[1] 张凤强, 武佳斌, 步帆. 猪支原体肺炎研究进展[J]. 中国动物保健, 2015, 17(6):30-32.
ZHANG F Q, WU J B, BU F. Research progress of mycoplasmal pneumonia of swine[J]. China Animal Health, 2015, 17(6):30-32. (in Chinese)
[2] 车巧林, 余姗姗, 刘茂军, 等. 猪肺炎支原体对猪气管上皮细胞的黏附作用[J]. 中国兽医学报, 2015, 35(3):388-393.
CHE Q L, YU S S, LIU M J, et al. Adhesion of Mycoplasma hyopneumoniae to swine tracheal epithelial cells[J]. Chinese Journal of Veterinary Science, 2015, 35(3):388-393. (in Chinese)
[3] 冯志新, 刘茂军, 熊祺琰, 等. 猪支原体肺炎活疫苗(168株)肺内免疫机制研究[J]. 中国兽药杂志, 2012, 46(8):4-7, 19.
FENG Z X, LIU M J, XIONG Q Y, et al. Immunologic mechanism of the attenuated Mycoplasma hyopneumoniae 168 strain vaccine by intrapulmonic immunization in piglets[J]. Chinese Journal of Veterinary Drug, 2012, 46(8):4-7, 19. (in Chinese)
[4] 黄宁, 吴琦, 李胜富, 等. 利用气液界面无血清培养原代兔气管上皮细胞的研究[J]. 细胞生物学杂志, 1999, 21(1):39-42.
HUANG N, WU Q, LI S F, et al. Studies on primary culture of rabbit tracheal epithelial cells in serum-free hormonesupplemented medium in a biphasic chamber system[J]. Chinese Journal of Cell Biology, 1999, 21(1):39-42. (in Chinese)
[5] ZAIDMAN N A, PANOSKALTSIS-MORTARI A, O'GRADY S M. Differentiation of human bronchial epithelial cells:role of hydrocortisone in development of ion transport pathways involved in mucociliary clearance[J]. Am J Physiol Cell Physiol, 2016, 311(2):C225-C236.
[6] JIANG D, BERMAN R, WU Q, et al. The anti-inflammatory effect of alpha-1 antitrypsin in rhinovirus-infected human airway epithelial cells[J]. J Clin Cell Immunol, 2016, 7(6):475.
[7] ESCAFFRE O, BORISEVICH V, VERGARA L A, et al. Characterization of Nipah virus infection in a model of human airway epithelial cells cultured at an air-liquid interface[J]. J Gen Virol, 2016, 97(5):1077-1086.
[8] LI L, XU Z F, ZHOU Y, et al. Analysis on Actinobacillus pleuropneumoniae LuxS regulated genes reveals pleiotropic roles of LuxS/AI-2 on biofilm formation, adhesion ability and iron metabolism[J]. Microb Pathog, 2011, 50(6):293-302.
[9] 车巧林, 熊祺琰, 冯志新, 等. 猪肺炎支原体黏附宿主细胞间接免疫荧光检测方法的建立[J]. 江苏农业学报, 2012, 28(5):1069-1073.
CHE Q L, XIONG Q Y, FENG Z X, et al. Establishment of an indirect immunofluorescence assay for detection of adherence of Mycoplasma hyopneumoniae to host cells[J]. Jiangsu Journal of Agricultural Sciences, 2012, 28(5):1069-1073. (in Chinese)
[10] 高元妹, 徐军. 小鼠气管上皮细胞的气液相界面培养[J]. 广东医学, 2008, 29(2):217-219.
GAO Y M, XU J. Air-liquid interface cultivation of mouse tracheal epithelial cells[J]. Guangdong Medical Journal, 2008, 29(2):217-219. (in Chinese)
[11] KRUNKOSKY T M, JORDAN J L, CHAMBERS E, et al. Mycoplasma pneumoniae host-pathogen studies in an air-liquid culture of differentiated human airway epithelial cells[J]. Microb Pathog, 2007, 42(2-3):98-103.
[12] 李茂中, 庞立丽, 王宏, 等. 人气管上皮细胞的原代分离及气液界面培养[J]. 中国生物制品学杂志, 2016, 29(1):65-69.
LI M Z, PANG L L, WANG H, et al. Isolation of primary human bronchial epithelial cells and culture at an air-liquid interface[J]. Chinese Journal of Biologicals, 2016, 29(1):65-69. (in Chinese)
[13] NEILSON L, MANKUS C, THORNE D, et al. Development of an in vitro cytotoxicity model for aerosol exposure using 3D reconstructed human airway tissue; application for assessment of e-cigarette aerosol[J]. Toxicol in Vitro, 2015, 29(7):1952-1962.
[14] DELGADO-ORTEGA M, OLIVIER M, SIZARET P Y, et al. Newborn pig trachea cell line cultured in air-liquid interface conditions allows a partial in vitro representation of the porcine upper airway tissue[J]. BMC Cell Biol, 2014, 15:14.
[15] 杨阳, 刘宝瑞, 钱晓萍. Alamar Blue法用于体外培养细胞活性检测的方法研究[J]. 现代肿瘤医学, 2006, 14(1):6-8.
YANG Y, LIU B R, QIAN X P. The research on the Alamar Blue assay to evaluate cell proliferation and cytotoxicity in vitro[J]. Modern Oncology, 2006, 14(1):6-8. (in Chinese)
[16] LATVALA S, HEDBERG J, MÖLLER L, et al. Optimization of an air-liquid interface exposure system for assessing toxicity of airborne nanoparticles[J]. J Appl Toxicol, 2016, 36(10):1294-1301.
[17] JING X F, PARK J H, PETERS T M, et al. Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air-liquid interface compared with in vivo assessment[J]. Toxicol in Vitro, 2015, 29(3):502-511.
[18] CHORTAREA S, CLIFT M J D, VANHECKE D, et al. Repeated exposure to carbon nanotube-based aerosols does not affect the functional properties of a 3D human epithelial airway model[J]. Nanotoxicology, 2015, 9(8):983-993.
[19] 车巧林, 刘蓓蓓, 刘茂军, 等. 不同毒力猪肺炎支原体侵入宿主细胞的观察[J]. 畜牧兽医学报, 2014, 45(6):981-988.
CHE Q L, LIU B B, LIU M J, et al. Invasion of host cells by different virulent Mycoplasma hyopneumoniae[J]. Acta Veterinaria et Zootechnica Sinica, 2014, 45(6):981-988. (in Chinese)
[20] KRAFT M, ADLER K B, INGRAM J L, et al. Mycoplasma pneumoniae induces airway epithelial cell expression of MUC5AC in asthma[J]. Eur Respir J, 2008, 31(1):43-46.
[21] HAO Y H, KUANG Z Z, JING J, et al. Mycoplasma pneumoniae modulates STAT3-STAT6/EGFR-FOXA2 signaling to induce overexpression of airway mucins[J]. Infect Immun, 2014, 82(12):5246-5255.
[22] BAI F F, NI B, LIU M J, et al. Mycoplasma hyopneumoniae-derived lipid-associated membrane proteins induce apoptosis in porcine alveolar macrophage via increasing nitric oxide production, oxidative stress, and caspase-3 activation[J]. Vet Immunol Immunopathol, 2013, 155(3):155-161.
[23] 李彦伟, 刘茂军, 刘蓓蓓, 等. 猪肺炎支原体对上皮细胞氧化损伤的分析[J]. 畜牧兽医学报, 2014, 45(7):1202-1206.
LI Y W, LIU M J, LIU B B, et al. Analysis of epithelial cell oxidative damage induced by Mycoplasma hyopneumoniae[J]. Acta Veterinaria et Zootechnica Sinica, 2014, 45(7):1202-1206. (in Chinese)
[24] 倪博, 白方方, 韦艳娜, 等. 4株猪肺炎支原体脂膜蛋白对猪肺泡上皮细胞生长抑制作用的比较[J]. 畜牧兽医学报, 2013, 44(8):1283-1287.
NI B, BAI F F, WEI Y N, et al. Comparative analysis of the inhibitory effects of lipid associated membrane proteins from four different strains of Mycoplasma hyopneumoniae on porcine alveolar epithelial cell lines[J]. Acta Veterinaria et Zootechnica Sinica, 2013, 44(8):1283-1287. (in Chinese)
[25] LI Y N, JIANG Z J, XUE D, et al. Mycoplasma ovipneumoniae induces sheep airway epithelial cell apoptosis through an ERK signalling-mediated mitochondria pathway[J]. BMC Microbiol, 2016, 16:222. |