畜牧兽医学报 ›› 2022, Vol. 53 ›› Issue (7): 2035-2046.doi: 10.11843/j.issn.0366-6964.2022.07.001
张政凯1,2, 李业芳2, 叶绍辉1, 蒋琳2*, 马月辉1,2*
收稿日期:
2021-11-24
出版日期:
2022-07-23
发布日期:
2022-07-23
通讯作者:
马月辉,主要从事畜禽遗传资源发掘、评价、保护和创新利用研究,E-mail:yuehui.ma@263.net;蒋琳,主要从事利用基因组学技术进行家畜种质资源精准鉴定和特优性状分子机制深度解析的研究,E-mail:jianglin@caas.cn
作者简介:
张政凯(1995-),男,山东泰安人,硕士生,主要从事山羊基因组学和环境适应性研究,E-mail:zhangzk7777@163.com
基金资助:
ZHANG Zhengkai1,2, LI Yefang2, YE Shaohui1, JIANG Lin2*, MA Yuehui1,2*
Received:
2021-11-24
Online:
2022-07-23
Published:
2022-07-23
摘要: 山羊作为重要家畜之一,不仅能够为人类提供奶、肉、毛绒等丰富的物质生活资料,而且能够生存于炎热、寒冷、干旱等极端环境条件下,表现出良好的环境适应能力。但其环境适应性的分子机制解析一直尚未完善。随着测序技术的发展和景观基因组学的兴起,许多研究展开了遗传环境关联分析的工作,挖掘到一系列环境适应性相关的候选基因,为解析山羊的环境适应性遗传机制提供了重要依据。本文从景观基因组学的角度介绍了遗传环境关联分析的几类常用方法,包括分类检验、logistic回归、一般线性模型和混合效应模型。并针对山羊环境适应性研究的现状,从高海拔适应性、热适应性、冷适应性、干旱适应性和综合气候适应性5个角度,对近年来的研究进展进行了概述。最后,本文指出了山羊环境适应性研究中存在的问题,并对未来的研究趋势进行展望,以期为山羊遗传资源的挖掘、保护和利用工作提供理论基础。
中图分类号:
张政凯, 李业芳, 叶绍辉, 蒋琳, 马月辉. 山羊环境适应性的研究进展[J]. 畜牧兽医学报, 2022, 53(7): 2035-2046.
ZHANG Zhengkai, LI Yefang, YE Shaohui, JIANG Lin, MA Yuehui. Research Progress of Environmental Adaptability in Goats[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2035-2046.
[1] | ERWIN D H.Climate as a driver of evolutionary change[J].Curr Biol,2009,19(14):R575-R583. |
[2] | GARCIA R A,CABEZA M,RAHBEK C,et al.Multiple dimensions of climate change and their implications for biodiversity[J].Science,2014,344(6183):1247579. |
[3] | TERÉS J,BUSOMS S,MARTÍN L P,et al.Soil carbonate drives local adaptation in Arabidopsis thaliana[J].Plant Cell Environ, 2019, 42(8):2384-2398. |
[4] | TYRMI J S,VUOSKU J,ACOSTA J J,et al.Genomics of Clinal local adaptation in Pinus sylvestris under continuous environmental and spatial genetic setting[J].G3(Bethesda),2020,10(8):2683-2696. |
[5] | MWACHARO J M,KIM E S,ELBELTAGY A R,et al.Genomic footprints of dryland stress adaptation in Egyptian fat-tail sheep and their divergence from East African and western Asia cohorts[J].Sci Rep,2017,7(1):17647. |
[6] | WITT K E,HUERTA-SÁNCHEZ E.Convergent evolution in human and domesticate adaptation to high-altitude environments[J].Philos Trans R Soc Lond B Biol Sci,2019,374(1777):20180235. |
[7] | DALY K G,DELSER P M,MULLIN V E,et al.Ancient goat genomes reveal mosaic domestication in the Fertile Crescent[J]. Science,2018,361(6397):85-88. |
[8] | LI X,YANG J,SHEN M,et al.Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits[J].Nat Commun,2020,11(1):2815. |
[9] | FRANTZ L A F,HAILE J,LIN A T,et al.Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe[J].Proc Natl Acad Sci U S A,2019,116(35):17231-17238. |
[10] | QIU Q,WANG L Z,WANG K,et al.Yak whole-genome resequencing reveals domestication signatures and prehistoric population expansions[J].Nat Commun,2015,6:10283. |
[11] | LIU X X,ZHANG Y L,LI Y F,et al.EPAS1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses[J].Mol Biol Evol,2019,36(11):2591-2603. |
[12] | MCHUGO G P,DOVER M J,MACHUGH D E.Unlocking the origins and biology of domestic animals using ancient DNA and paleogenomics[J].BMC Biol,2019,17(1):98. |
[13] | EVENO E,COLLADA C,GUEVARA M A,et al. "Contrasting patterns of selection at Pinus pinaster Ait. Drought stress candidate genes as revealed by genetic differentiation analyses"[J].Mol Biol Evol,2008,25(2):417-437. |
[14] | HOBAN S,KELLEY J L,LOTTERHOS K E,et al.Finding the genomic basis of local adaptation:pitfalls,practical solutions,and future directions[J].Am Nat,2016,188(4):379-397. |
[15] | RELLSTAB C,GUGERLI F,ECKERT A J,et al.A practical guide to environmental association analysis in landscape genomics[J].Mol Ecol,2015,24(17):4348-4370. |
[16] | LV F H,AGHA S,KANTANEN J,et al.Adaptations to climate-mediated selective pressures in sheep[J].Mol Biol Evol, 2014, 31(12):3324-3343. |
[17] | SORK V L.Genomic studies of local adaptation in natural plant populations[J].J Hered,2017,109(1):3-15. |
[18] | FITZPATRICK M C,KELLER S R.Ecological genomics meets community-level modelling of biodiversity:mapping the genomic landscape of current and future environmental adaptation[J].Ecol Lett,2015,18(1):1-16. |
[19] | ZEDER M A.Domestication and early agriculture in the Mediterranean Basin:origins,diffusion,and impact[J].Proc Natl Acad Sci U S A,2008,105(33):11597-11604. |
[20] | PIDANCIER N,JORDAN S,LUIKART G,et al.Evolutionary history of the genus Capra (Mammalia,Artiodactyla):discordance between mitochondrial DNA and Y-chromosome phylogenies[J].Mol Phylogenet Evol,2006,40(3):739-749. |
[21] | AMILLS M,CAPOTE J,TOSSER-KLOPP G.Goat domestication and breeding:a jigsaw of historical,biological and molecular data with missing pieces[J].Anim Genet,2017,48(6):631-644. |
[22] | GILBERT M,NICOLAS G,CINARDI G,et al.Global distribution data for cattle,buffaloes,horses,sheep,goats,pigs,chickens and ducks in 2010[J].Sci Data,2018,5:180227. |
[23] | NAIR M R R,SEJIAN V,SILPA M V,et al.Goat as the ideal climate-resilient animal model in tropical environment:revisiting advantages over other livestock species[J].Int J Biometeorol,2021,65(12):2229-2240. |
[24] | ZHANG M H,DUNSHEA F R,WARNER R D,et al.Impacts of heat stress on meat quality and strategies for amelioration:a review[J].Int J Biometeorol,2020,64(9):1613-1628. |
[25] | CAO Y H,XU S S,SHEN M,et al.Historical introgression from wild relatives enhanced climatic adaptation and resistance to pneumonia in sheep[J].Mol Biol Evol,2021,38(3):838-855. |
[26] | 国家生态科学数据中心[Z].2019.National Ecosystem Science Data Center[Z].2019.(in Chinese) |
[27] | 资源环境科学与数据中心[Z]. Resource and Environment Science and Data Center[Z].(in Chinese) |
[28] | WorldClim[Z]. |
[29] | VAN DIJK E L,AUGER H,JASZCZYSZYN Y,et al.Ten years of next-generation sequencing technology[J].Trends Genet,2014,30(9):418-426. |
[30] | WORLEY K C.A golden goat genome[J].Nat Genet,2017,49(4):485-486. |
[31] | MANEL S,HOLDEREGGER R.Ten years of landscape genetics[J].Trends Ecol Evol,2013,28(10):614-621. |
[32] | MANEL S,ANDRELLO M,HENRY K,et al.Predicting genotype environmental range from genome-environment associations[J].Mol Ecol,2018,27(13):2823-2833. |
[33] | LI X,GUO T T,MU Q,et al.Genomic and environmental determinants and their interplay underlying phenotypic plasticity[J].Proc Natl Acad Sci U S A,2018,115(26):6679-6684. |
[34] | MANEL S,PERRIER C,PRATLONG M,et al.Genomic resources and their influence on the detection of the signal of positive selection in genome scans[J].Mol Ecol,2016,25(1):170-184. |
[35] | FOLL M,GAGGIOTTI O.A genome-scan method to identify selected loci appropriate for both dominant and codominant markers:a Bayesian perspective[J].Genetics,2008,180(2):977-993. |
[36] | BONHOMME M,CHEVALET C,SERVIN B,et al.Detecting selection in population trees:the Lewontin and Krakauer test extended[J].Genetics,2010,186(1):241-262. |
[37] | YANG J,LI W R,LV F H,et al.Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments[J].Mol Biol Evol,2016,33(10):2576-2592. |
[38] | GHEYAS A A,VALLEJO-TRUJILLO A,KEBEDE A,et al.Integrated environmental and genomic analysis reveals the drivers of local adaptation in African indigenous chickens[J].Mol Biol Evol,2021,38(10):4268-4285. |
[39] | DE MITA S,THUILLET A C,GAY L,et al.Detecting selection along environmental gradients:analysis of eight methods and their effectiveness for outbreeding and selfing populations[J].Mol Ecol,2013,22(5):1383-1399. |
[40] | JOOST S,BONIN A,BRUFORD M W,et al.A spatial analysis method (SAM) to detect candidate loci for selection:towards a landscape genomics approach to adaptation[J].Mol Ecol,2007,16(18):3955-3969. |
[41] | JOOST S,KALBERMATTEN M,BONIN A.Spatial analysis method (SAM):a software tool combining molecular and environmental data to identify candidate loci for selection[J].Mol Ecol Resour,2008,8(5):957-960. |
[42] | DURUZ S,SEVANE N,SELMONI O,et al.Rapid identification and interpretation of gene-environment associations using the new R.SamBada landscape genomics pipeline[J].Mol Ecol Resour,2019,19(5):1355-1365. |
[43] | STUCKI S,OROZCO-TERWENGEL P,FORESTER B R,et al.High performance computation of landscape genomic models including local indicators of spatial association[J].Mol Ecol Resour,2017,17(5):1072-1089. |
[44] | OKSANEN J,BLANCHET F G,FRIENDLY M,et al.vegan:community Ecology Package.Ordination methods,diversity analysis and other functions for community and vegetation ecologists.Version 2.5-7[Z].2020. |
[45] | BLANCO-PASTOR J L,BARRE P,KEEP T,et al.Canonical correlations reveal adaptive loci and phenotypic responses to climate in perennial ryegrass[J].Mol Ecol Resour,2021,21(3):849-870. |
[46] | MOSCA E,ECKERT A J,DI PIERRO E A,et al.The geographical and environmental determinants of genetic diversity for four alpine conifers of the European Alps[J].Mol Ecol,2012,21(22):5530-5545. |
[47] | CAPBLANCQ T,LUU K,BLUM M,et al.Evaluation of redundancy analysis to identify signatures of local adaptation[J].Mol Ecol Resour,2018,18(6):1223-1233. |
[48] | LASKY J R,DES MARAIS D L,LOWRY D B,et al.Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana[J].Mol Biol Evol,2014,31(9):2283-2296. |
[49] | MDLADLA K,DZOMBA E F,MUCHADEYI F C.Landscape genomics and pathway analysis to understand genetic adaptation of South African indigenous goat populations[J].Heredity (Edinb),2018,120(4):369-378. |
[50] | FRICHOT E,SCHOVILLE S D,BOUCHARD G,et al.Testing for associations between loci and environmental gradients using latent factor mixed models[J].Mol Biol Evol,2013,30(7):1687-1699. |
[51] | SERRANITO B,TAURISSON-MOURET D,HARKAT S,et al.Search for selection signatures related to trypanosomosis tolerance in African goats[J].Front Genet,2021,12:715732. |
[52] | GAIN C,FRANÇOIS O.LEA 3:factor models in population genetics and ecological genomics with R[J].Mol Ecol Resour, 2021, 21(8):2738-2748. |
[53] | CAYE K,JUMENTIER B,LEPEULE J,et al.LFMM 2:fast and accurate inference of gene-environment associations in genome-wide studies[J].Mol Biol Evol,2019,36(4):852-860. |
[54] | BEALL C M.Two routes to functional adaptation:Tibetan and Andean high-altitude natives[J].Proc Natl Acad Sci U S A,2007,104 Suppl 1(Suppl 1):8655-8660. |
[55] | WEST J B.Early history of high-altitude physiology[J].Ann N Y Acad Sci,2016,1365(1):33-42. |
[56] | LUKS A M,SWENSON E R,BARTSCH P.Acute high-altitude sickness[J].Eur Respir Rev,2017,26(143):160096. |
[57] | SIMONSON T S,YANG Y Z,HUFF C D,et al.Genetic evidence for high-altitude adaptation in Tibet[J].Science, 2010, 329(5987):72-75. |
[58] | ZHANG W P,FAN Z X,HAN E J,et al.Hypoxia adaptations in the grey wolf (Canis lupus chanco) from Qinghai-Tibet Plateau[J].PLoS Genet,2014,10(7):e1004466. |
[59] | 张天留,高雪,徐凌洋,等.高原家养动物环境适应性的研究进展[J].畜牧兽医学报,2020,51(7):1475-1487.ZHANG T L,GAO X,XU L Y,et al.Research progress on environment adaptation of plateau domestic animals[J].Acta Veterinaria et Zootechnica Sinica,2020,51(7):1475-1487.(in Chinese) |
[60] | WANG X L,LIU J,ZHOU G X,et al.Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits[J].Sci Rep,2016,6:38932. |
[61] | GUO J Z,TAO H X,LI P F,et al.Whole-genome sequencing reveals selection signatures associated with important traits in six goat breeds[J].Sci Rep,2018,8(1):10405. |
[62] | SONG S,YAO N,YANG M,et al.Exome sequencing reveals genetic differentiation due to high-altitude adaptation in the Tibetan cashmere goat (Capra hircus)[J].BMC Genomics,2016,17:122. |
[63] | LORENZO F R,HUFF C,MYLLYMÄKI M,et al.A genetic mechanism for Tibetan high-altitude adaptation[J].Nat Genet,2014,46(9):951-956. |
[64] | GOU X,WANG Z,LI N,et al.Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia[J].Genome Res,2014,24(8):1308-1315. |
[65] | WU D D,YANG C P,WANG M S,et al.Convergent genomic signatures of high-altitude adaptation among domestic mammals[J].Natl Sci Rev,2020,7(6):952-963. |
[66] | BERMAN A.Invited review:are adaptations present to support dairy cattle productivity in warm climates?[J].J Dairy Sci,2011, 94(5):2147-2158. |
[67] | BERNABUCCI U,BIFFANI S,BUGGIOTTI L,et al.The effects of heat stress in Italian Holstein dairy cattle[J].J Dairy Sci,2014,97(1):471-486. |
[68] | KOCH F,THOM U,ALBRECHT E,et al.Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine[J].Proc Natl Acad Sci U S A,2019,116(21):10333-10338. |
[69] | SILVA P S,HOOPER H B,MANICA E,et al.Heat stress affects the expression of key genes in the placenta,placental characteristics,and efficiency of Saanen goats and the survival and growth of their kids[J].J Dairy Sci,2021,104(4):4970-4979. |
[70] | GUO J Z,ZHONG J,LI L,et al.Comparative genome analyses reveal the unique genetic composition and selection signals underlying the phenotypic characteristics of three Chinese domestic goat breeds[J].Genet Sel Evol,2019,51:70. |
[71] | GONZALEZ-RIVAS P A,CHAUHAN S S,HA M,et al.Effects of heat stress on animal physiology,metabolism,and meat quality:a review[J].Meat Sci,2020,162:108025. |
[72] | BENJELLOUN B,ALBERTO F J,STREETER I,et al.Characterizing neutral genomic diversity and selection signatures in indigenous populations of Moroccan goats (Capra hircus) using WGS data[J].Front Genet,2015,6:107. |
[73] | KIM E S,ELBELTAGY A R,ABOUL-NAGA A M,et al.Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment[J].Heredity (Edinb),2016,116(3):255-264. |
[74] | BRITO L F,KIJAS J W,VENTURA R V,et al.Genetic diversity and signatures of selection in various goat breeds revealed by genome-wide SNP markers[J].BMC Genomics,2017,18(1):229. |
[75] | BERTOLINI F,SERVIN B,TALENTI A,et al.Signatures of selection and environmental adaptation across the goat genome post-domestication[J].Genet Sel Evol,2018,50(1):57. |
[76] | GEERTS S,OSAER S,GOOSSENS B,et al.Trypanotolerance in small ruminants of sub-Saharan Africa[J].Trends Parasitol, 2009, 25(3):132-138. |
[77] | GUTIERREZ C,CORBERA J A,MORALES M,et al.Trypanosomosis in goats:current status[J].Ann N Y Acad Sci,2006, 1081:300-310. |
[78] | LUO N J,WANG J,HU Y,et al.Cold and heat climatic variations reduce indigenous goat birth weight and enhance pre-weaning mortality in subtropical monsoon region of China[J].Trop Anim Health Prod,2020,52(3):1385-1394. |
[79] | DO PRADO PAIM T,BORGES B O,DE MELLO T L P,et al.Thermographic evaluation of climatic conditions on lambs from different genetic groups[J].Int J Biometeorol,2013,57(1):59-66. |
[80] | WANG F H,ZHANG L,GONG G,et al.Genome-wide association study of fleece traits in Inner Mongolia Cashmere goats[J].Anim Genet,2021,52(3):375-379. |
[81] | BURREN A,NEUDITSCHKO M,SIGNER-HASLER H,et al.Genetic diversity analyses reveal first insights into breed-specific selection signatures within Swiss goat breeds[J].Anim Genet,2016,47(6):727-739. |
[82] | GUERRERO A I,ROGERS T L.From low to high latitudes:changes in fatty acid desaturation in mammalian fat tissue suggest a thermoregulatory role[J].BMC Evol Biol,2019,19(1):155. |
[83] | VIRTANEN K A,LIDELL M E,ORAVA J,et al.Functional brown adipose tissue in healthy adults[J].N Engl J Med,2009, 360(15):1518-1525. |
[84] | VAN MARKEN LICHTENBELT W D,VANHOMMERIG J W,SMULDERS N M,et al.Cold-activated brown adipose tissue in healthy men[J].N Engl J Med,2009,360(15):1500-1508. |
[85] | FULLER-JACKSON J P,HENRY B A.Adipose and skeletal muscle thermogenesis:studies from large animals[J].J Endocrinol,2018,237(3):R99-R115. |
[86] | WANG L J,CHEN X Y,SONG T Z,et al.Using RNA-Seq to identify reference genes of the transition from brown to white adipose tissue in goats[J].Animals,2020,10(9):1626. |
[87] | LI X K,SU R,WAN W T,et al.Identification of selection signals by large-scale whole-genome resequencing of cashmere goats[J].Sci Rep,2017,7(1):15142. |
[88] | SELEIMAN M F,AL-SUHAIBANI N,ALI N,et al.Drought stress impacts on plants and different approaches to alleviate its adverse effects[J].Plants (Basel),2021,10(2):259. |
[89] | CORTELLARI M,BARBATO M,TALENTI A,et al.The climatic and genetic heritage of Italian goat breeds with genomic SNP data[J].Sci Rep,2021,11(1):10986. |
[1] | 董书餐, 毛帅翔, 伍翠莹, 李耀坤, 孙宝丽, 郭勇庆, 邓铭, 刘德武, 柳广斌. 雄激素受体抑制剂恩杂鲁胺对山羊卵泡颗粒细胞增殖凋亡的影响[J]. 畜牧兽医学报, 2024, 55(5): 2022-2031. |
[2] | 李秋云, 田芯源, 廖文圣, 张焕容, 任玉鹏, 杨发龙, 朱江江, 向华. SOCS2对山羊鼻甲骨细胞增殖、周期及凋亡的影响[J]. 畜牧兽医学报, 2024, 55(5): 2226-2240. |
[3] | 邓梏男, 张家祺, 保志鹏, 陈涛云, 喻琦胜, 丁露, 朱晨曦, 王怡, 任玉鹏, 贺超, 张斌. 猫疱疹病毒1型的检测及一株分离毒株的致病性[J]. 畜牧兽医学报, 2024, 55(5): 2253-2258. |
[4] | 李鹏飞, 高桂琴, 周广青, 吴锦艳, 颜新敏, 曹小安, 何继军, 袁莉刚, 尚佑军. 山羊地方性鼻内肿瘤病毒TaqMan荧光定量RT-PCR检测方法的建立及应用[J]. 畜牧兽医学报, 2024, 55(5): 2259-2266. |
[5] | 彭佩雅, 陈钰焓, 杨龙, 王铭, 赵芮葶, 何俊, 印遇龙, 刘梅. 家畜基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1356-1369. |
[6] | 肖敏, 赵威, 孙武, 娜日苏, 赵乐, 刘陶禄, 张继攀, 赵永聚. 山羊皮肤组织miRNA测序与miR-129-5p调控黑色素生成的功能研究[J]. 畜牧兽医学报, 2024, 55(3): 1019-1029. |
[7] | 康佳, 段香茹, 尹雪姣, 杨若晨, 李太春, 单新雨, 陈美静, 张英杰, 刘月琴. 半胱氨酸、蛋氨酸对体外培养绒山羊次级毛囊生长及毛乳头细胞增殖的影响[J]. 畜牧兽医学报, 2024, 55(2): 515-527. |
[8] | 宋艳, 袁永丰, 钱虹宇, 李鑫灿, 罗洪艳, 王芝英, 周作勇. 羊伪结核棒状杆菌的分离鉴定及部分生物学特性分析[J]. 畜牧兽医学报, 2024, 55(2): 680-687. |
[9] | 严晓春, 习海娇, 李金泉, 王志英, 苏蕊. 内蒙古绒山羊绒毛性状基因组育种值估计准确性研究[J]. 畜牧兽医学报, 2024, 55(1): 120-128. |
[10] | 张晨俭, 李隐侠, 丁强, 刘伟佳, 王慧利, 何南, 吴家顺, 曹少先. CRISPR/Cas9技术高效制备山羊SOCS2基因编辑胚胎[J]. 畜牧兽医学报, 2024, 55(1): 129-141. |
[11] | 张德安, 杨若渚, 刘杰, 刘德武, 邓铭, 柳广斌, 孙宝丽, 郭勇庆, 李耀坤. 饲喂青贮黄梁木代替青贮玉米川中黑山羊肝转录组的表达分析[J]. 畜牧兽医学报, 2024, 55(1): 232-244. |
[12] | 唐崟梅, 李琪, 李海洋, 林亚秋, 王永, 向华, 黄炼, 朱江江. 山羊FATP2基因的克隆及对前体脂肪细胞脂质沉积的影响[J]. 畜牧兽医学报, 2023, 54(9): 3642-3652. |
[13] | 邵鹏, 唐崟梅, 林亚秋, 王永, 向华, 黄炼, 朱江江. PSMD9对山羊前体脂肪细胞脂质沉积的调控作用研究[J]. 畜牧兽医学报, 2023, 54(9): 3653-3663. |
[14] | 王静琳, 刘阳光, 徐启隆, 陈朔, 邓在双, 程诗雨, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 皖岳黑猪基因组遗传变异分析及特征SNPs挖掘[J]. 畜牧兽医学报, 2023, 54(7): 2783-2793. |
[15] | 张任豹, 周东辉, 周李生, 高霄霄, 柳楠, 贺建宁. 基于70 K SNP芯片分析济宁青山羊保种群体的遗传结构[J]. 畜牧兽医学报, 2023, 54(7): 2836-2847. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||