畜牧兽医学报 ›› 2020, Vol. 51 ›› Issue (12): 2954-2963.doi: 10.11843/j.issn.0366-6964.2020.12.005
吴富鑫1, 熊本海2, 童津津1*, 蒋林树1*
收稿日期:
2020-06-29
出版日期:
2020-12-25
发布日期:
2020-12-23
通讯作者:
童津津,主要从事奶牛营养与免疫研究,E-mail:tongjinjin0451@163.com;蒋林树,主要从事奶牛营养与免疫研究,E-mail:kjxnb@vip.sina.com
作者简介:
吴富鑫(1995-),男,山东济宁人,硕士生,主要从事奶牛营养与免疫研究,E-mail:2996440432@qq.com
基金资助:
WU Fuxin1, XIONG Benhai2, TONG Jinjin1*, JIANG Linshu1*
Received:
2020-06-29
Online:
2020-12-25
Published:
2020-12-23
摘要: 链球菌、金黄色葡萄球菌和大肠杆菌是引起奶牛乳腺炎的3大病原菌,在链球菌属中无乳链球菌是引起奶牛乳腺炎的重要病原菌之一,由无乳链球菌导致的乳腺炎约占隐性乳腺炎发病率的56.25%。无乳链球菌入侵奶牛乳腺的过程主要包括感染、黏附上皮细胞、侵入上皮细胞、损伤机体和免疫逃避等过程。无乳链球菌的毒力因子具有附着和侵袭机体细胞的作用,使菌体在奶牛乳腺表面形成生物被膜,进而干扰机体的正常免疫功能并引起疾病。本文主要阐述了无乳链球菌在入侵乳腺组织过程中发挥主要作用的毒力因子的种类、作用机制以及调控过程,旨在通过抑制其相关毒力因子的活性,从而阻断无乳链球菌在乳腺中感染和传播,进而为预防和治疗链球菌型乳腺炎提供新的思路。
中图分类号:
吴富鑫, 熊本海, 童津津, 蒋林树. 奶牛乳腺炎无乳链球菌毒力相关因子[J]. 畜牧兽医学报, 2020, 51(12): 2954-2963.
WU Fuxin, XIONG Benhai, TONG Jinjin, JIANG Linshu. Advances on Virulence Factors of Streptococcus agalactiae of Dairy Cows Mastitis[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(12): 2954-2963.
[1] | GUSSMANN M, STEENEVELD W, KIRKEBY C, et al. Economic and epidemiological impact of different intervention strategies for subclinical and clinical mastitis[J]. Prev Vet Med, 2019, 166:78-85. |
[2] | LAKEW B T, FAYERA T, ALI Y M. Risk factors for bovine mastitis with the isolation and identification of Streptococcus agalactiae from farms in and around Haramaya district, eastern Ethiopia[J]. Trop Anim Health Prod, 2019, 51(6):1507-1513. |
[3] | VORNHAGEN J, WALDORF K M A, RAJAGOPAL L. Perinatal group B streptococcal infections:virulence factors, immunity, and prevention strategies[J]. Trends Microbiol, 2017, 25(11):919-931. |
[4] | SIEMENS N, OEHMCKE-HECHT S, HOßMANN J, et al. Prothrombotic and proinflammatory activities of the β-hemolytic group B streptococcal pigment[J]. J Innate Immu, 2020, 12(4):291-303. |
[5] | GORI A, HARRISON O B, MLIA E, et al. Pan-GWAS of Streptococcus agalactiae highlights lineage-specific genes associated with virulence and niche adaptation[J]. mBio, 2020, 11(3):e00728-20. |
[6] | ARMISTEAD B, OLER E, WALDORF K A, et al. The double life of Group B Streptococcus:asymptomatic colonizer and potent pathogen[J]. J Mol Biol, 2019, 431(16):2914-2931. |
[7] | CARVALHO-CASTRO G A, SILVA J R, PAIVA L V, et al. Molecular epidemiology of Streptococcus agalactiae isolated from mastitis in Brazilian dairy herds[J]. Braz J Microbiol, 2017, 48(3):551-559. |
[8] | PICKERING A C, VITRY P, PRYSTOPIUK V, et al. Host-specialized fibrinogen-binding by a bacterial surface protein promotes biofilm formation and innate immune evasion[J]. PLoS Pathog, 2019, 15(6):e1007816. |
[9] | THOMAS L, COOK L. Two-component signal transduction systems in the human pathogen, Streptococcus agalactiae[J]. Infect Immun, 2020, 88(7):e00931-19. |
[10] | SAFADI R A, MEREGHETTI L, SALLOUM M, et al. Two-component system RgfA/C Activates the fbsB gene encoding major fibrinogen-binding protein in highly virulent CC17 clone group B streptococcus[J]. PLoS One, 2011, 6(2):e14658. |
[11] | RAGUNATHAN P, PONNURAJ K. Expression, purification and structural analysis of a fibrinogen receptor FbsA from Streptococcus agalactiae[J]. Protein J, 2011, 30(3):159-166. |
[12] | DEVI A S, PONNURAJ K. Cloning, expression, purification and ligand binding studies of novel fibrinogen-binding protein FbsB of Streptococcus agalactiae[J]. Protein Expr Purif, 2010, 74(2):148-155. |
[13] | 杜琳, 吕天星, 赵红梅, 等. 无乳链球菌CP+Sip-FbsA偶联蛋白免疫学特性的研究[J]. 中国预防兽医学报, 2016, 38(12):976-980.DU L, LV T X, ZHAO H M, et al. The immune effect of Streptococcus agalactiae recombinant CP+Sip-FbsA fusion protein on S. agalactiae induced mouse mastitis[J]. Chinese Journal of Preventive Veterinary Medicine, 2016, 38(12):976-980. (in Chinese) |
[14] | BUSCETTA M, PAPASERGI S, FIRON A, et al. FbsC, a novel fibrinogen-binding protein, promotes Streptococcus agalactiae-host cell interactions[J]. J Biol Chem, 2014, 289(30):21003-21015. |
[15] | 柴晨. 无乳链球菌α-enolase, PGK和GAPDH基因的克隆、表达及对罗非鱼免疫效果研究[D]. 广州:中山大学, 2017.CHAI C. Studies on cloning, expression and immune effect of α-enolase, PGK and GAPDH genes of Streptococcus lactobacillus on tilapia[D]. Guangzhou:Sun Yat-sen University, 2017. (in Chinese) |
[16] | SEO H S, MINASOV G, SEEPERSAUD R, et al. Characterization of fibrinogen binding by glycoproteins Srr1 and Srr2 of Streptococcus agalactiae[J]. J Biol Chem, 2013, 288(50):35982-35996. |
[17] | MISTOU M Y, DRAMSI S, BREGA S, et al. Molecular dissection of the secA2 locus of group B Streptococcus reveals that glycosylation of the Srr1 LPXTG protein is required for full virulence[J]. J Bacteriol, 2009, 191(13):4195-4206. |
[18] | SEIFERT K N, ADDERSON E E, WHITING A A, et al. A unique serine-rich repeat protein (Srr-2) and novel surface antigen (ε) associated with a virulent lineage of serotype Ⅲ Streptococcus agalactiae[J]. Microbiology, 2006, 152(4):1029-1040. |
[19] | PIETROCOLA G, ARCIOLA C R, RINDI S, et al. Streptococcus agalactiae Non-Pilus, cell wall-anchored proteins:involvement in colonization and pathogenesis and potential as vaccine candidates[J]. Front Immunol, 2018, 9:602. |
[20] | GENDRIN C, LEMBO A, WHIDBEY C, et al. The sensor Histidine kinase RgfC affects group B streptococcal virulence factor expression independent of its response regulator RgfA[J]. Infect Immun, 2015, 83(3):1078-1088. |
[21] | 吴金花, 布日额, 王金良, 等. 奶牛乳腺炎无乳链球菌sip、pgk及FbsA基因主要抗原区域的融合表达及抗原性鉴定[J]. 中国兽医学报, 2017, 37(7):1292-1299.WU J H, BU R E, WANG J L, et al. Fusion expression of main antigen area of sip, pgk and FbsA subunit genes and the antigenicity identification in Streptococcus agalactiae for dairy cow mastitis[J]. Chinese Journal of Veterinary Science, 2017, 37(7):1292-1299. (in Chinese) |
[22] | LIN S. Immunization of 13 amino acid peptide targeting Srr proteins provide a broad spectrum of protections against group B streptococcal infections[M]//2016 International Meeting of the Microbiological Society of Korea, 2016:166. |
[23] | MAIONE D, MARGARIT I, RINAUDO C D, et al. Identification of a universal group B Streptococcus vaccine by multiple genome screen[J]. Science, 2005, 309(5731):148-150. |
[24] | DRAMSI S, CALIOT E, BONNE I, et al. Assembly and role of pili in group B streptococci[J]. Mol Microbiol, 2006, 60(6):1401-1413. |
[25] | 白文丽, 王金良, 锡林高娃, 等. 奶牛乳腺炎无乳链球菌菌毛岛屿PI-2a骨架蛋白BP基因的克隆及其抗原性预测[J]. 中国病原生物学杂志, 2017, 12(4):294-297.BAI W L, WANG J L, XILIN G W, et al. Cloning and prediction of the antigenicity of a gene that codes for a pilus backbone protein (PI-2a) in Streptococcus agalactiae causing bovine mastitis[J]. Journal of Parasitic Biology, 2017, 12(4):294-297. (in Chinese) |
[26] | MAELAND J A, AFSET J E, LYNG R V, et al. Survey of immunological features of the alpha-like proteins of Streptococcus agalactiae[J]. Clinical Vaccine Immunol, 2015, 22(2):153-159. |
[27] | KONG F R, GOWAN S, MARTIN D, et al. Molecular profiles of group B streptococcal surface protein antigen genes:relationship to molecular serotypes[J]. J Clinical Microbiol, 2002, 40(2):620-626. |
[28] | BARON M J, FILMAN D J, PROPHETE G A, et al. Identification of a glycosaminoglycan binding region of the alpha C protein that mediates entry of group B Streptococci into host cells[J]. J Biol Chem, 2007, 282(14):10526-10536. |
[29] | CRETI R, FABRETTI F, OREFICI G, et al. Multiplex PCR assay for direct identification of group B streptococcal alpha-protein-like protein genes[J]. J Clinical Microbiol, 2004, 42(3):1326-1329. |
[30] | 张保海, 罗梓丹, 芦彪, 等. 四川部分地区奶牛源无乳链球菌的分离鉴定、毒力基因检测及耐药性分析[J]. 西北农业学报, 2020, 29(3):327-333.ZHANG B H, LUO Z D, LU B, Isolation, Virulence gene test and drug resistance analysis of Streptococcus agalactiae from dairy cows in some areas of Sichuan[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29(3):327-333. (in Chinese) |
[31] | WÄSTFELT M, STÅLHAMMAR-CARLEMALM M, DELISSE A M, et al. Identification of a family of streptococcal surface proteins with extremely repetitive structure[J]. J Biol Chem, 1996, 271(31):18892-18897. |
[32] | NAGARAJAN R, SANKAR S, PONNURAJ K. Crystal structure of GAPDH of Streptococcus agalactiae and characterization of its interaction with extracellular matrix molecules[J]. Microb Pathog, 2019, 127:359-367. |
[33] | SPENCER B L, DENG L W, PATRAS K A, et al. Cas9 contributes to group B streptococcal colonization and disease[J]. Front Microbiol, 2019, 10:1930. |
[34] | BOLDENOW E, GENDRIN C, NGO L, et al. Group B Streptococcus circumvents neutrophils and neutrophil extracellular traps during amniotic cavity invasion and preterm labor[J]. Sci Immunol, 2016, 1(4):eaah4576. |
[35] | ROSA-FRAILE M, DRAMSI S, SPELLERBERG B. Group B streptococcal haemolysin and pigment, a tale of twins[J]. FEMS Microbiol Rev, 2014, 38(5):932-946. |
[36] | 布日额, 吴金花, 锡林高娃, 等. 牛乳腺炎无乳链球菌β溶血素基因cylE缺失突变株的构建[J]. 中国病原生物学杂志, 2019, 14(7):773-779.BU R E, WU J H, XILIN G W, et al. Construction of a β-hemolysin gene deletion mutant strain of bovine mastitis Streptococcus agalactiae[J]. Journal of Pathogen Biology, 2019, 14(7):773-779. (in Chinese) |
[37] | 杨学云, 李建军, 王蒴, 等. 改良格拉纳达培养基分离奶牛乳房炎奶样中无乳链球菌的效果评价[J]. 新疆农业科学, 2014, 51(11):2093-2098.YANG X Y, LI J J, WANG S, et al. Evaluation of the modified granada medium for detection of Streptococcus agalactiae from mastitis samples[J]. Xinjiang Agricultural Sciences, 2014, 51(11):2093-2098. (in Chinese) |
[38] | 阚威, 樊杰, 武小虎, 等. 奶牛乳房炎无乳链球菌的分离及PCR鉴定[J]. 中国兽医学报, 2014, 34(8):1261-1266.KAN W, FAN J, WU X H, et al. Isolation and PCR-identification of Streptococcus agalactiaee in milk sampled from mastitic dairy cows[J]. Chinese Journal of Veterinary Science, 2014, 34(8):1261-1266. (in Chinese) |
[39] | BAKER J R, PRITCHARD D G. Action pattern and substrate specificity of the hyaluronan lyase from group B streptococci[J]. Biochem J, 2000, 348(2):465-471. |
[40] | KOLAR S L, KYME P, TSENG C W, et al. Group B Streptococcus evades host immunity by degrading hyaluronan[J]. Cell Host Microbe, 2015, 18(6):694-704. |
[41] | 刘龙海. 奶牛乳房炎无乳链球菌血清型分布、耐药性及其相关基因的研究[D]. 北京:中国农业科学院, 2017.LIU L H. Distribution of serotypes, antimicrobial susceptibility and related genes of S. agalactiae isolates from mastitis cases[D]. Beijing:Chinese Academy of Agricultural Sciences, 2017. (in Chinese) |
[42] | HEATH C. Evolution of Streptococcus iniae after vaccination and molecular underpinnings of capsular antigenicity[D]. Brisbane:The University of Queensland, 2016. |
[43] | PODBIELSKI A, BLANKENSTEIN O, LVTTICKEN R. Molecular characterization of the cfb gene encoding group B streptococcal CAMP-factor[J]. Me Microbiol Immunol, 1994, 183(5):239-256. |
[44] | FOUAD M, ZAKARIA S, METWALLY L, et al. Detection of maternal colonization of group B Streptococcus by PCR targeting cfb and scpb genes[J]. J Microbiol Biotechnol Food Sci, 2016, 6(1):713-716. |
[45] | VIEIRA L L, PEREZ A V, MACHADO M M, et al. Group B Streptococcus detection in pregnant women:comparison of qPCR assay, culture, and the Xpert GBS rapid test[J]. BMC Pregnancy Childbirth, 2019, 19(1):532. |
[46] | 王向柳. 奶牛乳腺炎三联苗田间试验及牛源无乳链球菌CAMP因子的克隆表达[D]. 乌鲁木齐:新疆农业大学, 2008.WANG X L. Field trial of triple inactivated vaccine against mastitis of cows and cloning and expression CAMP gene of Streptococcus agalactiae from mastitis milk[D]. Urumqi:Xinjiang Agricultural University, 2008. (in Chinese) |
[47] | PAOLETTI L C, KASPER D L. Glycoconjugate vaccines to prevent group B streptococcal infections[J]. Expert Opin Biol Ther, 2003, 3(6):975-984. |
[48] | SEVERI E, HOOD D W, THOMAS G H. Sialic acid utilization by bacterial pathogens[J]. Microbiology, 2007, 153(9):2817-2822. |
[49] | 姚晶, 任婧, 吴正钧, 等. 唾液酸化路易斯-X合成关键酶基因的克隆表达[J]. 中国生物工程杂志, 2011, 31(12):51-56.YAO J, REN J, WU Z J, et al. Cloning and expression of the key enzyme gene in biosynthesis of sialyl lewis X[J]. China Biotechnology, 2011, 31(12):51-56. (in Chinese) |
[50] | TONG J, FU Y G, WU N H, et al. Sialic acid-dependent interaction of group B streptococci with influenza virus-infected cells reveals a novel adherence and invasion mechanism[J]. Cell Microbiol, 2018, 20(4):e12818. |
[51] | LEWIS A L, CAO H Z, PATEL S K, et al. NeuA sialic acid O-acetylesterase activity modulates O-acetylation of capsular polysaccharide in group B Streptococcus[J]. J Biol Chem, 2007, 282(38):27562-27571. |
[52] | TAMURA G S, KUYPERS J M, SMITH S, et al. Adherence of group B streptococci to cultured epithelial cells:roles of environmental factors and bacterial surface components[J]. Infect Immun, 1994, 62(6):2450-2458. |
[53] | NIZET V, KIM K S, STINS M, et al. Invasion of brain microvascular endothelial cells by group B streptococci[J]. Infect Immun, 1997, 65(12):5074-5081. |
[54] | FARHAT K, SAUTER K S, BRCIC M, et al. The response of HEK293 cells transfected with bovine TLR2 to established pathogen-associated molecular patterns and to bacteria causing mastitis in cattle[J]. Vet Immunol Immunopathol, 2008, 125(3-4):326-336. |
[55] | POYART C, PELLEGRINI E, GAILLOT O, et al. Contribution of Mn-cofactored superoxide dismutuse (SodA) to the virulence of Streptococcus agalactiae[J]. Infect Immun,2001,69(8):5098-5106. |
[56] | ZHANG H M, JIANG H R, FAN Y L, et al. Transcriptomics and iTRAQ-Proteomics analyses of bovine mammary tissue with Streptococcus agalactiae-induced mastitis[J]. J Agric Food Chem, 2018, 66(42):11188-11196. |
[57] | BOHNSACK J F, CHANG J K, HILL H R. Restricted ability of group B streptococcal C5a-ase to inactivate C5a prepared from different animal species[J]. Infect Immun, 1993, 61(4):1421-1426. |
[58] | SANTILLAN D A, ANDRACKI M E, HUNTER S K. Protective immunization in mice against group B streptococci using encapsulated C5a peptidase[J]. Am J Obstet Gynecol, 2008, 198(1):114.E1-114.E6. |
[59] | MARQUES M B, KASPER D L, PANGBURN M K, et al. Prevention of C3 deposition by capsular polysaccharide is a virulence mechanism of type III group B streptococci[J]. Infect Immun, 1992, 60(10):3986-3993. |
[60] | MOULIN P, RONG V, SILVA A R E, et al. Defining the role of the Streptococcus agalactiae Sht-family proteins in zinc acquisition and complement evasion[J]. J Bacteriol, 2019, 201(8):e00757-18. |
[61] | MAISEY H C, DORAN K S, NIZET V. Recent advances in understanding the molecular basis of group B Streptococcus virulence[J]. Exp Rev Mol Med, 2008, 10:e27. |
[62] | PETERS J, PRICE J, LLEWELYN M. Staphylococcal and streptococcal infections[J]. Medicine, 2017, 45(12):727-734. |
[1] | 费国庆, 宁致远, 赵泽芳, 刘艳秋, 刘腾飞, 李贤, 丛日华, 陈鸿, 陈树林. 妊娠期奶牛黄体细胞的分离鉴定及培养特性[J]. 畜牧兽医学报, 2024, 55(5): 2214-2225. |
[2] | 向辉, 桂林森, 杨迪, 魏士昊, 宫艳斌, 史远刚, 马云, 淡新刚. 奶牛同期发情-定时输精技术研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1412-1422. |
[3] | 卢劲晔, 高亚兵, 韩心茹, 刘钰臻, 赵家玉. 乳房链球菌感染对乳腺上皮细胞中氨基酸代谢的影响[J]. 畜牧兽医学报, 2024, 55(4): 1766-1776. |
[4] | 沈文娟, 杨卓, 张馨蕊, 付予, 陶金忠. 奶牛生殖道微生物与繁殖及相关疾病的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 924-932. |
[5] | 康方圆, 刘镇滔, 吴奎显, 倪晗, 钟凯, 李和平, 杨国宇, 韩立强. 脂噬对奶牛乳腺上皮细胞脂滴大小的调控研究[J]. 畜牧兽医学报, 2024, 55(3): 1095-1101. |
[6] | 张馨蕊, 付予, 杨卓, 沈文娟, 陶金忠. 奶牛早期妊娠诊断蛋白的研究[J]. 畜牧兽医学报, 2024, 55(2): 451-460. |
[7] | 张志飞, 唐雪颖, 闵力, 童雄, 陈卫东, 巨向红, 李大刚. 荷斯坦奶牛肝脏组织中与泌乳时期及繁殖力相关的基因共表达网络构建[J]. 畜牧兽医学报, 2024, 55(2): 528-539. |
[8] | 庄翠翠, 韩博. 大肠杆菌感染奶牛乳腺上皮细胞和小鼠乳腺组织致其线粒体损伤的机制研究[J]. 畜牧兽医学报, 2024, 55(2): 822-833. |
[9] | 曹建华, 杨柏高, 张培培, 冯肖艺, 张航, 余洲, 牛一凡, 郝海生, 杜卫华, 朱化彬, 杨凌, 赵学明. 能量负平衡影响奶牛卵泡发育的机制[J]. 畜牧兽医学报, 2024, 55(1): 22-30. |
[10] | 孟璐, 胡海燕, 董蕾, 郑楠, 王加启. 基于SourceTracker分析牧场环境对乳房炎乳菌群的影响[J]. 畜牧兽医学报, 2023, 54(9): 3872-3883. |
[11] | 张航, 杨柏高, 徐茜, 冯肖艺, 杜卫华, 郝海生, 朱化彬, 张培培, 赵学明. 热应激影响奶牛胚胎发育作用机制的研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2692-2700. |
[12] | 赵婉莉, 曹棋棋, 杨悦, 邓昭举, 徐闯. 胃肠道菌群与黏膜免疫在围产期奶牛健康中的作用[J]. 畜牧兽医学报, 2023, 54(7): 2751-2760. |
[13] | 黄上真, 马龙刚, 娄文琦, 宁景扬, 张海亮, 胡丽蓉, 扎琼, 李斌, 徐青, 巴桑罗布, 王雅春. 高原地区奶牛血液指标的影响因素分析[J]. 畜牧兽医学报, 2023, 54(5): 1964-1978. |
[14] | 蔡明玉, 张海龙, 海珍珍, 乔亚蕊, 杜军, 周学章. 重组克柔念珠菌14-3-3蛋白诱导奶牛乳腺上皮细胞炎症反应的分子机制[J]. 畜牧兽医学报, 2023, 54(4): 1679-1689. |
[15] | 冯肖艺, 杨柏高, 郝海生, 杜卫华, 朱化彬, 崔凯, 赵学明. 热应激导致奶牛胚胎质量下降的机制及解决措施[J]. 畜牧兽医学报, 2023, 54(3): 868-876. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||