Songklanakarin J Sci Technol, 2003, 25(6):807-815. |
[12] | OGURA T, HIRAGA S. Mini-F plasmid genes that couple host cell division to plasmid proliferation[J]. Proc Natl Acad Sci U S A, 1983, 80(15):4784-4788. |
[13] | SINGH G, YADAV M, GHOSH C, et al. Bacterial toxin-antitoxin modules:classification, functions, and association with persistence[J]. Curr Res Microb Sci, 2021, 2:100047, doi:10. 1016/j. crmicr. 2021. 100047. |
[14] | EROSHENKO D V, POLYUDOVA T V, PYANKOVA A A. VapBC and MazEF toxin/antitoxin systems in the regulation of biofilm formation and antibiotic tolerance in nontuberculous mycobacteria[J]. Int J Mycobacteriol, 2020, 9(2):156-166. |
[15] | BRANTL S, MVLLER P. Toxin-antitoxin systems in Bacillus subtilis[J]. Toxins (Basel), 2019, 11(5):262, doi:10. 3390/toxins11050262. |
[16] | BLOOM-ACKERMANN Z, STEINBERG N, ROSENBERG G, et al. Toxin-Antitoxin systems eliminate defective cells and preserve symmetry in Bacillus subtilis biofilms[J]. Environ Microbiol, 2016, 18(12):5032-5047. |
[17] | ORIOL C, CENGHER L, MANNA A C, et al. Expanding the Staphylococcus aureus SarA regulon to small RNAs[J]. mSystems, 2021, 6(5):e0071321. |
[18] | DOMKA J, LEE J, BANSAL T, et al. Temporal gene-expression in Escherichia coli K-12 biofilms[J]. Environ Microbiol, 2007, 9(2):332-346. |
[19] | MAIKOVA A, PELTIER J, BOUDRY P, et al. Discovery of new type I toxin-antitoxin systems adjacent to CRISPR arrays in Clostridium difficile[J]. Nucleic Acids Res, 2018, 46(9):4733-4751. |
[20] | GOEDERS N, VAN MELDEREN L. Toxin-antitoxin systems as multilevel interaction systems[J]. Toxins (Basel), 2014, 6(1):304-324. |
[21] | RÓWNICKI M, LASEK R, TRYLSKA J, et al. Targeting type II toxin-antitoxin systems as antibacterial strategies[J]. Toxins (Basel), 2020, 12(9):568. DOI:10. 3390/toxins12090568. |
[22] | YAMAGUCHI Y, INOUYE M. Regulation of growth and death in Escherichia coli by toxin-antitoxin systems[J]. Nat Rev Microbiol, 2011, 9(11):779-790. |
[23] | CHRISTENSEN-DALSGAARD M, JØRGENSEN M G, GERDES K. Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses[J]. Mol Microbiol, 2010, 75(2):333-348. |
[24] | KAMADA K, HANAOKA F. Conformational change in the catalytic site of the ribonuclease YoeB toxin by YefM antitoxin[J]. Mol Cell, 2005, 19(4):497-509. |
[25] | PEDERSEN K, ZAVIALOV A V, PAVLOV M Y, et al. The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site[J]. Cell, 2003, 112(1):131-140. |
[26] | PRYSAK M H, MOZDZIERZ C J, COOK A M, et al. Bacterial toxin YafQ is an endoribonuclease that associates with the ribosome and blocks translation elongation through sequence-specific and frame-dependent mRNA cleavage[J]. Mol Microbiol, 2009, 71(5):1071-1087. |
[27] | SCHMIDT O, SCHUENEMANN V J, HAND N J, et al. prlF and yhaV encode a new toxin-antitoxin system in Escherichia coli[J]. J Mol Biol, 2007, 372(4):894-905. |
[28] | YAMAGUCHI Y, PARK J H, INOUYE M. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli[J]. J Biol Chem, 2009, 284(42):28746-28753. |
[29] | ZHANG Y L, ZHANG J J, HARA H, et al. Insights into the mRNA cleavage mechanism by MazF, an mRNA interferase[J]. J Biol Chem, 2005, 280(5):3143-3150. |
[30] | ZHANG Y L, ZHU L, ZHANG J J, et al. Characterization of ChpBK, an mRNA interferase from Escherichia coli[J]. J Biol Chem, 2005, 280(28):26080-26088. |
[31] | 侯 博, 王晨燕, 栗绍文, 等. 一株ExPEC hicAB基因缺失株的构建及应用:中国, 109337850B[P]. 2022-01-11.HOU B, WANG C Y, LI S W, et al. Construction and application of ExPEC hicAB gene deleted strain:CN, 109337850B[P]. 2022-01-11. (in Chinese) |
[32] | 侯 博, 刘玉涛, 王晨燕, 等. 一株ExPEC yhaV-prlF基因缺失株的构建及应用:中国, 109294967B[P]. 2022-01-11.HOU B, LIU Y T, WANG C Y, et al. Construction and application of ExPEC yhaV-prlF gene deleted strain:CN, 109294967B[P]. 2022-01-11. (in Chinese) |
[33] | 侯 博, 刘玉涛, 王晨燕, 等. 一株ExPEC yafON基因缺失株的构建及应用:中国, 109337849B[P]. 2022-01-11.HOU B, LIU Y T, WANG C Y, et al. Construction and application of ExPEC yafON gene deleted strain:CN, 109337849B[P]. 2022-01-11. (in Chinese) |
[34] | 侯 博, 王晨燕, 车勇良, 等. 毒素-抗毒素系统yafON缺失对ExPEC生物被膜形成的影响[J]. 福建畜牧兽医, 2020, 42(5):4-7.HOU B, WANG C Y, CHE Y L, et al. The deletion of toxin-antitoxin yafON influence biofilm formation in ExPEC[J]. Fujian Journal of Animal Husbandry and Veterinary Medicine, 2020, 42(5):4-7. (in Chinese) |
[35] | KASARI V, KURG K, MARGUS T, et al. The Escherichia coli mqsR and ygiT genes encode a new toxin-antitoxin pair[J]. J Bacteriol, 2010, 192(11):2908-2919. |
[36] | SOO V W C, WOOD T K. Antitoxin MqsA represses curli formation through the master biofilm regulator CsgD[J]. Sci Rep, 2013, 3:3186, doi:10. 1038/srep03186. |
[37] | WANG X X, WOOD T K. Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response[J]. Appl Environ Microbiol, 2011, 77(16):5577-5583. |
[38] | WANG X X, LORD D M, CHENG H Y, et al. A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS[J]. Nat Chem Biol, 2012, 8(10):855-861. |
[39] | FRAIKIN N, ROUSSEAU C J, GOEDERS N, et al. Reassessing the role of the type II MqsRA toxin-antitoxin system in stress response and biofilm formation:mqsA is transcriptionally uncoupled from mqsR[J]. mBio, 2019, 10(6):e02678-19, doi:10. 1128/mBio. 02678-19. |
[40] | KIM Y, WANG X X, MA Q, et al. Toxin-antitoxin systems in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae[J]. J Bacteriol, 2009, 191(4):1258-1267. |
[41] | HARRISON J J, WADE W D, AKIERMAN S, et al. The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm[J]. Antimicrob Agents Chemother, 2009, 53(6):2253-2258. |
[42] | XU J, XIA K, LI P Y, et al. Functional investigation of the chromosomal ccdAB and hipAB operon in Escherichia coli Nissle 1917[J]. Appl Microbiol Biotechnol, 2020, 104(15):6731-6747. |
[43] | RECACHA E, MACHUCA J, DíAZ-DÍAZ S, et al. Suppression of the SOS response modifies spatiotemporal evolution, post-antibiotic effect, bacterial fitness and biofilm formation in quinolone-resistant Escherichia coli[J]. J Antimicrob Chemother, 2019, 74(1):66-73. |
[44] | LASARO M A, SALINGER N, ZHANG J, et al. F1C fimbriae play an important role in biofilm formation and intestinal colonization by the Escherichia coli commensal strain Nissle 1917[J]. Appl Environ Microbiol, 2009, 75(1):246-251. |
[45] | ZHAO J Q, WANG Q, LI M J, et al. Escherichia coli toxin gene hipA affects biofilm formation and DNA release[J]. Microbiology (Reading), 2013, 159(Pt 3):633-640. |
[46] | SCHUMACHER M A, PIRO K M, XU W J, et al. Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB[J]. Science, 2009, 323(5912):396-401. |
[47] | WOOD T L, WOOD T K. The HigB/HigA toxin/antitoxin system of Pseudomonas aeruginosa influences the virulence factors pyochelin, pyocyanin, and biofilm formation[J]. Microbiologyopen, 2016, 5(3):499-511. |
[48] | ZHANG Y Y, XIA B, LI M, et al. HigB reciprocally controls biofilm formation and the expression of type III secretion system genes through influencing the intracellular c-di-GMP level in Pseudomonas aeruginosa[J]. Toxins (Basel), 2018, 10(11):424, doi:10. 3390/toxins10110424. |
[49] | SOARES A, ROUSSEL V, PESTEL-CARON M, et al. Understanding ciprofloxacin failure in Pseudomonas aeruginosa biofilm:persister cells survive matrix disruption[J]. Front Microbiol, 2019, 10:2603, doi:10. 3389/fmicb. 2019. 02603. |
[50] | LI G, SHEN M Y, LU S G, et al. Identification and characterization of the HicAB toxin-antitoxin system in the opportunistic pathogen Pseudomonas aeruginosa[J]. Toxins (Basel), 2016, 8(4):113, doi:10. 3390/toxins8040113. |
[51] | MA D Z, MANDELL J B, DONEGAN N P, et al. The toxin-antitoxin MazEF drives Staphylococcus aureus biofilm formation, antibiotic tolerance, and chronic infection[J]. mBio, 2019, 10(6):e1619-e1658, doi:10. 1128/mBio. 01658-19. |
[52] | ABD EL RAHMAN A, EL KHOLY Y, SHASH R Y. Correlation between mazEF toxin-antitoxin system expression and methicillin susceptibility in Staphylococcus aureus and its relation to biofilm-formation[J]. Microorganisms, 2021, 9(11):2274, doi:10. 3390/microorganisms9112274. |
[53] | QI X Y, BROTHERS K M, MA D Z, et al. The Staphylococcus aureus toxin-antitoxin system YefM-YoeB is associated with antibiotic tolerance and extracellular dependent biofilm formation[J]. J Bone Jt Infect, 2021, 6(7):241-253. |
[54] | CHAN W T, DOMENECH M, MORENO-CÓRDOBA I, et al. The Streptococcus pneumoniae yefM-yoeB and relBE toxin-antitoxin operons participate in oxidative stress and biofilm formation[J]. Toxins (Basel), 2018, 10(9):378, doi:10. 3390/toxins10090378. |
[55] | MA D M, GU H J, SHI Y J, et al. Edwardsiella piscicida YefM-YoeB:a type II toxin-antitoxin system that is related to antibiotic resistance, biofilm formation, serum survival, and host infection[J]. Front Microbiol, 2021, 12:646299, doi:10. 3389/fmicb. 2021. 646299. |
[56] | BLOWER T R, SALMOND G P, LUISI B F. Balancing at survival's edge:the structure and adaptive benefits of prokaryotic toxin-antitoxin partners[J]. Curr Opin Struct Biol, 2011, 21(1):109-118. |
[57] | WEN Z L, WANG P X, SUN C L, et al. Interaction of type IV toxin/antitoxin systems in cryptic prophages of Escherichia coli K-12[J]. Toxins (Basel), 2017, 9(3):77, doi:10. 3390/toxins9030077. |
[58] | MASUDA H, TAN Q, AWANO N, et al. YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli[J]. Mol Microbiol, 2012, 84(5):979-989. |
[59] | WANG X X, LORD D M, HONG S H, et al. Type II toxin/antitoxin MqsR/MqsA controls type V toxin/antitoxin GhoT/GhoS[J]. Environ Microbiol, 2013, 15(6):1734-1744. |
[60] | AAKRE C D, PHUNG T N, HUANG D, et al. A bacterial toxin inhibits DNA replication elongation through a direct interaction with the β sliding clamp[J]. Mol Cell, 2013, 52(5):617-628. |
[61] | MARKOVSKI M, WICKNER S. Preventing bacterial suicide:a novel toxin-antitoxin strategy[J]. Mol Cell, 2013, 52(5):611-612. |
[62] | WANG X X, YAO J Y, SUN Y C, et al. Type VII toxin/antitoxin classification system for antitoxins that enzymatically neutralize toxins[J]. Trends Microbiol, 2021, 29(5):388-393. |
[63] | MARIMON O, TEIXEIRA J M C, CORDEIRO T N, et al. An oxygen-sensitive toxin-antitoxin system[J]. Nat Commun, 2016, 7:13634, doi:10. 1038/ncomms13634. |
[64] | GARCÍA-CONTRERAS R, ZHANG X S, KIM Y, et al. Protein translation and cell death:the role of rare tRNAs in biofilm formation and in activating dormant phage killer genes[J]. PLoS One, 2008, 3(6):e2394, doi:10. 1371/journal. pone. 0002394. |
[65] | CHOI J S, KIM W, SUK S, et al. The small RNA, SdsR, acts as a novel type of toxin in Escherichia coli[J]. RNA Biol, 2018, 15(10):1319-1335. |
[66] | GUTIERREZ A, LAURETI L, CRUSSARD S, et al. β-Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity[J]. Nat Commun, 2013, 4:1610, doi:10. 1038/ncomms2607. |
[67] | FRÖHLICH K S, HANEKE K, PAPENFORT K, et al. The target spectrum of SdsR small RNA in Salmonella[J]. Nucleic Acids Res, 2016, 44(21):10406-10422. |
[68] | HOU B, MENG X R, ZHANG L Y, et al. TolC promotes ExPEC biofilm formation and curli production in response to medium osmolarity[J]. Biomed Res Int, 2014, 2014:574274, doi:10. 1155/2014/574274. |
[69] | BAUGH S, EKANAYAKA A S, PIDDOCK L J V, et al. Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm[J]. J Antimicrob Chemother, 2012, 67(10):2409-2417. |
[1] | 黄杰, 阮子豪, 蔡瑞. 抗菌肽在猪精液常温保存中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1401-1411. |
[2] | 高远集, 刘畅, 陈淼, 陈松彪, 张俊峰, 李静, 贾艳艳, 廖成水, 郭荣显, 丁轲, 余祖华, 尚珂. 细菌外膜囊泡结构、分泌特性及致病机制[J]. 畜牧兽医学报, 2024, 55(3): 971-983. |
[3] | 于秀菊, 张敏爱, 胡燕姣, 朱芷葳, 王海东, 杨丽华, 范阔海. 枯草芽孢杆菌细菌素的分离、表达及稳定性分析[J]. 畜牧兽医学报, 2024, 55(1): 323-333. |
[4] | 米慧, 彭灿, 贺志雄, 谭支良. 基于流式细胞术分选绵羊分泌型IgA包裹的消化道细菌[J]. 畜牧兽医学报, 2023, 54(7): 2924-2931. |
[5] | 毛鹏, 王志浩, 李建基, 崔璐莹, 朱国强, 孟霞, 董俊升, 王亨. 铁死亡在细菌性感染中的研究进展[J]. 畜牧兽医学报, 2023, 54(6): 2280-2287. |
[6] | 洪勃, 孙琪, 李栋凡, 于学祥, 库旭钢, 何启盖. 基于16SrDNA高通量测序技术分析受水灾影响猪场水样的菌群特征[J]. 畜牧兽医学报, 2023, 54(5): 2092-2100. |
[7] | 孙瑜凡, 于盼元, 陈虹宇, 谭怡青, 陈夏冰, 张腾飞, 高婷, 周锐, 黎璐. 二甲酸钾预防沙门菌感染小鼠的效果评价及对肠道菌群的影响[J]. 畜牧兽医学报, 2023, 54(5): 2101-2113. |
[8] | 贺显晶, 刘娇, 王志慧, 武瑞, 郭东华. 牛源坏死梭杆菌43K外膜蛋白的黏附特性研究[J]. 畜牧兽医学报, 2023, 54(2): 726-735. |
[9] | 郝若晨, 唐敏嘉, 刘光亮, 张艳, Muhammad Shoaib, 尚若锋, 曹宗喜, 蒲万霞. 海南省奶源和养殖环境主要肠杆菌科细菌的分布及基因分型[J]. 畜牧兽医学报, 2023, 54(12): 5184-5197. |
[10] | 李莉莉, 陈凯风, 陈兵, 周洲平, 王南威, 瞿孝云, 徐成刚, 廖明, 张建民. STM1827在鼠伤寒沙门菌生物被膜形成及环境应激中的调控作用[J]. 畜牧兽医学报, 2023, 54(12): 5207-5217. |
[11] | 武周慧, 王瑜, 杜衡, 王之文, 肖爽, 武金亮, 王真. 替拉扎明对多重耐药沙门菌抗菌增敏活性分析[J]. 畜牧兽医学报, 2023, 54(10): 4362-4371. |
[12] | 谭占坤, 商振达, 褚瑰燕, 蔡传江, 朱彦宾, 邓文, 强巴央宗, 刘锁珠. 藏猪对饲粮纤维的消化及其与肠道微生物的相关性研究[J]. 畜牧兽医学报, 2022, 53(9): 3063-3078. |
[13] | 毛彦妮, 常佳伟, 李娜, 王鑫, 康馨匀, 马强, 马靓, 王桂琴. 金黄色葡萄球菌在生物被膜态与浮游态的转录组差异表达分析[J]. 畜牧兽医学报, 2022, 53(8): 2697-2707. |
[14] | 郭海康, 万发春, 沈维军, 王祚. 畜禽消化道细菌群体感应及相关调控技术研究进展[J]. 畜牧兽医学报, 2022, 53(6): 1678-1688. |
[15] | 于永峰, 权衡, 董文豪, 邹荣华, 吴晓妮, 宫晓炜, 陈启伟. 双组分调控系统介导革兰阴性菌耐药的作用机制[J]. 畜牧兽医学报, 2022, 53(6): 1689-1701. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||