Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (4): 1540-1548.doi: 10.11843/j.issn.0366-6964.2025.04.007
• Review • Previous Articles Next Articles
XIE Yuehua1,2(), XIE Fujie2, SUO Xun2, YAN Wenchao1,*(
)
Received:
2024-06-26
Online:
2025-04-23
Published:
2025-04-28
Contact:
YAN Wenchao
E-mail:xyh18568331350@163.com;ywchao11@126.com
CLC Number:
XIE Yuehua, XIE Fujie, SUO Xun, YAN Wenchao. Application of the 3D Cell Culture System in the Study of Apicomplexa Protozoa[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1540-1548.
Table 1
Application of the 3D cell culture system in the study of Apicomplexa protozoa"
种类 Species | 3D细胞培养系统 3D cell culture system | 应用 Application | 参考文献 Reference |
隐孢子虫 Cryptosporidium | 传代细胞3D培养 | 在诱导人回盲肠癌细胞(HCT-8)中加入虫体后可观察到小肠中虫体的机械运动 | [ |
中空纤维系统 | 虫体在这种条件下可以生长繁殖,并持续产生6个月以上具有感染性的卵囊 | [ | |
丝蛋白支架系统 | 可以支持隐孢子虫完成完整的生活史 | [ | |
穿透小室系统 | 隐孢子虫在此系统中可以形成卵囊 | [ | |
类器官 | 隐孢子虫可以在类器官内完成其生活史 | [ | |
气液界面系统 | 牛源隐孢子虫在此系统内可以形成具有感染性的卵囊 | [ | |
弓形虫 Toxoplasma | 原代细胞3D培养系统 | 用于探究弓形虫感染对DCs迁移的影响 | [ |
传代细胞3D培养系统 | 弓形虫可以入侵JEG-3单层细胞,但不能入侵JEG-3 3D系统 | [ | |
用于虫体从纳虫空泡中逸出的形式研究 | [ | ||
速殖子可以感染人脑类器官并转化为缓殖子形成包囊 | [ | ||
类器官及其衍生的系统 | 用于弓形虫入侵和增殖的研究 | [ | |
弓形虫能顺利入侵牛和猪的类器官,且能在24 h后形成感染灶 | [ | ||
用于弓形虫入侵和复制的研究 | [ | ||
虫体进入到了裂殖生殖和配子生殖并形成感染性卵囊 | [ | ||
疟原虫 Plasmodium | 微阵列系统 | 用于探究cAMP与GIE的力学性能与变形能力相关性 | [ |
弹性基质 | 用于探究肌动蛋白和子孢子表面入侵相关蛋白的作用 | [ | |
用于探究疟原虫TRAP的闭合和开放两种构象的关系 | [ | ||
类器官及其衍生的系统 | 建立了具有稳定的肝脏表型的3D伯氏疟原虫感染平台 | [ | |
使用3D球体培养的原代肝细胞开发了一个疟疾肝阶段模型 | [ | ||
聚丙烯酰胺水凝胶系统 | 用于研究单个生理相关的物理参数对野生型和突变型虫体运动的影响 | [ | |
艾美耳球虫 Eimeria | 类器官及其衍生系统 | 类器官用来研究虫体在体外的发育阶段 | [ |
子孢子共培养后发现虫子可入侵并发育至配子体阶段,但未观察到卵囊形成 | [ | ||
用于探究球虫体外生长发育 | [ |
1 | VISVESVARAG S,GARCIAL S.Culture of protozoan parasites[J].Clin Microbiol Rev,2022,15(3):327-328. |
2 |
JUSTICEM J,DHILLONP.Using the mouse to model human disease: increasing validity and reproducibility[J].Dis Model Mech,2016,9(2):101-103.
doi: 10.1242/dmm.024547 |
3 |
MURILLO-CUESTAS,ARTUCHR,ASENSIOF,et al.The value of mouse models of rare diseases: a Spanish experience[J].Front Genet,2020,11,583932.
doi: 10.3389/fgene.2020.583932 |
4 |
BAYIRE,SENDEMIRA,MISSIRLISY F.Mechanobiology of cells and cell systems, such as organoids[J].Biophys Rev,2019,11(5):721-728.
doi: 10.1007/s12551-019-00590-7 |
5 |
COJ Y,MARGALEF-CATALÀM,LIX N,et al.Controlling epithelial polarity: a human enteroid model for host-pathogen interactions[J].Cell Rep,2019,26(9):2509-2520.
doi: 10.1016/j.celrep.2019.01.108 |
6 |
RADTKEA L,WILSONJ W,SARKERS,et al.Analysis of interactions of Salmonella type three secretion mutants with 3-D intestinal epithelial cells[J].PLoS One,2010,5(12):e15750.
doi: 10.1371/journal.pone.0015750 |
7 |
DUTTAD,CLEVERSH.Organoid culture systems to study host-pathogen interactions[J].Curr Opin Immunol,2017,48,15-22.
doi: 10.1016/j.coi.2017.07.012 |
8 |
DELGADO BETANCOURTE,HAMIDB,FABIANB T,et al.From entry to early dissemination—Toxoplasma gondii's initial encounter with its host[J].Front Cell Infect Microbiol,2019,9,46.
doi: 10.3389/fcimb.2019.00046 |
9 |
KLOTZC,AEBISCHERT,SEEBERF.Stem cell-derived cell cultures and organoids for protozoan parasite propagation and studying host-parasite interaction[J].Int J Med Microbiol,2012,302(4-5):203-209.
doi: 10.1016/j.ijmm.2012.07.010 |
10 | AL-RAMADANA,MORTENSENA C,CARLSSONJ,et al.Analysis of radiation effects in two irradiated tumor spheroid models[J].Oncol Lett,2018,15(3):3008-3016. |
11 |
ACHILLIT M,MEYERJ,MORGANJ R.Advances in the formation, use and understanding of multi-cellular spheroids[J].Expert Opin Biol Ther,2012,12(10):1347-1360.
doi: 10.1517/14712598.2012.707181 |
12 |
LABARBERAD V,REIDB G,YOOB H.The multicellular tumor spheroid model for high-throughput cancer drug discovery[J].Expert Opin Drug Discov,2012,7(9):819-830.
doi: 10.1517/17460441.2012.708334 |
13 | FOTYR.A simple hanging drop cell culture protocol for generation of 3D spheroids[J].J Vis Exp,2011(51):2720. |
14 |
EDMONDSONR,BROGLIEJ J,ADCOCKA F,et al.Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors[J].Assay Drug Dev Technol,2014,12(4):207-218.
doi: 10.1089/adt.2014.573 |
15 |
RUBIOR,ABARRATEGIA,GARCIA-CASTROJ,et al.Bone environment is essential for osteosarcoma development from transformed mesenchymal stem cells[J].Stem Cells,2014,32(5):1136-1148.
doi: 10.1002/stem.1647 |
16 |
NYGAA,CHEEMAU,LOIZIDOUM.3D tumour models: novel in vitro approaches to cancer studies[J].J Cell Commun Signal,2011,5(3):239-248.
doi: 10.1007/s12079-011-0132-4 |
17 | LEFEBVREM,RAZAKANDRAINIBER,VILLENAI,et al.Cryptosporidium-biofilm interactions: a review[J].Appl Environ Microbiol,2021,87(3):e02483-20. |
18 |
STENSVOLDC R,MARTÍ-MARCOA,MORATALS,et al.Cryptosporidium occultus in disguise[J].J Microbiol Methods,2024,222,106957.
doi: 10.1016/j.mimet.2024.106957 |
19 |
WARRENC A,DESTURAR V,SEVILLEJAJ E A D,et al.Detection of epithelial-cell injury, and quantification of infection, in the HCT-8 organoid model of cryptosporidiosis[J].J Infect Dis,2008,198(1):143-149.
doi: 10.1086/588819 |
20 |
MORADAM,LEES,GUNTHER-CUMMINSL,et al.Continuous culture of Cryptosporidium parvum using hollow fiber technology[J].Int J Parasitol,2016,46(1):21-29.
doi: 10.1016/j.ijpara.2015.07.006 |
21 | DECICCO REPASSM A,CHENY,LINY N,et al.Novel bioengineered three-dimensional human intestinal model for long-term infection of Cryptosporidium parvum[J].Infect Immun,2017,85(3):e00731-16. |
22 |
BAYDOUNM,VANNESTES B,CREUSYC,et al.Three-dimensional (3D) culture of adult murine colon as an in vitro model of cryptosporidiosis: proof of concept[J].Sci Rep,2017,7(1):17288.
doi: 10.1038/s41598-017-17304-2 |
23 |
HEOI,DUTTAD,SCHAEFERD A,et al.Modelling Cryptosporidium infection in human small intestinal and lung organoids[J].Nat Microbiol,2018,3(7):814-823.
doi: 10.1038/s41564-018-0177-8 |
24 |
WILKEG,FUNKHOUSER-JONESL J,WANGY,et al.A stem-cell-derived platform enables complete Cryptosporidium development in vitro and genetic tractability[J].Cell Host Microbe,2019,26(1):123-134.
doi: 10.1016/j.chom.2019.05.007 |
25 |
SANCHEZS G,BESTEIROS.The pathogenicity and virulence of Toxoplasma gondii[J].Virulence,2021,12(1):3095-3114.
doi: 10.1080/21505594.2021.2012346 |
26 |
ATTIASM,TEIXEIRAD E,BENCHIMOLM,et al.The life-cycle of Toxoplasma gondii reviewed using animations[J].Parasites Vectors,2020,13(1):588.
doi: 10.1186/s13071-020-04445-z |
27 |
TONGW H,PAVEYC,O'HANDLEYR,et al.Behavioral biology of Toxoplasma gondii infection[J].Parasit Vectors,2021,14(1):77.
doi: 10.1186/s13071-020-04528-x |
28 |
KANATANIS,UHLÉNP,BARRAGANA.Infection by Toxoplasma gondii induces amoeboid-like migration of dendritic cells in a three-dimensional collagen matrix[J].PLoS One,2015,10(9):e0139104.
doi: 10.1371/journal.pone.0139104 |
29 |
MCCONKEYC A,DELORME-AXFORDE,NICKERSONC A,et al.A three-dimensional culture system recapitulates placental syncytiotrophoblast development and microbial resistance[J].Sci Adv,2016,2(3):e1501462.
doi: 10.1126/sciadv.1501462 |
30 | DANIELSONJ J,EREZPN,ROMANOJ D,et al.Modelling Toxoplasma gondii infection in a 3D cell culture system in vitro: comparison with infection in 2D cell monolayers[J].PLoS One,2018,13(2):e0208558. |
31 |
SEOH H,HANH W,LEES E,et al.Modelling Toxoplasma gondii infection in human cerebral organoids[J].Emerg Microbes Infect,2020,9(1):1943-1954.
doi: 10.1080/22221751.2020.1812435 |
32 |
LUUL,JOHNSTONL J,DERRICOTTH,et al.An open-format enteroid culture system for interrogation of interactions between Toxoplasma gondii and the intestinal epithelium[J].Front Cell Infect Microbiol,2019,9,300.
doi: 10.3389/fcimb.2019.00300 |
33 |
DERRICOTTH,LUUL,FONGW Y,et al.Developing a 3D intestinal epithelium model for livestock species[J].Cell Tissue Res,2019,375(2):409-424.
doi: 10.1007/s00441-018-2924-9 |
34 |
HOLTHAUSD,DELGADO-BETANCOURTE,AEBISCHERT,et al.Harmonization of protocols for multi-species organoid platforms to study the intestinal biology of Toxoplasma gondii and other protozoan infections[J].Front Cell Infect Microbiol,2021,10,610368.
doi: 10.3389/fcimb.2020.610368 |
35 |
DI GENOVAB M,WILSONS K,DUBEYJ P,et al.Intestinal delta-6-desaturase activity determines host range for Toxoplasma sexual reproduction[J].PLoS Biology,2019,17(8):e3000364.
doi: 10.1371/journal.pbio.3000364 |
36 |
DVORINJ D,GOLDBERGD E.Plasmodium egress across the parasite life cycle[J].Annu Rev Microbiol,2022,76,67-90.
doi: 10.1146/annurev-micro-041320-020659 |
37 |
SPIELMANNT,GRASS,SABITZKIR,et al.Endocytosis in Plasmodium and Toxoplasma parasites[J].Trends Parasitol,2020,36(6):520-532.
doi: 10.1016/j.pt.2020.03.010 |
38 |
CULLETONR,PAINA,SNOUNOUG.Plasmodium malariae: the persisting mysteries of a persistent parasite[J].Trends Parasitol,2023,39(2):113-125.
doi: 10.1016/j.pt.2022.11.008 |
39 |
WAIDEM L,SCHMIDTN W.The gut microbiome, immunity, and Plasmodium severity[J].Curr Opin Microbiol,2020,58,56-61.
doi: 10.1016/j.mib.2020.08.006 |
40 |
OMOROUR,BIN SA'IDI,DELVESM,et al.Protocols for Plasmodium gametocyte production in vitro: an integrative review and analysis[J].Parasites Vectors,2022,15(1):451.
doi: 10.1186/s13071-022-05566-3 |
41 |
张义伟,苏紫薇,李其龙,等.伯氏疟原虫ANKA株感染小鼠的T细胞、NK细胞及细胞因子变化[J].畜牧兽医学报,2022,53(11):4008-4018.
doi: 10.11843/j.issn.0366-6964.2022.11.026 |
ZHANGY W,SUZ W,LIQ L,et al.The changes of t cells, NK cells and cytokines in mice infected with Plasmodium berghei ANKA strain[J].Acta Veterinaria et Zootechnica Sinica,2022,53(11):4008-4018.
doi: 10.11843/j.issn.0366-6964.2022.11.026 |
|
42 |
SINGHM,SURYANSHU,KANIKA,et al.Plasmodium's journey through the Anopheles mosquito: a comprehensive review[J].Biochimie,2021,181,176-190.
doi: 10.1016/j.biochi.2020.12.009 |
43 | GARDINERD L,TRENHOLMEK R.Plasmodium falciparum gametocytes: playing hide and seek[J].Ann Transl Med,2015,3(4):45. |
44 |
RAMDANIG,NAISSANTB,THOMPSONE,et al.cAMP-signalling regulates gametocyte-infected erythrocyte deformability required for malaria parasite transmission[J].PLoS Pathog,2015,11(5):e1004815.
doi: 10.1371/journal.ppat.1004815 |
45 |
FRISCHKNECHTF,MATUSCHEWSKIK.Plasmodium sporozoite biology[J].Cold Spring Harb Perspect Med,2017,7(5):a025478.
doi: 10.1101/cshperspect.a025478 |
46 |
MÜNTERS,SABASSB,SELHUBER-UNKELC,et al.Plasmodium sporozoite motility is modulated by the turnover of discrete adhesion sites[J].Cell Host Microbe,2009,6(6):551-562.
doi: 10.1016/j.chom.2009.11.007 |
47 |
BRAUMANNF,KLUGD,KEHRERJ,et al.Conformational change of Plasmodium TRAP is essential for sporozoite migration and transmission[J].EMBO Rep,2023,24(7):e57064.
doi: 10.15252/embr.202357064 |
48 | CARNEVALEA.Aportaciones de un servicio de genética al estudio de los pacientes de un hospital pediátrico[J].Gac Méd Méx,1986,122(5-6):149-156. |
49 |
ARÉVALO-PINZÓNG,GARZÓN-OSPINAD,PULIDOF A,et al.Plasmodium vivax cell traversal protein for ookinetes and sporozoites (CelTOS) functionally restricted regions are involved in specific host-pathogen interactions[J].Front Cell Infect Microbiol,2020,10,119.
doi: 10.3389/fcimb.2020.00119 |
50 |
NIKLAUSL,AGOP-NERSESIANC,SCHMUCKLI-MAURERJ,et al.Deciphering host lysosome-mediated elimination of Plasmodium berghei liver stage parasites[J].Sci Rep,2019,9(1):7967.
doi: 10.1038/s41598-019-44449-z |
51 |
SALAZAR ALVAREZL C,VERA LIZCANOO,DA SILVA BARROSD K A,et al.Plasmodium vivax gametocytes adherence to bone marrow endothelial cells[J].Front Cell Infect Microbiol,2021,11,614985.
doi: 10.3389/fcimb.2021.614985 |
52 |
MELLINR,BODDEYJ A.Organoids for liver stage malaria research[J].Trends Parasitol,2020,36(2):158-169.
doi: 10.1016/j.pt.2019.12.003 |
53 |
KIMJ,KOOB K,KNOBLICHJ A.Human organoids: model systems for human biology and medicine[J].Nat Rev Mol Cell Biol,2020,21(10):571-584.
doi: 10.1038/s41580-020-0259-3 |
54 |
AREZF,REBELOS P,FONTINHAD,et al.Flexible 3D cell-based platforms for the discovery and profiling of novel drugs targeting Plasmodium hepatic infection[J].ACS Infect Dis,2019,5(11):1831-1842.
doi: 10.1021/acsinfecdis.9b00144 |
55 |
CHUAA C Y,ANANTHANARAYANANA,ONGJ J Y,et al.Hepatic spheroids used as an in vitro model to study malaria relapse[J].Biomaterials,2019,216,119221.
doi: 10.1016/j.biomaterials.2019.05.032 |
56 |
RIPPJ,KEHRERJ,SMYRNAKOUX,et al.Malaria parasites differentially sense environmental elasticity during transmission[J].EMBO Mol Med,2021,13(4):e13933.
doi: 10.15252/emmm.202113933 |
57 | QUIROZ-CASTAÑEDAR E,DANTÁN-GONZÁLEZE.Control of avian coccidiosis: future and present natural alternatives[J].Biomed Res Int,2015,2015,430610. |
58 | FERNANDES DE MOURA GUEDES J P. Host-pathogen interactions at the intestinal epithelial barrier[D]. Cambridge: University of Cambridge, 2018. |
59 |
NASHT J,MORRISK M,MABBOTTN A,et al.Inside-out chicken enteroids with leukocyte component as a model to study host-pathogen interactions[J].Commun Biol,2021,4(1):377.
doi: 10.1038/s42003-021-01901-z |
60 |
ARENDTM,ELISSAJ,SCHMIDTN,et al.Investigating the role of interleukin 10 on Eimeria intestinal pathogenesis in broiler chickens[J].Vet Immunol Immunopathol,2019,218,109934.
doi: 10.1016/j.vetimm.2019.109934 |
[1] | CHEN Yuancai, HUANG Jianying, QIN Huikai, ZHANG Longxian. Advances in Genomics of Cryptosporidium [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1059-1064. |
[2] | Ruiying LIANG, Jingxia SUO, Lin LIANG, Xianyong LIU, Jiabo DING, Xun SUO, Xinming TANG. Genetic Manipulation of Eimeria: Platform Development, Application, and Perspective [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3362-3373. |
[3] | XIAO Ke, CHEN Ting, ZHAO Qiping, ZHU Shunhai, DONG Hui, LIU Manyu, YU Yu, HUANG Bing, HAN Hongyu. Preliminary Study on the Characteristics and Functions of HD Dome-containing Proteins in Eimeria tenella [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2608-2620. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||