Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (6): 2701-2710.doi: 10.11843/j.issn.0366-6964.2025.06.015
• Animal Genetics and Breeding • Previous Articles Next Articles
SHI Shanshan(), WAN Qiongfei, XU Yingxin, WANG Qiushuo, ZHANG Linlin, GUO Yiwen, HU Debao, GUO Hong, DING Xiangbin, LI Xin*(
)
Received:
2024-11-21
Online:
2025-06-23
Published:
2025-06-25
Contact:
LI Xin
E-mail:13781532057@163.com;zerocatlxg@163.com
CLC Number:
SHI Shanshan, WAN Qiongfei, XU Yingxin, WANG Qiushuo, ZHANG Linlin, GUO Yiwen, HU Debao, GUO Hong, DING Xiangbin, LI Xin. Sequencing and Bioinformatics Analysis of miRNAs at Different Developmental Stages of Bovine Skeletal Muscle[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2701-2710.
1 |
LEE M R F , MCAULIFFE G A , TWEED J K S , et al. Nutritional value of suckler beef from temperate pasture systems[J]. Animal, 2021, 15 (7): 100257.
doi: 10.1016/j.animal.2021.100257 |
2 | 阳晓婷, 刘浩, 刘楠, 等. 牛肉品质无损检测技术研究进展[J]. 食品工业科技, 2024, 45 (11): 37- 46. |
YANG X T , LIU H , LIU N , et al. Research progress on non-destructive detection technology for beef quality[J]. Science and Technology of Food Industry, 2024, 45 (11): 37- 46. | |
3 |
SOUSA M C D , GJORGIEVA M , DOLICKA D , et al. Deciphering miRNAs' action through miRNA editing[J]. Int J Mol Sci, 2019, 20 (24): 6249.
doi: 10.3390/ijms20246249 |
4 | WANG W L , YU C H , HUANG Y , et al. Developing a ceRNA based lncRNA-miRNA-mRNA regulatory network to uncover roles in skeletal muscle development[J]. Front Bioinform, 2024, 4, 1494717. |
5 |
BARTEL D P . MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136 (2): 215- 233.
doi: 10.1016/j.cell.2009.01.002 |
6 |
BHASKARAN M , MOHAN M . MicroRNAs: history, biogenesis, and their evolving role in animal development and disease[J]. Vet Pathol, 2014, 51 (4): 759- 774.
doi: 10.1177/0300985813502820 |
7 |
RYKOVA E , ERSHOV N , DAMAROV I , et al. SNPs in 3'UTR miRNA target sequences associated with individual drug susceptibility[J]. Int J Mol Sci, 2022, 23 (22): 13725.
doi: 10.3390/ijms232213725 |
8 |
KIM S . LncRNA-miRNA-mRNA regulatory networks in skin aging and therapeutic potentials[J]. Front Physiol, 2023, 14, 1303151.
doi: 10.3389/fphys.2023.1303151 |
9 |
冯婧, 盛辉, 张效生, 等. miR-665靶向BCL2L11调控武安山羊成肌细胞增殖[J]. 畜牧兽医学报, 2025, 56 (2): 582- 590.
doi: 10.11843/j.issn.0366-6964.2025.02.010 |
FENG J , SHENG H , ZHANG X S , et al. miR-665 targets BCL2L11 to regulate the proliferation of myoblasts in wu'an goat[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56 (2): 582- 590.
doi: 10.11843/j.issn.0366-6964.2025.02.010 |
|
10 |
HORAK M , NOVAK J , BIENERTOVA-VASKU J . Muscle-specific microRNAs in skeletal muscle development[J]. Dev Biol, 2016, 410 (1): 1- 13.
doi: 10.1016/j.ydbio.2015.12.013 |
11 |
ZHU Y , MA J F , PAN H M , et al. MiR-29a family as a key regulator of skeletal muscle dysplasia in a porcine model of intrauterine growth retardation[J]. Biomolecules, 2022, 12 (9): 1193.
doi: 10.3390/biom12091193 |
12 |
NACHTIGALL P G , DIAS M C , CARVALHO R F , et al. MicroRNA-499 expression distinctively correlates to target genes sox6 and rod1 profiles to resolve the skeletal muscle phenotype in nile tilapia[J]. PLoS One, 2015, 10 (3): e0119804.
doi: 10.1371/journal.pone.0119804 |
13 |
LIANG C C , RAZA S H A , YANG Z M , et al. bta-miR-181d and bta-miR-196a mediated proliferation, differentiation, and apoptosis in bovine myogenic cells[J]. J Anim Sci, 2024, 102, skae142.
doi: 10.1093/jas/skae142 |
14 | 韩明轩, 刘瑞莉, 于堃, 等. bta-miR-145通过负调控MYO5A参与布莱凯特黑牛骨骼肌发育的机制研究[J]. 中国畜牧杂志, 2023, 59 (2): 139- 146. |
HAN M X , LIU R L , YU K , et al. Mechanisms of bta-miR-145 involved in skeletal muscle development of blakey black cattle by negatively regulating MYO5A[J]. Chinese Journal of Animal Science, 2023, 59 (2): 139- 146. | |
15 | RU W X , LIU K P , YANG J M , et al. miR-183/96/182 cluster regulates the development of bovine myoblasts through targeting FOXO1[J]. Animals (Basel), 2022, 12 (20): 2799. |
16 |
GUO D S , WEI Y L , LI X P , et al. Comprehensive analysis of miRNA and mRNA expression profiles during muscle development of the longissimus dorsi muscle in gannan yaks and jeryaks[J]. Genes (Basel), 2023, 14 (12): 2220.
doi: 10.3390/genes14122220 |
17 |
CHAL J , POURQUIE O . Making muscle: skeletal myogenesis in vivo and in vitro[J]. Development, 2017, 144 (12): 2104- 2122.
doi: 10.1242/dev.151035 |
18 |
YANG Y L , FAN X H , YAN J Y , et al. A comprehensive epigenome atlas reveals DNA methylation regulating skeletal muscle development[J]. Nucleic Acids Res, 2021, 49 (3): 1313- 1329.
doi: 10.1093/nar/gkaa1203 |
19 |
YU M B , FENG Y Q , YAN J M , et al. Transcriptomic regulatory analysis of skeletal muscle development in landrace pigs[J]. Gene, 2024, 915, 148407.
doi: 10.1016/j.gene.2024.148407 |
20 |
ALBRECHT E , LEMBCKE C , WEGNER J , et al. Prenatal muscle fiber development and bundle structure in beef and dairy cattle[J]. J Anim Sci, 2013, 91 (8): 3666- 3673.
doi: 10.2527/jas.2013-6258 |
21 |
GREENE M A , POWELL R , BRUCE T , et al. miRNA transcriptome and myofiber characteristics of lamb skeletal muscle during hypertrophic growth[J]. Front Genet, 2022, 13, 988756.
doi: 10.3389/fgene.2022.988756 |
22 | CHEN K , RAJEWSKY N . The evolution of gene regulation by transcription factors and microRNAs[J]. Nat Rev Genet, 2007, 8 (2): 93- 103. |
23 | 李洁, 秦性良, 邵宁生. MicroRNA及其靶基因的时空特异性与动态变化[J]. 生物化学与生物物理进展, 2013, 40 (7): 617- 626. |
LI J , QIN X L , SHAO N S , et al. Spatiotemporal specificity and dynamic changes of microRNA and its target genes[J]. Progress in Biochemistry and Biophysics, 2013, 40 (7): 617- 626. | |
24 |
YUN Y Y , WU R H , HE X G , et al. Integrated transcriptome analysis of miRNAs and mRNAs in the skeletal muscle of wuranke sheep[J]. Genes (Basel), 2023, 14 (11): 2034.
doi: 10.3390/genes14112034 |
25 |
SMOLARZ B , DURCZYNSKI A , ROMANOWICE H , et al. miRNAs in cancer (Review of Literature)[J]. Int J Mol Sci, 2022, 23 (5): 2805.
doi: 10.3390/ijms23052805 |
26 |
HOHMANN T , DEHGHANI F . The cytoskeleton a complex interacting meshwork[J]. Cells, 2019, 8 (4): 362.
doi: 10.3390/cells8040362 |
27 |
LI M X , PENG L , WANG Z M , et al. Roles of the cytoskeleton in human diseases[J]. Mol Biol Rep, 2023, 50 (3): 2847- 2856.
doi: 10.1007/s11033-022-08025-5 |
28 |
OTANI T , FURUSE M . Tight junction structure and function revisited[J]. Trends Cell Biol, 2020, 30 (10): 805- 817.
doi: 10.1016/j.tcb.2020.08.004 |
29 |
VELLOSO C P . Regulation of muscle mass by growth hormone and IGF-I[J]. Br J Pharmacol, 2008, 154 (3): 557- 568.
doi: 10.1038/bjp.2008.153 |
30 |
MATHES S , FAHRNER A , LUCA E , et al. Growth hormone/IGF-I-dependent signaling restores decreased expression of the myokine SPARC in aged skeletal muscle[J]. J Mol Med (Berl), 2022, 100 (11): 1647- 1658.
doi: 10.1007/s00109-022-02260-w |
31 |
MAK R H , GUNTA S , OLIVEIRA E A , et al. Growth hormone improves adipose tissue browning and muscle wasting in mice with chronic kidney disease associated cachexia[J]. Int J Mol Sci, 2022, 23 (23): 15310.
doi: 10.3390/ijms232315310 |
32 |
BUCKINGHAM M , BAJARD L , CHANG T , et al. The formation of skeletal muscle: from somite to limb[J]. J Anat, 2003, 202 (1): 59- 68.
doi: 10.1046/j.1469-7580.2003.00139.x |
33 | FAN C M , LI L D , ROZO M E , et al. Making skeletal muscle from progenitor and stem cells: development versus regeneration[J]. Wiley Interdiscip Rev Dev Biol, 2012, 1 (3): 315- 327. |
34 | RODRIGUEZ-FDEZ S , BUSTELO X R . Rho GTPases in skeletal muscle development and homeostasis[J]. Cells, 2021, 10 (11): 2984. |
35 | YAN H L , LI L , LI S J , et al. miR-346 promotes migration and invasion of nasopharyngeal carcinoma cells via targeting BRMS1[J]. J Biochem Mol Toxicol, 2016, 30 (12): 602- 607. |
36 | GUO J , YANG Z , YANG X , et al. miR-346 functions as a pro-survival factor under ER stress by activating mitophagy[J]. Cancer Lett, 2018, 413, 69- 81. |
37 | 兀继尧. 牛miR-499对成肌细胞增殖分化的影响及其作用机制研究[D]. 江苏: 江苏师范大学, 2018. |
WU J Y. Effects of bovine miR-499 on myoblast proliferation and differentiation and its mechanism. [D]. Jiangsu: Jiangsu Normal University, 2018. (in Chinese) | |
38 | LIU Y F , ZHANG M , SHAN Y J , et al. Transcriptome sequencing analysis of the role of miR-499-5p and SOX6 in chicken skeletal myofiber specification[J]. Front Genet, 2022, 13, 1008649. |
39 | LIU J , LIANG X J , ZHOU D X , et al. Coupling of mitochondrial function and skeletal muscle fiber type by a miR-499/FNIP1/AMPK circuit[J]. EMBO Mol Med, 2016, 8 (10): 1212- 1228. |
40 | ZHANG Y X , ZHANG J H , SUN Z Y , et al. MAPK8 and CAPN1 as potential biomarkers of intervertebral disc degeneration overlapping immune infiltration, autophagy, and ceRNA[J]. Front Immunol, 2023, 14, 1188774. |
41 | OLAREWAJU O , HU Y H , TSAY H C , et al. MicroRNA miR-20a-5p targets CYCS to inhibit apoptosis in hepatocellular carcinoma[J]. Cell Death Dis, 2024, 15 (6): 456. |
42 | KLOCKNER I , SCHUTT C , GERHARDT T , et al. Control of CRK-RAC1 activity by the miR-1/206/133 miRNA family is essential for neuromuscular junction function[J]. Nat Commun, 2022, 13 (1): 3180. |
43 | RODRIGUEZ C P , COSSINS J , BEESON D , et al. The neuromuscular junction in health and disease: molecular mechanisms governing synaptic formation and homeostasis[J]. Front Mol Neurosci, 2020, 13, 610964. |
[1] | WANG Qinqian, GAO Zhendong, LU Ying, MA Ruoshan, DENG Weidong, HE Xiaoming. Research Progress of Whole Genome Resequencing in Chinese Indigenous Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2026-2037. |
[2] | YAO Tingting, LI Hao, YAN Huixuan, CAO Yifan, Cirengluobu , Suolangquji , Nimacangjue , ZHAO Li, Danzengluosang , Silangwangmu , Basangzhuzha , CHEN Ningbo. Genetic Diversity of Mitochondrial Genome and Maternal Origin of 10 Cattle Populations in Tibet Autonomous Region [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2194-2202. |
[3] | ZHAO Wenxuan, GAO Xue, YU Dawei, GAO Chen, LI Junya. Establishment and Pluripotency Analysis of Induced Pluripotent Stem Cells from Mengshan Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1731-1743. |
[4] | LI Xiaotong, WANG Pengyu, FANG Yingyan, YU Hongxi, ZHANG Yi, WANG Yachun, ZHANG Yuanpei, LI Yanqin, JIANG Li. Mining and Functional Verification of Gene Polymorphisms Loci Related to Bull Sperm Freezability [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1981-1988. |
[5] | LI Yuanfang, ZHANG Hongyuan, LI Hongtai, LI Zhi, WEI Qianran, WANG Yadong, LI Guoxi, WANG Dandan, LIU Qiaoming. The Effect of Riboflavin Supplementation in Embryonic Eggs on the Development of Skeletal Muscle of Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1159-1169. |
[6] | HU Xin, YOU Wei, JIANG Fugui, CHENG Haijian, SUN Zhigang, SONG Enliang. Analysis of Genetic Diversity and Population Structure of Simmental Cattle Based on Whole Genome Resequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1189-1202. |
[7] | CHEN Qiong, MAO Shuaixiang, WU Longfei, YANG Chuang, SUN Baoli. lncRNA Expression Characteristics in Semitendinosus Muscle of Leiqiong Cattle and Lufeng Cattle and Its ceRNA Network Analysis in Skeletal Muscle Development and Fat Deposition [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1203-1215. |
[8] | WANG Yuanqing, WANG Zezhao, ZHU Bo, CHEN Yan, XU Lingyang, ZHANG Lupei, GAO Huijiang, LI Chao, LI Junya, GAO Xue. Comparison of Prediction Accuracy of Genomic Selection for Economically Important Traits in Huaxi Cattle Based on Different Chip Densities [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 591-602. |
[9] | ZHAO Gangkui, GAO Haixu, YIN Siqi, SUN Honghong, XIN Yiran, ZAN Linsen, ZHAO Chunping. The Effects of the SFRP4 Gene on Bovine Preadipocyte Differentiation [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 611-620. |
[10] | NIU Yifan, LI Chongyang, ZHANG Peipei, ZHANG Hang, FENG Xiaoyi, YU Zhou, CAO Jianhua, DU Weihua, WAN Pengcheng, MA Youji, ZHAO Xueming. Microamplification System Evaluation of Bovine Biopsied Embryo Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 246-258. |
[11] | JIN Congli, JIA Qiong, REN Hongrui, CHI Zhiduan, BAI Rui, GUO Xiang, FAN Ruiwen, HERRID Muren. The Expression of Qa-1b/NKG2A in the Skins of Mongolia Cattle and Preparation and Functional Roles of the Qa-1b Nanobody [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 404-416. |
[12] | Hongxia JIA, Zaixia LIU, Le ZHOU, Yanchun BAO, Chenxi HUO, Pengpeng ZUO, Mingjuan GU, Risu NA, Wenguang ZHANG. Research Progress of Genomic Selection in Beef Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3757-3768. |
[13] | Siyu LIU, Man ZHANG, Yan ZHANG, Zhitong WEI, Xinglei QI, Tengyun GAO, Xian LIU, Dong LIANG, Tong FU. Evaluation of the Conservation Effect in Nanyang Cattle Based on Resequencing Data [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3876-3886. |
[14] | Tao ZHANG, Jiaqi LI, Lei XU, Dan WANG, Menghua ZHANG, Tao ZHANG, Mengjie YAN, Weitao WANG, Shoumin FAN, Xixia HUANG. Detection and Population Structure Analysis of Genomic Structural Variation in Xinjiang Brown Cattle Based on Whole Genome Resequencing Data [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3427-3435. |
[15] | Zijiao GUO, Weijie ZHENG, Wei SUN, Baojiang WU, Xiangnan BAO, Qi ZHANG, Jinfeng HE, Siqin BAO, Gaoping ZHAO, Zixin WANG, Bo HAN, Xihe LI, Dongxiao SUN. Study on Genomic Selection of Embryos in Holstein Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2940-2950. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||