

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (11): 5912-5924.doi: 10.11843/j.issn.0366-6964.2025.11.046
• Clinical Veterinary Medicine • Previous Articles Next Articles
KANG Xin1(
), XU Xiangyang1, HAN Aige1, SONG Fei1, RUI Huiyuan1, JIANG Xiaowen1,3, GE Ming1,3, YU Wenhui1,2,*(
)
Received:2025-02-06
Online:2025-11-23
Published:2025-11-27
Contact:
YU Wenhui
E-mail:1120064738@qq.com;yuwenhui@neau.edu.cn
CLC Number:
KANG Xin, XU Xiangyang, HAN Aige, SONG Fei, RUI Huiyuan, JIANG Xiaowen, GE Ming, YU Wenhui. Effect of Exogenous Melatonin Intervention on Corticosterone Synthesis in Broilers under Chronic Heat Stress Conditions[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5912-5924.
Table 1
Key antibodies used in this study"
| 抗体 Antibodys | 来源 Source | 货号 Identifier | 稀释比例 Dilution ratio |
| Anti-HSP70 antibody | Bioss | bs-0244R | 1∶1 000 |
| Anti-MT1 antibody | Bioss | bs-0027R | 1∶1 000 |
| Anti-MT2 antibody | Bioss | bs-0963R | 1∶1 000 |
| Anti-PKA antibody | Bioss | bs-0520R | 1∶1 000 |
| Anti-CYP11A1 antibody | Bioss | bs-3608R | 1∶1 000 |
| Anti-CREB antibody | Wanleibio | WL01848 | 1∶1 000 |
| Anti-CYP11B1 antibody | Wanleibio | WL05422 | 1∶1 000 |
| Anti-P-CREB antibody | Abways | CY5043 | 1∶1 000 |
| Anti-StAR antibody | Abclonal | A22166 | 1∶2 000 |
| Anti-Rabbit IgG H&L antibody | Bioss | bs-0295G-HRP | 1∶10 000 |
| Anti-Beta tubulin antibody | Bioss | bs-4511R | 1∶10 000 |
Table 2
Sequences of oligonucleotide primers for qRT-PCR"
| 基因名称 Gene names | 序列(5′ → 3′) Sequence | 方向 Orientation | NCBI编号 NCBI No. |
| GAPDH | TATCTTCCAGGAGCGTGAC | Forward | NM_204305.2 |
| ATCTGCCCATTTGATGTTGC | Reverse | ||
| MT1 | TCCTGGTCATCCTCTCGGT | Forward | NM_205362.2 |
| CGTTCCGCAGTTTCTTGTTG | Reverse | ||
| MT2 | TGCTGATCTTCACCACCGT | Forward | NM_001293103.2 |
| AGGTTGCCCAAAATGTCCAC | Reverse | ||
| PKA | ATCACGTCTCTGAACTTGCT | Forward | XM_025152948.2 |
| ACTCTTCCGAATGATCCTGT | Reverse | ||
| CREB | CTAATAAGGCAGTAGATACCG | Forward | XM_040653773.2 |
| GAACACGTTTAACTTCCACT | Reverse | ||
| CYP11A1 | TGGCTCAACCTGTACCACT | Forward | NM_001001756.2 |
| ACGTTGTGGAAGCCTCCCTC | Reverse | ||
| HSD3B1 | CCCTCAATCATCCCCAGA | Forward Reverse | XM_046906757.1 |
| TTATTCAACATCTCCGTGCT | Reverse |
Table 3
The effect of melatonin on the growth performance of broiler chickens ($\bar x \pm s$${\bar x}$)"
| 项目Item | 组别Group | |||||
| CON | CONH | HS | HSL | HSM | HSH | |
| 0-7 d ADG | 57.14±4.59 | 48.57±4.19 | 42.38±2.42 | 44.76±1.67 | 49.05±2.68 | 32.62±6.67 |
| 7-14 d ADG | 51.11±5.96 | 61.98±2.63 | 51.98±3.02 | 55.02±4.68 | 38.10±1.46 | 39.60±1.93 |
| 14-21 d ADG | 78.17±3.61 | 57.22±2.24* | 38.49±3.95#### | 63.17±3.79@@ | 53.25±4.40 | 46.35±2.01 |
| 0-21 d ADG | 62.14±1.17 | 55.93±1.20 | 44.29±1.55### | 54.32±2.91@ | 46.80±0.88 | 39.52±1.85 |
| 胸肌指数/% Breast muscle index | 0.182±0.001 | 0.165±0.005 | 0.161±0.006 | 0.143±0.002 | 0.165±0.008 | 0.192±0.006@ |
| F/G | 2.770±0.028 | 2.624±0.058 | 2.783±0.028 | 2.671±0.028 | 2.802±0.010 | 2.587±0.065@ |
Fig. 1
Effects of melatonin on heat stress-related indicators (n=3) A. Serum levels of HSP70; B. Serum levels of CORT; C. Relative protein level of HSP70; D. Serum levels of melatonin; E. Protein levels of HSP70 in adrenal gland; F. GSH-Px activity in serum; G. Serum levels of GSH; H. SOD activity in serum. Symbol (*) represents the significant difference between the CONH group and the CON group, *.P < 0.05, **.P < 0.01, ***.P < 0.001, ****.P < 0.000 1; Symbol (#) represents the significant difference between HS group and CON group, #.P < 0.05, ##.P < 0.01, ###.P < 0.001, ####.P < 0.000 1; Symbol (@) represents the significant difference between Mel intervention group and HS group, @.P < 0.05, @@.P < 0.01, @@@.P < 0.001, @@@@.P < 0.000 1, the same as below"
Fig. 5
Effect of Mel on synthesis and secretion of adrenal corticosterone in broilers (n=3) A. Protein levels of StAR, CYP11A1 and CYP11B1 in adrenal gland; B. The mRNA levels of CYP11A1; C. The mRNA levels of HSD3B1; D. Relative protein level of CYP11A1; E. Relative protein level of CYP11B1; F. Relative protein level of StAR"
| 1 |
NICLOU M A , CHEN Y K , REDMAN M L . The juxtaposition between heat stress from global warming and human health[J]. J Appl Physiol, 2024, 136 (6): 1346- 1347.
doi: 10.1152/japplphysiol.00281.2024 |
| 2 | TAN X D , LIU R R , ZHAO D , et al. Large-scale genomic and transcriptomic analyses elucidate the genetic basis of high meat yield in chickens[J]. J Adv Res, 2023, 55, 1- 16. |
| 3 | VANDANA D G , SEJIAN V , LEES M A , et al. Heat stress and poultry production: impact and amelioration[J]. Int J Biometeorol, 2020, 65 (2): 1- 17. |
| 4 |
MCKECHNIE A E , WOLF B O . Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves[J]. Biol Lett, 2010, 6 (2): 253- 256.
doi: 10.1098/rsbl.2009.0702 |
| 5 |
CAO X H , GUO L Y , ZHOU C M , et al. Effects of N-acetyl-l-cysteine on chronic heat stress-induced oxidative stress and inflammation in the ovaries of growing pullets[J]. Poult Sci, 2023, 102 (1): 102274.
doi: 10.1016/j.psj.2022.102274 |
| 6 |
ZHANG J F , BAI K W , SU W P , et al. Curcumin attenuates heat-stress-induced oxidant damage by simultaneous activation of GSH-related antioxidant enzymes and Nrf2-mediated phase Ⅱ detoxifying enzyme systems in broiler chickens[J]. Poult Sci, 2018, 97 (4): 1209- 1219.
doi: 10.3382/ps/pex408 |
| 7 |
ZABOLI G , HUANG X , FENG X , AHN D U . How can heat stress affect chicken meat quality?-a review[J]. Poult Sci, 2019, 98 (3): 1551- 1556.
doi: 10.3382/ps/pey399 |
| 8 |
PARDIS N , IDRUS Z , AMAT N J , et al. Environmental temperature and stocking density effects on acute phase proteins, heat shock protein 70, circulating corticosterone and performance in broiler chickens[J]. Int J Biometeorol, 2015, 59 (11): 1577- 1583.
doi: 10.1007/s00484-015-0964-3 |
| 9 |
ZAYTSOFF S J M , BORAS V F , UWIERA R R E , et al. A stress-induced model of acute necrotic enteritis in broiler chickens using dietary corticosterone administration[J]. Poult Sci, 2022, 101 (4): 101726.
doi: 10.1016/j.psj.2022.101726 |
| 10 | YUN H , QINWEI S , JIE L , et al. In ovo injection of betaine alleviates corticosterone-induced fatty liver in chickens through epigenetic modifications[J]. Sci Rep, 2017, 7 (1-4): 40251. |
| 11 |
JOSEPH T T , SCHUCH V , HOSSACK J D , et al. Melatonin: the placental antioxidant and anti-inflammatory[J]. Front Immunol, 2024, 15, 1339304.
doi: 10.3389/fimmu.2024.1339304 |
| 12 |
JANA T , DESISLAVA K , PETJ I , et al. The role of melatonin deficiency induced by pinealectomy on motor activity and anxiety responses in young adult, middle-aged and old rats[J]. Behav Brain Funct, 2024, 20 (1): 3.
doi: 10.1186/s12993-024-00229-y |
| 13 |
HARA T , OTSUKA F , TSUKAMOTO-YAMAUCHI N , et al. Mutual effects of melatonin and activin on induction of aldosterone production by human adrenocortical cells[J]. J Steroid Biochem Mol Biol, 2015, 152, 8- 15.
doi: 10.1016/j.jsbmb.2015.04.012 |
| 14 |
CLARK W D , CLASSEN H L . The effects of continuously or diurnally fed melatonin on broiler performance and health[J]. Poult Sci, 1995, 74 (11): 1900- 1904.
doi: 10.3382/ps.0741900 |
| 15 |
HAO E Y , LIU X L , CHANG L Y , et al. Melatonin alleviates endoplasmic reticulum stress to improve ovarian function by regulating the mTOR pathway in aged laying hens[J]. Poult Sci, 2024, 103 (6): 103703.
doi: 10.1016/j.psj.2024.103703 |
| 16 |
ZHOU G , ZHANG J , LIU S , et al. Potential of exogenous melatonin administration to mitigate heat stress induce pathophysiology of chicken[J]. J Therm Biol, 2024, 122, 103883.
doi: 10.1016/j.jtherbio.2024.103883 |
| 17 |
BAI M , LIU H , XU K , et al. A review of the immunomodulatory role of dietary tryptophan in livestock and poultry[J]. Amino Acids, 2017, 49 (1): 67- 74.
doi: 10.1007/s00726-016-2351-8 |
| 18 |
WU Q , YANG F , TANG H . Based on network pharmacology method to discovered the targets and therapeutic mechanism of Paederia scandens against nonalcoholic fatty liver disease in chicken[J]. Poult Sci, 2021, 100 (4): 101042.
doi: 10.1016/j.psj.2021.101042 |
| 19 |
ZHANG H Y , KONG Q B , WANG J , et al. Complex roles of cAMP-PKA-CREB signaling in cancer[J]. Exp Hematol Oncol, 2020, 9 (1): 32.
doi: 10.1186/s40164-020-00191-1 |
| 20 |
OKAMOTO H H , CECON E , NUREKI O , et al. Melatonin receptor structure and signaling[J]. J Pineal Res, 2024, 76 (3): e12952.
doi: 10.1111/jpi.12952 |
| 21 | JIN W , MA R , ZHAI L , et al. Ginsenoside Rd attenuates ACTH-induced corticosterone secretion by blocking the MC2R-cAMP/PKA/CREB pathway in Y1 mouse adrenocortical cells[J]. Life Sci, 2020, 245 (C): 117337. |
| 22 | MANGAN M , SIWEK M . Strategies to combat heat stress in poultry production-A review[J]. J Anim Physiol Anim Nutr (Berl), 2023, 108 (3): 576- 595. |
| 23 |
NAWAB A , IBTISHAM F , LI G , et al. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry[J]. J Therm Biol, 2018, 78, 131- 139.
doi: 10.1016/j.jtherbio.2018.08.010 |
| 24 |
MAJID S , HUU H L . Deleterious effects of heat stress on poultry production: unveiling the benefits of betaine and polyphenols[J]. Poultry, 2022, 1 (3): 147- 156.
doi: 10.3390/poultry1030013 |
| 25 |
ROUSHDY M E , ZAGLOOL W A , EL-TARABANY S M . Effects of chronic thermal stress on growth performance, carcass traits, antioxidant indices and the expression of HSP70, growth hormone and superoxide dismutase genes in two broiler strains[J]. J Therm Biol, 2018, 74, 337- 343.
doi: 10.1016/j.jtherbio.2018.04.009 |
| 26 |
SHAN X , XU X , WANG L , et al. Dietary curcumin supplementation attenuates hepatic damage and function abnormality in a chronic corticosterone-induced stress model in broilers[J]. J Steroid Biochem Mol Biol, 2024, 243, 106579.
doi: 10.1016/j.jsbmb.2024.106579 |
| 27 | ZHANG R , SUN J , WANG Y , et al. Ameliorative effect of phenolic compound-pterostilbene on corticosterone-induced hepatic lipid metabolic disorder in broilers[J]. J Nutr Biochem, 2024, 137, 109822. |
| 28 |
BALLUR A F H , ALTINOZ E , YIGITTURK G , et al. Influence of pinealectomy and long-term melatonin administration on inflammation and oxidative stress in experimental gouty arthritis[J]. Inflammation, 2022, 45 (3): 1332- 1347.
doi: 10.1007/s10753-022-01623-2 |
| 29 |
ZIAEI S , HASANI M , MALEKAHMADI M , et al. Effect of melatonin supplementation on cardiometabolic risk factors, oxidative stress and hormonal profile in PCOS patients: a systematic review and meta-analysis of randomized clinical trials[J]. J Ovarian Res, 2024, 17 (1): 138.
doi: 10.1186/s13048-024-01450-z |
| 30 |
ANDERSEN L P , GÖGENUR I , ROSENBERG J , et al. The safety of melatonin in humans[J]. Clin Drug Investig, 2016, 36 (3): 169- 175.
doi: 10.1007/s40261-015-0368-5 |
| 31 |
FISCHER T W , KLESZCZYN'SKI K , HARDKOP L H , et al. Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion, and protects against the formation of DNA damage (8-hydroxy-2'-deoxyguanosine) in ex vivo human skin[J]. J Pineal Res, 2013, 54 (3): 303- 312.
doi: 10.1111/jpi.12018 |
| 32 |
BOCHEVA G , BAKALOV D , ILIEV P , et al. The vital role of melatonin and its metabolites in the neuroprotection and retardation of brain aging[J]. Int J Mol Sci, 2024, 25 (10): 5122.
doi: 10.3390/ijms25105122 |
| 33 |
CHIN K V , YANG W L , RAVATN R , et al. Reinventing the wheel of cyclic AMP: novel mechanisms of cAMP signaling[J]. Ann N Y Acad Sci, 2002, 968 (1): 49- 64.
doi: 10.1111/j.1749-6632.2002.tb04326.x |
| 34 |
TSE H L , CHEUNG T S , LEE S , et al. Real-time determination of intracellular cAMP reveals functional coupling of Gs protein to the melatonin MT1 receptor[J]. I Int J Mol Sci, 2024, 25 (5): 2919.
doi: 10.3390/ijms25052919 |
| 35 | LEWIS A E , AESOY R , BAKKE M . Role of EPAC in cAMP-mediated actions in adrenocortical cells[J]. Front Endocrinol, 2016, 7, 63. |
| 36 |
CHEN D , WANG J , CAO J , et al. cAMP-PKA signaling pathway and anxiety: Where do we go next?[J]. Cell Sign, 2024, 122, 111311.
doi: 10.1016/j.cellsig.2024.111311 |
| 37 |
KHANNPNAVAR B , MEHTA V , QI C , et al. Structure and function of adenylyl cyclases, key enzymes in cellular signaling[J]. Curr Opin Str Biol, 2020, 63, 34- 41.
doi: 10.1016/j.sbi.2020.03.003 |
| 38 |
STWORA K K , KOZLOWSKA A , JASTRZABEK D , et al. Impact of endocrine-active compounds on adrenal androgen production in pigs during neonatal period[J]. Environ Toxicol Pharmacol, 2024, 107, 104435- 104435.
doi: 10.1016/j.etap.2024.104435 |
| 39 | PIHLAJOKI M , DÖRNER J , COCHRAN R S , et al. Adrenocortical zonation, renewal, and remodeling[J]. Front Endocrinol, 2015, 6, 27. |
| 40 |
LIM H S , LEE S H , SEO H , et al. Early stage ultraviolet irradiation damage to skin collagen can be suppressed by HPA axis control via controlled CYP11B[J]. Biomed Pharmacother, 2022, 155, 113716.
doi: 10.1016/j.biopha.2022.113716 |
| 41 |
IRENE M , ALFONSO B G , JULIA C , et al. Pharmacokinetics of exogenous melatonin in relation to formulation, and effects on sleep: a systematic review[J]. Sleep Med Rev, 2021, 57, 101431- 101431.
doi: 10.1016/j.smrv.2021.101431 |
| 42 |
ANDERSEN L P , WERNER M U , ROSENKILDE M M , et al. Pharmacokinetics of oral and intravenous melatonin in healthy volunteers[J]. BMC Pharmacol Toxicol, 2016, 17 (1): 8.
doi: 10.1186/s40360-016-0052-2 |
| 43 |
SÉBASTIEN L , CLAIRE F , M G A , et al. Melatonin: From pharmacokinetics to clinical use in autism spectrum disorder[J]. Int J Mol Sci, 2021, 22 (3): 1490.
doi: 10.3390/ijms22031490 |
| 44 | 荆瀛黎, 武清斌, 苑晓晨, 等. 褪黑素对人体睡眠和血压的影响[J]. 现代生物医学进展, 2013, 13 (11): 2165- 2167. |
| JING Y L , WU Q B , YUAN X C , et al. The effect of melalonin on human sleep and blood pressure[J]. Progress in Modern Biomedicine, 2013, 13 (11): 2165- 2167. | |
| 45 |
ZISAPEL N . New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation[J]. Br J Pharmacol, 2018, 175 (16): 3190- 3199.
doi: 10.1111/bph.14116 |
| [1] | ZHENG Lin, WEI Bingdong, HUA Feng, CHEN Long, DING Yuan. Therapeutic Effect of Lytic Phage on Salmonella enteritidis Infection in Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1314-1327. |
| [2] | BAI Lu, WANG Mengjie, MA Xiaochun, HE Zhengxiao, KONG Fuli, LIU Dawei, YING Fan, ZHU Dan, ZHAO Guiping, WEN Jie, LIU Ranran. Study of the Alteration of Wooden Breast Histological and Molecular Regulatory Pathways in Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1915-1926. |
| [3] | LIU Jie, CONG Wei, ZHAO Mindie, ZHAO Ruqian. Expression of GR and FKBP5 in Hippocampus and Hypothalamus of Arbor Acres and Rugao Yellow Broiler Chickens and Its Relationship with Stress Sensitivity [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4766-4776. |
| [4] | ZHANG Anrong, WU Zhengke, CHEN Zhimin, CHANG Wenhuan, CAI Huiyi, LIU Guohua, ZHENG Aijuan. Unraveling Molecular Mechanism of Acute Immunological Stress Affecting Meat Quality of Broiler Chickens by Proteomics Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(8): 2138-2150. |
| [5] | YANG Lamei, ZHANG Ting, ZHANG Ding. Pathological Diagnosis of a Case of Liver Malignant Melanoma in Broiler Chicken [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(1): 268-272. |
| [6] | DING Peng, HUANG Xiangxiang, SONG Zehe, FAN Zhiyong, GUO Yuming, HE Xi. Evaluation and Prediction Model of Metabolic Energy of Rapeseed Meal for Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(12): 2449-2457. |
| [7] | ZHOU Hua-jin, HU Xi-yi, YANG Jia-chang, DING Xiang-wen, WANG Yu, SONG Zhi-gang. Effects of Heat Stress on Gene Expression of AMPKα1 and Lipid Metabolism Related Molecules in the Liver of Broiler Chickens [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2018, 49(1): 102-110. |
| [8] | ZHANG Xian-ling, LIANG Chen-chong, YU Hui-min, CHEN Bao-jiang,LI Jun-guo, LI Xue-jun, YANG Lu-liang, SHANG Hai-ou. Effect of New Heat-resistant Phytase on Growth Performance and Blood Biochemical and Physiological Parameters of Broiler Chickens [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2013, 44(4): 570-576. |
| [9] | TIAN Wen-xia;QIN Ping;ZHANG Yan-hong;LI Jia-kui;BI Ding-ren;PAN Si-yi;GUO Ding-zong. Changes of Collogen Type I and Heat Shock Protein 90 at the Different Stages of Broiler Tibial Dyschondroplasia [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2009, 40(3): 428-432. |
| [10] | GAO Jing;SONG Zhi-gang;JIAO Hong-chao;LIN Hai. Effect of Corticosterone Treatment at Different Hatching Time on Embryo Development of Broiler Chickens [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2008, 39(9): 1224-1229. |
| [11] | ZHANG Li-bin;GUO Yu-ming. Effects of Liquid DLMethionine Hydroxy Analogue on Growth Performance and Immune Responses in Broiler Chickens [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2008, 39(9): 1204-1211. |
| [12] | LIU Yong-xiang;LIU Yan-li;HUANG Yan-kun;GUO Yu-ming. Effects of Dietary Magnesium Asparatate Supplementation on Lipid Peroxidation Status in the Liver and the Thigh Muscles of Broiler Chickens [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2008, 39(10): 1349-1354. |
| [13] | DONG Shi-shan;LI Kai;WANG Ying-chun;YANG Ying;SUN Mao-hong;OU De-yuan;LI Jing;YANG Yu-cheng;QIAO Jian. The Relationship between Hypoxia and Expression of c-fos,c-myc in Broiler’s Pulmonary Arterial Smooth Muscle Cell [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2006, 37(7): 731-734. |
| [14] | TIAN Ya-dong;CAI Hui-yi;LIU Guo-hua;CHEN Bao-jiang;KANG Xiang-tao. Modeling Growth, Carcass and Feather Protein Deposition in Broiler Chickens [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2006, 37(10): 1003-1008. |
| [15] | LI Jing;QIAO Jian;GAO Ming-yu;OU De-yuan;ZOU Shu-mei;WANG Hui-yu. Dynamic Blood Gas Analysis of Broiler Chickens Under 37℃ Constant Heatstress [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2005, 36(5): 471-475. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||