| 1 |
ZHANG Z B , ZHANG S S , WANG G S , et al. Role of microRNA and long non-coding RNA in Marek's disease tumorigenesis in chicken[J]. Res Vet Sci, 2021, 135, 134- 142.
doi: 10.1016/j.rvsc.2021.01.007
|
| 2 |
DAVIDSON I . Out of sight, but not out of mind: Aspects of the avian oncogenic herpesvirus, Marek's disease virus[J]. Animals(Basel), 2020, 10 (8): 1319.
|
| 3 |
BAATEN B J , BUTTER C , DAVISON T F . Study of host-pathogen interactions to identify sustainable vaccine strategies to Marek's disease[J]. Vet Immunol Immunopathol, 2004, 100 (3-4): 165- 177.
doi: 10.1016/j.vetimm.2004.04.009
|
| 4 |
LIAO Y F , BAJWA K , REDDY S M , et al. Methods for the manipulation of herpesvirus genome and the application to Marek's disease virus research[J]. Microorganisms, 2021, 9 (6): 1260.
doi: 10.3390/microorganisms9061260
|
| 5 |
ZHU Z J , TENG M , LIU Y , et al. Immune escape of avian oncogenic Marek's disease herpesvirus and antagonistic host immune responses[J]. NPJ Vaccines, 2024, 9 (1): 109.
doi: 10.1038/s41541-024-00905-0
|
| 6 |
李真真, 吕洁丽, 张来宾, 等. 艾叶的化学成分及药理作用研究进展[J]. 国际药学研究杂志, 2016, 43 (6): 1059- 1066.
|
|
LI Z Z , LV J L , ZHANG L B , et al. Chemical constituents and pharmacology activities of Artemisia argyi: research advances[J]. Journal of International Pharmaceutical Research, 2016, 43 (6): 1059- 1066.
|
| 7 |
兰晓燕, 张元, 朱龙波, 等. 艾叶化学成分、药理作用及质量研究进展[J]. 中国中药杂志, 2020, 45 (17): 4017- 4030.
|
|
LAN X Y , ZAHNG Y , ZHU L B , et al. Research progress on chemical constituents from Artemisiae Argyi Folium and their pharmacological activities and quality control[J]. China Journal of Chinese Materia Medica, 2020, 45 (17): 4017- 4030.
|
| 8 |
LIU Y , HE Y N , WANG F , et al. From longevity grass to contemporary soft gold: Explore the chemical constituents, pharmacology, and toxicology of Artemisia argyi H. Lév. & vaniot essential oil[J]. J Ethnopharmacol, 2021, 279, 114404.
doi: 10.1016/j.jep.2021.114404
|
| 9 |
吴雨泉, 陈虹秀, 张磊磊, 等. 艾叶精油的应用进展及开发前景[J]. 安徽农业科学, 2022, 50 (22): 6- 10.
|
|
WU Y Q , CHEN H X , ZHANG L L , et al. Application progress and development prospect of Artemisia argyi essential oil[J]. Journal of Anhui Agricultural Science, 2022, 50 (22): 6- 10.
|
| 10 |
CHEN L L , ZHANG H J , CHAO J , et al. Essential oil of Artemisia argyi suppresses inflammatory responses by inhibiting JAK/STATs activation[J]. J Ethnopharmacol, 2017, 204, 107- 117.
doi: 10.1016/j.jep.2017.04.017
|
| 11 |
张雪琳, 陈新旺, 吴毅明. 近10年来艾叶挥发油的化学成分及药理活性研究进展[J]. 中华中医药学刊, 2021, 39 (5): 111- 118.
|
|
ZHANG X L , CHEN X W , WU Y M . Research progress on chemical constituents and pharmacological activities of volatile oil of Artemisia argyi[J]. Chinese Archives of Traditional Chinese Medicine, 2021, 39 (5): 111- 118.
|
| 12 |
LI D Y , WANG R , YOU M , et al. The antimicrobial effect and mechanism of the Artemisia argyi essential oil against bacteria and fungus[J]. Braz J Microbiol, 2024, 55 (1): 727- 735.
doi: 10.1007/s42770-023-01172-2
|
| 13 |
韩轶, 戴璨, 汤璐瑛. 艾叶挥发油抗病毒作用的初步研究[J]. 氨基酸和生物资源, 2005 (2): 14- 16.
|
|
HAN Y , DAI C , TANG L Y . Preliminary study on the antiviral effects of essential oil from Artemisia argyi[J]. Amino Acids & Biotic Resources, 2005 (2): 14- 16.
|
| 14 |
ZHANG Z L , FU X Q , WANG Y R , et al. In vivo anti-hepatitis B activity of Artemisia argyi essential oil-loaded nanostructured lipid carriers. Study of its mechanism of action by network pharmacology and molecular docking[J]. Phytomedicine, 2023, 116, 154848.
doi: 10.1016/j.phymed.2023.154848
|
| 15 |
WAN T , LI J Z , LIU J Y , et al. The therapeutic efficacy and molecular mechanisms of Artemisia argyi essential oil in treating feline herpesvirus infection via nasal drops[J]. Vet Sci, 2025, 12 (2): 80.
|
| 16 |
吴生兵, 曹健, 汪天明, 等. 艾叶挥发油抗真菌及抗带状疱疹病毒的实验研究[J]. 安徽中医药大学学报, 2015, 34 (6): 70- 71.
|
|
WU S B , CAO J , WANG T M , et al. Experimental study on the antifungal and anti-herpetic properties of Artemisia essential oil[J]. Journal of Anhui University of Chinese Medicine, 2015, 34 (6): 70- 71.
|
| 17 |
SADDI M , SANNA A , COTTIGLIA F , et al. Antiherpevirus activity of Artemisia arborescens essential oil and inhibition of lateral diffusion in Vero cells[J]. Ann Clin Microbiol Antimicrob, 2007, 6, 10.
doi: 10.1186/1476-0711-6-10
|
| 18 |
DORANGE F , TISCHER B K , VAUTHEROT J F , et al. Characterization of Marek's disease virus serotype 1 (MDV-1) deletion mutants that lack UL46 to UL49 genes: MDV-1 UL49, encoding VP22, is indispensable for virus growth[J]. J Virol, 2002, 76 (4): 1959- 1970.
doi: 10.1128/JVI.76.4.1959-1970.2002
|
| 19 |
TRAPP-FRAGNET L , COURVOISIER K , REMY S , et al. Identification of Marek's disease virus VP22 tegument protein domains essential for virus cell-to-cell spread, nuclear localization, histone association and cell-cycle arrest[J]. Viruses, 2019, 11 (6): 537.
doi: 10.3390/v11060537
|
| 20 |
LIAN X , BAO C Y , LI X Q , et al. Marek's disease virus disables the ATR-Chk1 pathway by activating STAT3[J]. J Virol, 2019, 93 (9): e02290- 18.
|
| 21 |
ROCA SUAREZ A A , VAN RENNE N , BAUMERT T F , et al. Viral manipulation of STAT3:Evade, exploit, and injure[J]. PLoS Pathog, 2018, 14 (3): e1006839.
doi: 10.1371/journal.ppat.1006839
|
| 22 |
GHARIBI T , BABALOO Z , HOSSEINI A , et al. Targeting STAT3 in cancer and autoimmune diseases[J]. Eur J Pharmacol, 2020, 878, 173107.
doi: 10.1016/j.ejphar.2020.173107
|
| 23 |
HAO Y P , YAN Z N , ZHANG A W , et al. IL-6/STAT3 mediates the HPV18 E6/E7 stimulated upregulation of MALAT1 gene in cervical cancer HeLa cells[J]. Virus Res, 2020, 281, 197907.
doi: 10.1016/j.virusres.2020.197907
|
| 24 |
MOHAMED A H , AHMED A T , AL ABDULMONEM W , et al. Interleukin-6 serves as a critical factor in various cancer progression and therapy[J]. Med Oncol, 2024, 41 (7): 182.
doi: 10.1007/s12032-024-02422-5
|
| 25 |
RIVERA-SOTO R , DISSINGER N J , DAMANIA B . Kaposi's sarcoma-associated herpesvirus viral Interleukin-6 signaling upregulates integrin β3 levels and is dependent on STAT3[J]. J Virol, 2020, 94 (5): e01384- 19.
|
| 26 |
GUO Y J , PAN W W , LIU S B , et al. ERK/MAPK signalling pathway and tumorigenesis[J]. Exp Ther Med, 2020, 19 (3): 1997- 2007.
|
| 27 |
QIN D , FENG N H , FAN W F , et al. Activation of PI3K/AKT and ERK MAPK signal pathways is required for the induction of lytic cycle replication of Kaposi's sarcoma-associated herpesvirus by herpes simplex virus type 1[J]. BMC Microbiol, 2011, 11, 240.
doi: 10.1186/1471-2180-11-240
|
| 28 |
COLAP I , PENNISI R , VENUTI A , et al. The ERK-1 function is required for HSV-1-mediated G1/S progression in HEP-2 cells and contributes to virus growth[J]. Sci Rep, 2017, 7 (1): 9176.
doi: 10.1038/s41598-017-09529-y
|
| 29 |
KUNG C P , MECKS D G Jr , RAAB-TRAUB N . Epstein-Barr virus LMP1 activates EGFR, STAT3, and ERK through effects on PKCdelta[J]. J Virol, 2011, 85 (9): 4399- 4408.
doi: 10.1128/JVI.01703-10
|