ACTA VETERINARIA ET ZOOTECHNICA SINICA ›› 2013, Vol. 44 ›› Issue (5): 665-672.doi: 10.11843/j.issn.0366-6964.2013.05.001
JIANG Yan-zhi1*, CEN Wang-min1, XING Shu-hua1, CHEN Jian-ning1, LI Xue-wei2*
Received:
2012-11-12
Online:
2013-05-23
Published:
2013-05-23
CLC Number:
JIANG Yan-zhi, CEN Wang-min, XING Shu-hua, CHEN Jian-ning, LI Xue-wei. New Insights in GPIHBP1 and the Intravascular Processing of Triglyceride-rich Lipoproteins[J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2013, 44(5): 665-672.
[1]MERKEL M, ECKEL R H, GOLDBERG I J. Lipoprotein lipase: genetics, lipid uptake, and regulation [J]. J Lipid Res, 2002, 43(12): 1997-2006. [2]WANG H, ECKEL R H. Lipoprotein lipase: from gene to obesity [J]. Am J Physiol Endocrinol Metab, 2009, 297(2): E271-288. [3]CISAR L A, HOOGEWERF A J, CUPP M, et al. Secretion and degradation of lipoprotein lipase in cultured adipocytes. Binding of lipoprotein lipase to membrane heparan sulfate proteoglycans is necessary for degradation [J]. J Biol Chem, 1989, 264(3): 1767-1774. [4]BERRYMAN D E, BENSADOUN A. Heparan sulfate proteoglycans are primarily responsible for the maintenance of enzyme activity, binding, and degradation of lipoprotein lipase in Chinese hamster ovary cells [J]. J Biol Chem, 1995, 270(41): 24525-24531. [5]LOOKENE A, SAVONEN R, OLIVECRONA G. Interaction of lipoproteins with heparan sulfate proteoglycans and with lipoprotein lipase. Studies by surface plasmon resonance technique [J]. Biochemistry, 1997, 36(17): 5267-5275. [6]BEIGNEUX A P, DAVIES B, GIN P, et al. Glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons [J]. Cell Metab, 2007, 5(4): 279-291. [7]DAVIES B S, BEIGNEUX A P, BARNES R H 2nd, et al. GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries [J]. Cell Metab, 2010, 12(1): 42-52. [8]WANG J, HEGELE R A. Homozygous missense mutation (G56R) in glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1) in two siblings with fasting chylomicronemia (MIM 144650) [J]. Lipids Health Dis, 2007, 6: 23. [9]BEIGNEUX A P, FRANSSEN R, BENSADOUN A, et al. Chylomicronemia with a mutant GPIHBP1 (Q115P) that cannot bind lipoprotein lipase [J]. Arterioscler Thromb Vasc Biol, 2009, 29(6): 956-962. [10]FRANSSEN R, YOUNG S G, PEELMAN F, et al. Chylomicronemia with sow postheparin lipoprotein lipase levels in the setting of GPIHBP1 defects [J]. Circ Cardiovasc Genet, 2010, 3(2): 169-178. [11]OLIVECRONA G, EHRENBORG E, SEMB H, et al. Mutation of conserved cysteines in the Ly6 domain of GPIHBP1 in familial chylomicronemia [J]. J Lipid Res, 2010, 51(6): 1535-1545. [12]COCA-PRIETO I, KROUPA O, GONZALEZ-SANTOS P, et al. Childhood-onset chylomicronaemia with reduced plasma lipoprotein lipase activity and mass: identification of a novel GPIHBP1 mutation [J]. J Intern Med, 2011, 270(3): 224-228. [13]CHARRIERE S, PERETTI N, BERNARD S, et al. GPIHBP1 C89F neomutation and hydrophobic C-terminal domain G175R mutation in two pedigrees with severe hyperchylomicronemia [J]. J Clin Endocrinol Metab, 2011, 96(10): E1675-1679. [14]BEIGNEUX A P, DAVIES B S, TAT S, et al. Assessing the role of the glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) three-finger domain in binding lipoprotein lipase [J]. J Biol Chem, 2011, 286(22): 19735-19743. [15]RIOS J J, SHASTRY S, JASSO J, et al. Deletion of GPIHBP1 causing severe chylomicronemia [J]. J Inherit Metab Dis, 2011, 35(3): 531-540. [16]SURENDRAN R P, VISSER M E, HEEMELAAR S, et al. Mutations in LPL, APOC2, APOA5, GPIHBP1 and LMF1 in patients with severe hypertriglyceridaemia [J]. J Intern Med, 2012, 272(2): 185-196. [17]IOKA R X, KANG M J, KAMIYAMA S, et al. Expression cloning and characterization of a novel glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein, GPI-HBP1 [J]. J Biol Chem, 2003, 278(9): 7344-7349. [18]WONG H, DAVIS R C, THUREN T, et al. Lipoprotein lipase domain function [J]. J Biol Chem, 1994, 269(14): 10319-10323. [19]GIN P, YIN L, DAVIES B S, et al. The acidic domain of GPIHBP1 is important for the binding of lipoprotein lipase and chylomicrons [J]. J Biol Chem, 2008, 284(43): 29554-29562. [20]FRY B G, WUSTER W, KINI R M, et al. Molecular evolution and phylogeny of elapid snake venom three-finger toxins [J]. J Mol Evol, 2003, 57(1): 110-129. [21]BEIGNEUX A P, GIN P, DAVIES B S, et al. Highly conserved cysteines within the Ly6 domain of GPIHBP1 are crucial for the binding of lipoprotein lipase [J]. J Biol Chem, 2009(B), 284(44): 30240-30247. [22]BEIGNEUX A P, GIN P, DAVIES B S, et al. Glycosylation of Asn-76 in mouse GPIHBP1 is critical for its appearance on the cell surface and the binding of chylomicrons and lipoprotein lipase [J]. J Lipid Res, 2008, 49(6): 1312-1321. [23]GIN P, BEIGNEUX A P, VOSS C, et al. Binding preferences for GPIHBP1, a glycosylphosphatidylinositol- anchored protein of capillary endothelial cells [J]. Arterioscler Thromb Vasc Biol, 2011, 31(1): 176-182. [24]GIN P, GOULBOURNE C, ADEYO O, et al. Chylomicronemia mutations yield new insights into interactions between lipoprotein lipase and GPIHBP1 [J]. Hum Mol Genet, 2012, 21(13): 2961-2972. [25]WEINSTEIN M M, YIN L, BEIGNEUX A P, et al. Abnormal patterns of lipoprotein lipase release into the plasma in GPIHBP1-deficient mice [J]. J Biol Chem, 2008, 283(50): 34511-34518. [26]DAVIES B S, GOULBOURNE C N, BARNES R H 2nd, et al. Assessing mechanisms of GPIHBP1 and lipoprotein lipase movement across endothelial cells [J]. J Lipid Res, 2012, 53(12): 2690-2697. [27]OLAFSEN T, YOUNG S G, DAVIES B S, et al. Unexpected expression pattern for glycosylphosphatidylinositol-anchored HDL-binding protein 1 (GPIHBP1) in mouse tissues revealed by positron emission tomography scanning [J]. J Biol Chem, 2010, 285(50): 39239-39248. [28]WEINSTOCK P H, BISGAIER C L, AALTO-SETÄLÄ K, et al. Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired low density lipoprotein clearance in heterozygotes [J]. J Clin Invest, 1995, 96(6): 2555-2568. [29]STRAUSS J G, FRANK S, KRATKY D, et al. Adenovirus-mediated rescue of lipoprotein lipase-deficient mice. Lipolysis of triglyceride-rich lipoproteins is essential for high density lipoprotein maturation in mice [J]. J Biol Chem, 2001, 276(39): 36083-36090. [30]ZHANG X, QI R, XIAN X, et al. Spontaneous atherosclerosis in aged lipoproteinl lipase deficient mice with wevere hypertriglyceridemia on a normal chow diet [J]. Circ Res, 2008, 102(2): 250-256. [31]WEINSTEIN M M, YIN L, TU Y, et al. Chylomicronemia elicits atherosclerosis in mice [J]. Arterioscler Thromb Vasc Biol, 2010B, 30(1): 20-23. [32]PLUMP A S, SMITH J D, HAYEK T, et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells [J]. Cell, 1992, 71(2): 343-353. [33]NAKASHIMA Y, PLUMP A S, RAINES E W, et al. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree [J]. Arterioscler Thromb, 1994, 14(1):133-140. [34]BENLIAN P, DE GENNES J L, FOUBERT L, et al. Premature atherosclerosis in patients with familial chylomicronemia caused by mutations in the lipoprotein lipase gene [J]. N Engl J Med, 1996, 335(12): 848-854. [35]VILARO S, CAMPS L, REINA M, et al. Localization of lipoprotein lipase to discrete areas of the guinea pig brain [J]. Brain Res, 1990, 506(2): 249-253. [36]BESSESEN D H, RICHARDS C L, ETIENNE J, et al. Spinal cord of the rat contains more lipoprotein lipase than other brain regions [J]. J Lipid Res, 1993, 34(2): 229-238. [37]DAVIES B S, WAKI H, BEIGNEUX A P, et al. The expression of GPIHBP1, an endothelial cell binding site for lipoprotein lipase and chylomicrons, is induced by peroxisome proliferator-activated receptor-gamma [J]. Mol Endocrinol, 2008, 22(11): 2496-2504. [38]KLINGER M M, MARGOLIS R U, MARGOLIS R K. Isolation and characterization of the heparan sulfate proteoglycans of brain. Use of affinity chromatography on lipoprotein lipase-agarose [J]. J Biol Chem, 1985, 260(7): 4082-4090. [39]NIELSEN M S, BREJNING J, GARCIA R, et al. Segments in the C-terminal folding domain of lipoprotein lipase important for binding to the low density lipoprotein receptor-related protein and to Heparan sulfate proteoglycans [J]. J Biol Chem, 1997, 272(9): 5821-5827. [40]SUKONINA V, LOOKENE A, OLIVECRONA T, et al. Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue [J]. Proc Natl Acad Sci USA, 2006, 103(46): 17450-17455. [41]GOLDBERG I J. Lipoprotein lipase and lipolysis: Central roles in lipoprotein metabolism and atherogenesis [J]. J Lipid Res, 1996, 37(4): 693-707. [42]SONNENBURG W K, YU D, LEE E C, et al. GPIHBP1 stabilizes lipoprotein lipase and prevents its inhibition by angiopoietin-like 3 and angiopoietin-like 4 [J]. J Lipid Res, 2009, 50(12): 2421-2429. [43]LIU J, AFROZA H, RADER D J, et al. Angiopoietin-like protein 3 inhibits lipoprotein lipase activity through enhancing its cleavage by proprotein convertases [J]. J Biol Chem, 2010, 285(36): 27561-27570. |
[1] | LI Chunyan, ZHANG Yan, Lü Chunrong, DENG Weidong, QUAN Guobo. Research Progress on Antioxidant Mechanisms of Melatonin and Its Application in Cryopreservation of Mammalian Spermatozoa [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4468-4476. |
[2] | LIU Shuang, HE Lixia, MA Jun, FENG Xue, YANG Mengli, WANG Shuzhe, YANG Runjun, FANG Xibi, XIAN Hailong, WANG Yongkang, ZHANG Lupei, MA Yun. Analysis on Genetic Background and Body Size Indexes and Beef-purpose Index of Guyuan Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2376-2388. |
[3] | YANG Sukun, DONG Yimeng, WANG Hongliang, ZHAO Xitang, CHEN Xu, XING Xiumei. Genetic Diversity Analysis of Stud Tahe Red Deer Based on the Gene Fragments of mtDNA and Y Chromosome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2402-2413. |
[4] | LIU Ling, WANG Dandan, CUI Kai, MA Yuehui, JIANG Lin. Advances of Disease-Resistant Breeding on Porcine Reproductive and Respiratory Syndrome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 434-442. |
[5] | WANG Honghao, REN Xiaokang, ZHANG Yi, GAO Huijiang, CHE Leijie, WANG Xi. Application of Gene Chip Technology in Jinnan Bull Breeding [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(10): 2803-2813. |
[6] | LIU Xiaoqian, JIN Lanjie, DONG Yanqiu, LI Dongjie, ZHANG Cui, GU Shukai, LI Shijie. DNA Methylation Regulate the Genomic Imprinting of AQP1 Gene Specific in Bovine Placenta [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(8): 2181-2189. |
[7] | GUO Xiaoxiao, LI Yinxia, WANG Yue, ZHANG Han, ZHANG Jun, QIAN Yong, MENG Chunhua, WANG Huili, ZHONG Jifeng, CAO Shaoxian. Polymorphisms in the 5'Regulatory Region of PLAG1 Gene and Their Association with Early Body Weight of Hu Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2): 331-343. |
[8] | GUO Jiankang, FAN Ziyao, NIU Pengxia, LIU Zhiguo, MU Yulian, ZHANG Mingrui, LI Kui, WANG Bingyuan. The Study of Ide Gene Regulating Myoblast Proliferation and Differentiation through AKT [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(8): 1784-1794. |
[9] | YAO Dawei, MA Jing, CHEN Lili, WANG Tianzhen, SUN Huan, SONG Wenqin, MA Yi. Effects of Interfering PTEN Gene on the Transcription of Lipid Synthesis-related Genes and Fatty Acid Composition in Goat Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(4): 851-860. |
[10] | CUI Sheng, LIN Yaqiu, XU Qing, ZHU Jiangjiang, WANG Yong. Interfering Smad3 Promotes Goat Adipocyte Differentiation [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(3): 475-489. |
[11] | MA Jing, YAO Dawei, YANG Chunlei, LI Qiuling, WANG Tianzhen, CHEN Chengbin, SONG Wenqin, MA Yi. Effects of Interfering with CREB Gene on Lipid Synthesis Related Gene Expression and Triacylglycerol Synthesis in Mammary Epithelial Cells of Dairy Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(12): 2413-2421. |
[12] | ZHANG Cui, CHEN Weina, LI Junliang, GU Shukai, XU Da, LI Dongjie, LI Shijie. Abnormal Expression of LINC24065 in Somatic Cell Nuclear Transfer Cattle [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(1): 44-51. |
[13] | WANG Guan-nan, ZHAO Yu-peng, CHEN Wei-na, ZHANG Cui, XU Da, LI Dong-jie, LI Shi-jie. Genomic Imprinting Status of Gab1 and Sfmbt2 in Different Tissues of Adult Cattle [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(6): 1000-1006. |
[14] | LI Li-sha, PENG Yong-dong, ZHENG Xiao-ning, LI Xiang-long. Analysis of the Promoter Activity and Transcriptional Regulatory Elements of Goat PMEL Gene [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(5): 826-835. |
[15] | WANG Ji-ying, WANG Yan-ping, XU Yun-hua, WANG Cheng, LIN Hai-chao, HU Hong-mei, WU Ying, GUO Jian-feng. Analyses of Intramuscular Fat Content, Fatty Acid Composition and the Related Traits in Lulai Black Pigs [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(4): 585-594. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||