

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (9): 4410-4421.doi: 10.11843/j.issn.0366-6964.2025.09.023
• Animal Genetics and Breeding • Previous Articles Next Articles
					
													QIAN Li1(
), LIANG Mang1, DENG Tianyu1,2, DU Lili1, LI Keanning1, QIU Shiyuan1, XUE Qingqing1,3, ZHANG Lupei1, GAO Xue1, XU Lingyang1, ZHENG Caihong1, LI Junya1, GAO Huijiang1,*(
)
												  
						
						
						
					
				
Received:2025-02-26
															
							
															
							
															
							
																	Online:2025-09-23
															
							
																	Published:2025-09-30
															
						Contact:
								GAO Huijiang   
																	E-mail:pbli0201@163.com;gaohuijiang@caas.cn
																					CLC Number:
QIAN Li, LIANG Mang, DENG Tianyu, DU Lili, LI Keanning, QIU Shiyuan, XUE Qingqing, ZHANG Lupei, GAO Xue, XU Lingyang, ZHENG Caihong, LI Junya, GAO Huijiang. Improving Genomic Prediction Accuracy via Auto-encoder-based Compression of Transcriptome Data[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4410-4421.
Table 1
Model architecture and parameters of KRR in Huaxi cattle dataset and rice dataset"
| 数据集 Dataset  |  性状 Trait  |  输入数据类型 Input data type  |  模型 Model  |  α Alpha  |  λ Lambda  |  核函数 Kernel  |  
| 华西牛 Huaxi cattle  |  宰前活重 Live weight  |  基因组Genome | KRR_G | 0.5 | 0.1 | rbf | 
| 转录组Transcriptome | KRR_T | 0.5 | 0.1 | rbf | ||
| 胴体重 Carcass weight  |  基因组Genome | KRR_G | 0.5 | 0.1 | rbf | |
| 转录组Transcriptome | KRR_T | 0.5 | 0.1 | rbf | ||
| 净肉重 Net meat weight  |  基因组Genome | KRR_G | 0.5 | 0.01 | rbf | |
| 转录组Transcriptome | KRR_T | 0.4 | 0.1 | rbf | ||
| 水稻 Rice  |  单株产量 Yield  |  基因组Genome | KRR_G | 1.0 | default | rbf | 
| 转录组Transcriptome | KRR_T | 1.0 | default | rbf | ||
| 每穗粒数 Grain  |  基因组Genome | KRR_G | 1.0 | default | rbf | |
| 转录组Transcriptome | KRR_T | 1.0 | default | rbf | ||
| 千粒重 KGW  |  基因组Genome | KRR_G | 1.0 | default | rbf | |
| 转录组Transcriptome | KRR_T | 1.0 | default | rbf | 
Table 2
Model architecture and parameters of ANN"
| 数据集 Dataset  |  性状 Trait  |  模型 Model  |  学习率 Learning rate  |  训练轮次 Epoch  |  批大小 Batch size  |  各层神经元数 Neurons  |  激活函数 Activation  |  
| 水稻 Rice  |  单株产量Yield | ANN_G | 0.000 1 | 50 | 8 | (128,16) | ReLU | 
| ANN_T | 0.000 5 | 100 | 6 | (256,32) | ReLU | ||
| 每穗粒数Grain | ANN_G | 0.001 | 100 | 6 | (128,16) | ReLU | |
| ANN_T | 0.000 1 | 50 | 23 | (128,16) | ReLU | ||
| 千粒重KGW | ANN_G | 0.001 | 50 | 6 | (128,16) | ReLU | |
| ANN_T | 0.001 | 50 | 6 | (128,16) | null | ||
| 华西牛 Huaxi cattle  |  宰前活重Live weight | ANN_G | 0.001 | 50 | 8 | (128,16) | ReLU | 
| ANN_T | 0.001 | 50 | 8 | (128,16) | ReLU | ||
| 胴体重Carcass weight | ANN_G | 0.001 | 50 | 8 | (128,16) | ReLU | |
| ANN_T | 0.001 | 50 | 8 | (128,16) | ReLU | ||
| 净肉重Net meat weight | ANN_G | 0.001 | 50 | 8 | (128,16) | ReLU | |
| ANN_T | 0.001 | 50 | 6 | (128,16) | ReLU | 
Table 5
Basic statistical data of phenotypes and heritability estimates"
| 数据集 Dataset  |  性状 Trait  |  个体数 Count  |  遗传力 Heritability  |  表型平均值 Mean  |  最小值 Minimum  |  中位数 Median  |  最大值 Maximum  |  
| 水稻 Rice  |  单株产量Yield | 210 | 0.74 | 25.88±4.40 | 9.96 | 26.35 | 36.99 | 
| 每穗粒数Grain | 210 | 0.91 | 99.42±19.20 | 50.18 | 98.59 | 149.33 | |
| 千粒重KGW | 210 | 0.97 | 24.41±2.51 | 18.03 | 24.51 | 29.92 | |
| 华西牛 Huaxi cattle  |  宰前活重Live weight | 218 | 0.44 | 692.68±69.81 | 514.40 | 684.00 | 868.60 | 
| 胴体重Carcass weight | 218 | 0.34 | 379.95±40.12 | 268.30 | 375.40 | 476.20 | |
| 净肉重Net meat weight | 148 | 0.49 | 324.88±37.27 | 229.30 | 321.40 | 412.10 | 
Table 6
Ratio of performance improvement between using transcriptome data as input and genome data as input in the same model"
| 数据集 Dataset  |  性状 Trait  |  模型/% Lasso  |  模型/% KRR  |  模型/% ANN  |  平均预测准确性/% Mean prediction accuracy  |  
| 水稻 Rice  |  单株产量Yield | 206.3 | 53.9 | 49.6 | 103.3 | 
| 每穗粒数Grain | 45.8 | 21.9 | 32.9 | 33.5 | |
| 千粒重KGM | -9.6 | 0.0 | -3.2 | -4.3 | |
| 平均预测准确性Mean prediction accuracy | 80.8 | 25.3 | 26.4 | 44.2 | |
| 华西牛 Huaxi cattle  |  宰前活重Live weight | 47.6 | 45.6 | 36.4 | 43.2 | 
| 胴体重Carcass weight | 56.3 | 27.4 | 8.3 | 30.7 | |
| 净肉重Net meat weight | 5.5 | 7.3 | 12.6 | 8.5 | |
| 平均预测准确性Mean prediction accuracy | 36.5 | 26.8 | 19.1 | 27.4 | 
Table 7
The accuracy comparison between KRR_LM and other models on Huaxi cattle and rice datasets"
| 数据集 Dataset  |  性状 Trait  |  模型 GBLUP  |  模型 KRR_G  |  模型 ANN_G  |  模型 KRR_LM  |  
| 水稻 Rice  |  单株产量Yield | 0.421 | 0.434 | 0.456 | 0.483 | 
| 每穗粒数Grain | 0.626 | 0.625 | 0.541 | 0.641 | |
| 千粒重KGW | 0.854 | 0.849 | 0.843 | 0.857 | |
| 平均预测准确性Mean prediction accuracy | 0.634 | 0.636 | 0.613 | 0.660 | |
| 华西牛 Huaxi cattle  |  宰前活重Live weight | 0.222 | 0.185 | 0.239 | 0.216 | 
| 胴体重Carcass weight | 0.164 | 0.167 | 0.180 | 0.205 | |
| 净肉重Net meat weght | 0.188 | 0.154 | 0.159 | 0.191 | |
| 平均预测准确性Mean prediction accuracy | 0.191 | 0.169 | 0.193 | 0.204 | 
| 1 |  
											  SCHAEFFER L R .  Strategy for applying genome-wide selection in dairy cattle[J]. J Anim Breed Genet, 2006, 123, 218- 223. 
																							 doi: 10.1111/j.1439-0388.2006.00595.x  | 
										
| 2 |  
											  WIGGANS G R ,  CARRILLO J A .  Genomic selection in United States dairy cattle[J]. Front Genet, 2022, 13, 994466. 
																							 doi: 10.3389/fgene.2022.994466  | 
										
| 3 | GARCÍA-RUIZ A , COLE J B , VANRADEN P M , et al. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection[J]. Proc Natl Acad Sci U S A, 2016, 113, E3995- E4004. | 
| 4 |  
											  WIGGANS G R ,  COLE J B ,  HUBBARD S M , et al.  Genomic selection in dairy cattle: The USDA experience[J]. Annu Rev Anim Biosci, 2017, 5, 309- 327. 
																							 doi: 10.1146/annurev-animal-021815-111422  | 
										
| 5 | CAMPOS G S , CARDOSO F F , GOMES C C G , et al. Development of genomic predictions for Angus cattle in Brazil incorporating genotypes from related American sires[J]. J Anim Sci, 2022, 1, 100. | 
| 6 |  
											  ZHANG Z ,  LIU J ,  DING X , et al.  Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix[J]. PLoS One, 2010, 5 (9): E12648. 
																							 doi: 10.1371/journal.pone.0012648  | 
										
| 7 |  
											  EDWARDS S M ,  S∅RENSEN I F ,  SARUP P , et al.  Genomic prediction for quantitative traits is improved by mapping variants to gene ontology categories in Drosophila melanogaster[J]. Genetics, 2016, 203, 1871- 1883. 
																							 doi: 10.1534/genetics.116.187161  | 
										
| 8 |  
											  MEUWISSEN T ,  EIKJE L S ,  GJUVSLAND A B .  GWABLUP: genome-wide association assisted best linear unbiased prediction of genetic values[J]. Genet Sel Evol, 2024, 56, 17. 
																							 doi: 10.1186/s12711-024-00881-y  | 
										
| 9 | LOPES M S , BOVENHUIS H , VAN SON M , et al. Using markers with large effect in genetic and genomic predictions[J]. J Anim Sci, 2017, 95, 59- 71. | 
| 10 |  
											  MISZTAL I ,  LEGARRA A ,  AGUILAR I .  Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information[J]. J Dairy Sci, 2009, 92, 4648- 4655. 
																							 doi: 10.3168/jds.2009-2064  | 
										
| 11 |  
											  MNTYSAARI E A ,  EVANS R D ,  STRANDN I .  Efficient single-step genomic evaluation for a multibreed beef cattle population having many genotyped animals[J]. J Anim Sci, 2017, 95, 4728- 4737. 
																							 doi: 10.2527/jas2017.1912  | 
										
| 12 |  
											  XU Y ,  ZHANG Y ,  CUI Y , et al.  GA-GBLUP: leveraging the genetic algorithm to improve the predictability of genomic selection[J]. Brief Bioinform, 2024, 25 (5): 385. 
																							 doi: 10.1093/bib/bbae385  | 
										
| 13 |  
											  WU B ,  XIONG H ,  ZHUO L , et al.  Multi-view BLUP: a promising solution for post-omics data integrative prediction[J]. J Genet Genomics, 2025, 52, 839- 847. 
																							 doi: 10.1016/j.jgg.2024.11.017  | 
										
| 14 |  
											  GESTEIRO N ,  MALVAR R A ,  BUTRN A , et al.  Genome-wide association study and genomic predictions for hydroxycinnamate concentrations in maize stover[J]. J Agric Food Chem, 2025, 73, 2289- 2298. 
																							 doi: 10.1021/acs.jafc.4c07467  | 
										
| 15 |  
											  XU H ,  WANG Z ,  WANG F , et al.  Genome-wide association study and genomic selection of spike-related traits in bread wheat[J]. Theor Appl Genet, 2024, 137, 131. 
																							 doi: 10.1007/s00122-024-04640-x  | 
										
| 16 |  
											  XU R ,  YANG Q ,  LIU Z , et al.  Genome-wide association analysis and genomic prediction of salt tolerance trait in soybean germplasm[J]. Front Plant Sci, 2024, 15, 1494551. 
																							 doi: 10.3389/fpls.2024.1494551  | 
										
| 17 | LIU K , YIN Y , WANG B , et al. Integrating significant SNPs identified by GWAS for genomic prediction of the number of ribs and carcass length in Suhuai pigs[J]. Animals (Basel), 2025, 15 (3): 412. | 
| 18 |  
											  ZHAO Z ,  NIU Q ,  WU T , et al.  Comparative analysis of genomic prediction for production traits using genomic annotation and a genome-wide association study at sequencing levels in beef cattle[J]. Agriculture, 2024, 14, 2255. 
																							 doi: 10.3390/agriculture14122255  | 
										
| 19 | TU T C , LIN C J , LIU M C , et al. Genomic prediction and genome-wide association study for growth-related traits in Taiwan Country chicken[J]. Animals (Basel), 2025, 15 (3): 376. | 
| 20 |  
											  CRICK F .  Central dogma of molecular biology[J]. Nature, 1970, 227, 561- 563. 
																							 doi: 10.1038/227561a0  | 
										
| 21 |  
											  DE LOS CAMPOS G ,  HICKEY J M ,  PON WONG R , et al.  Whole-genome regression and prediction methods applied to plant and animal breeding[J]. Genetics, 2013, 193, 327- 345. 
																							 doi: 10.1534/genetics.112.143313  | 
										
| 22 |  
											  KANG M ,  KO E ,  MERSHA T B .  A roadmap for multi-omics data integration using deep learning[J]. Brief Bioinform, 2022, 23 (1): bbab454. 
																							 doi: 10.1093/bib/bbab454  | 
										
| 23 |  
											  FRISCH M ,  THIEMANN A ,  FU J , et al.  Transcriptome-based distance measures for grouping of germplasm and prediction of hybrid performance in maize[J]. Theor Appl Genet, 2010, 120, 441- 450. 
																							 doi: 10.1007/s00122-009-1204-1  | 
										
| 24 |  
											  ZENKE-PHILIPPI C ,  THIEMANN A ,  SEIFERT F , et al.  Prediction of hybrid performance in maize with a ridge regression model employed to DNA markers and mRNA transcription profiles[J]. BMC Genomics, 2016, 17, 262. 
																							 doi: 10.1186/s12864-016-2580-y  | 
										
| 25 | RITCHIE M D , HOLZINGER E R , LI R , et al. Methods of integrating data to uncover genotype-phenotype interactions[J]. Nat Rev Genet, 2015, 16, 85- 97. | 
| 26 |  
											  ZHU J ,  SOVA P ,  XU Q , et al.  Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation[J]. PLoS Biol, 2012, 10, e1001301. 
																							 doi: 10.1371/journal.pbio.1001301  | 
										
| 27 |  
											  AN B ,  LIANG M ,  CHANG T , et al.  KCRR: a nonlinear machine learning with a modified genomic similarity matrix improved the genomic prediction efficiency[J]. Brief Bioinform, 2021, 22 (6): bbab132. 
																							 doi: 10.1093/bib/bbab132  | 
										
| 28 |  
											  LI M ,  HALL T ,  MACHUGH D E , et al.  KPRR: a novel machine learning approach for effectively capturing nonadditive effects in genomic prediction[J]. Brief Bioinform, 2024, 26 (1): bbae683. 
																							 doi: 10.1093/bib/bbae683  | 
										
| 29 | WANG J , ZONG W , SHI L , et al. Using mixed kernel support vector machine to improve the predictive accuracy of genome selection[J]. Journal of Integrative Agriculture, 2024, 3, 083. | 
| 30 | THORSRUD J A , EVANS K M , QUIGLEY K C , et al. Performance comparison of genomic best linear unbiased prediction and four machine learning models for estimating genomic breeding values in working dogs[J]. Animals (Basel), 2025, 15 (3): 408. | 
| 31 |  
											  VAN DER LAAN L ,  PARMLEY K ,  SAADATI M , et al.  Genomic and phenomic prediction for soybean seed yield, protein, and oil[J]. Plant Genome, 2025, 18, e70002. 
																							 doi: 10.1002/tpg2.70002  | 
										
| 32 | HANSEN P B , RUUD A K , DE LOS CAMPOS G , et al. Integration of DNA methylation and transcriptome data improves complex trait prediction in Hordeum vulgare[J]. Plants (Basel), 2022, 11 (17): 2190. | 
| 33 |  
											  KNOCH D ,  WERNER C R ,  MEYER R C , et al.  Multi-omics-based prediction of hybrid performance in canola[J]. Theor Appl Genet, 2021, 134, 1147- 1165. 
																							 doi: 10.1007/s00122-020-03759-x  | 
										
| 34 |  
											  XU F ,  CHE Z ,  QIAO J , et al.  Integrating gene expression data into single-step method (ssBLUP) improves genomic prediction accuracy for complex traits of Duroc×Erhualian F(2) pig population[J]. Curr Issues Mol Biol,, 2024, 46, 13713- 13724. 
																							 doi: 10.3390/cimb46120819  | 
										
| 35 |  
											  ZHAO L ,  TANG P ,  LUO J , et al.  Genomic prediction with NetGP based on gene network and multi-omics data in plants[J]. Plant Biotechnol J, 2025, 23, 1190- 1201. 
																							 doi: 10.1111/pbi.14577  | 
										
| 36 |  
											  WANG K ,  ABID M A ,  RASHEED A , et al.  DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants[J]. Mol Plant, 2023, 16, 279- 293. 
																							 doi: 10.1016/j.molp.2022.11.004  | 
										
| 37 |  
											  MA W ,  QIU Z ,  SONG J , et al.  A deep convolutional neural network approach for predicting phenotypes from genotypes[J]. Planta, 2018, 248, 1307- 1318. 
																							 doi: 10.1007/s00425-018-2976-9  | 
										
| 38 |  
											  WU C ,  ZHANG Y ,  YING Z , et al.  A transformer-based genomic prediction method fused with knowledge-guided module[J]. Brief Bioinform, 2023, 25 (1): bbad438. 
																							 doi: 10.1093/bib/bbad438  | 
										
| 39 |  
											  ZOU Q ,  TAI S ,  YUAN Q , et al.  Large-scale crop dataset and deep learning-based multi-modal fusion framework for more accurate G×E genomic prediction[J]. Computers and Electronics in Agriculture, 2025, 230, 109833. 
																							 doi: 10.1016/j.compag.2024.109833  | 
										
| 40 |  
											  HUA J ,  XING Y ,  WU W , et al.  Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid[J]. Proc Natl Acad Sci U S A, 2003, 100, 2574- 2579. 
																							 doi: 10.1073/pnas.0437907100  | 
										
| 41 |  
											  YU H ,  XIE W ,  WANG J , et al.  Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers[J]. PLoS One, 2011, 6, e17595. 
																							 doi: 10.1371/journal.pone.0017595  | 
										
| 42 |  
											  WANG J ,  YU H ,  WENG X , et al.  An expression quantitative trait loci-guided co-expression analysis for constructing regulatory network using a rice recombinant inbred line population[J]. J Exp Bot, 2014, 65, 1069- 1079. 
																							 doi: 10.1093/jxb/ert464  | 
										
| 43 |  
											  HU X ,  XIE W ,  WU C , et al.  A directed learning strategy integrating multiple omic data improves genomic prediction[J]. Plant Biotechnol J, 2019, 17, 2011- 2020. 
																							 doi: 10.1111/pbi.13117  | 
										
| 44 |  
											  HUMPHREYS R K ,  PUTH M T ,  NEUHUSER M , et al.  Underestimation of Pearson 's product moment correlation statistic[J]. Oecologia, 2019, 189, 1- 7. 
																							 doi: 10.1007/s00442-018-4233-0  | 
										
| 45 |  
											  TRIPATHI Y M ,  CHATLA S B ,  CHANG Y I , et al.  A nonlinear correlation measure with applications to gene expression data[J]. PLoS One, 2022, 17, e0270270. 
																							 doi: 10.1371/journal.pone.0270270  | 
										
| 46 |  
											  WANG X ,  SHI S ,  WANG G , et al.  Using machine learning to improve the accuracy of genomic prediction of reproduction traits in pigs[J]. J Anim Sci Biotechnol, 2022, 13, 60. 
																							 doi: 10.1186/s40104-022-00708-0  | 
										
| 47 |  
											  GONDRO C ,  VAN DER WERF J ,  HAYES B .  Genome-wide association studies and genomic prediction[M]. Springer, 2013. 
																							 doi: 10.1007/978-1-62703-447-0  | 
										
| 48 |  
											  XIA P P ,  ZHANG L ,  LI F Z .  Learning similarity with cosine similarity ensemble[J]. Inform Sci, 2015, 307, 39- 52. 
																							 doi: 10.1016/j.ins.2015.02.024  | 
										
| 49 |  
											  AZODI C B ,  PARDO J ,  VANBUREN R , et al.  Transcriptome-based prediction of complex traits in maize[J]. Plant Cell, 2020, 32, 139- 151. 
																							 doi: 10.1105/tpc.19.00332  | 
										
| 50 |  
											  XIE Z ,  XU X ,  LI L , et al.  Residual networks without pooling layers improve the accuracy of genomic predictions[J]. Theor Appl Genet, 2024, 137, 138. 
																							 doi: 10.1007/s00122-024-04649-2  | 
										
| 51 |  
											  AZODI C B ,  BOLGER E ,  MCCARREN A , et al.  Benchmarking parametric and machine learning models for genomic prediction of complex traits[J]. G3 (Bethesda), 2019, 9, 3691- 3702. 
																							 doi: 10.1534/g3.119.400498  | 
										
| 52 |  
											  ZHANG H ,  XI Q ,  ZHANG F , et al.  Application of deep learning in cancer prognosis prediction model[J]. Technol Cancer Res Treat, 2023, 22, 15330338231199287. 
																							 doi: 10.1177/15330338231199287  | 
										
| 53 |  
											  WANG P ,  LEHTI-SHIU M D ,  LOTRECK S , et al.  Prediction of plant complex traits via integration of multi-omics data[J]. Nat Commun, 2024, 15, 6856. 
																							 doi: 10.1038/s41467-024-50701-6  | 
										
| 54 |  
											  CUI Y ,  LI R ,  LI G , et al.  Hybrid breeding of rice via genomic selection[J]. Plant Biotechnol J, 2020, 18, 57- 67. 
																							 doi: 10.1111/pbi.13170  | 
										
| 55 |  
											  VABALAS A ,  GOWEN E ,  POLIAKOFF E , et al.  Machine learning algorithm validation with a limited sample size[J]. PLoS One, 2019, 14, e0224365. 
																							 doi: 10.1371/journal.pone.0224365  | 
										
| 56 |  
											  VAN SMEDEN M ,  MOONS K G ,  DE GROOT J A , et al.  Sample size for binary logistic prediction models: Beyond events per variable criteria[J]. Stat Methods Med Res, 2019, 28, 2455- 2474. 
																							 doi: 10.1177/0962280218784726  | 
										
| 57 |  
											  ALWOSHEEL A ,  VAN CRANENBURGH S ,  CHORUS C G .  Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis[J]. J Choice Modell, 2018, 28, 167- 182. 
																							 doi: 10.1016/j.jocm.2018.07.002  | 
										
| [1] | FU Wei, ZHANG Ran, DING Hong, ZANG Sumin, LI Xianglong, CHU Suqiao, LIU Huage, ZHOU Rongyan. Screening and Identification of Molecular Markers for Differentiating Taihang Chickens and Bashang Long-tailed Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3761-3772. | 
| [2] | QIAO Liying, WANG Wannian, ZHANG Li, PANG Zhixu, ZHANG Siying, LI Yifan, LIU Wenzhong. Machine Learning Methods for Sheep Breed Classification Based on Genomic Markers [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2157-2167. | 
| [3] | YANG Miaomiao, XIE Li, JIAN Baoyi, LUO Chaowei, XIE Zhuojun, ZHU Piao, ZHOU Tianri, LI Hua, XIANG Hai. Construction and Optimization of Prediction Models for Abdominal Fat Deposition in Adult Hens based on Early Body Size Traits using Machine Learning [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 548-558. | 
| [4] | YANG Wenpan, LIU Xiangjie, LUO Dongxiang, CHEN Menghui, XIE Ying, FANG Yuexin, LIN Tingyan, LI Aimin, LI Wenjing, DENG Zheng, DING Nengshui. Research on Genomic Selection of Reproductive Traits in Landrace Pigs Based on Chip Data [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 213-221. | 
| [5] | Tengfei DOU, Jiahao WU, Ziyi WU, Liyao BAI, Xinjian LI, Xuelei HAN, Ruimin QIAO, Kejun WANG, Feng YANG, Yining WANG, Xiuling LI. Application Progress of Genomic Selection and Mating Allocation Techniques in Pig Breeding [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2795-2808. | 
| [6] | Jinbu WANG, Jia LI, Deming REN, Lixian WANG, Ligang WANG. Progress in the Application of Machine Learning in Livestock and Poultry Genomic Selection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2775-2785. | 
| [7] | Jing LI, Yuanxu ZHANG, Zezhao WANG, Yan CHEN, Lingyang XU, Lupei ZHANG, Xue GAO, Huijiang GAO, Junya LI, Bo ZHU, Peng GUO. Research Progress in Machine Learning Genomic Selection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2281-2292. | 
| [8] | ZHANG Yuanxu, LI Jing, WANG Zezhao, CHEN Yan, XU Lingyang, ZHANG Lupei, GAO Xue, GAO Huijiang, LI Junya, ZHU Bo, GUO Peng. Advances in Animal Genetic Evaluation Software [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1827-1841. | 
| [9] | CHU Chu, ZHANG Jingjing, DING Lei, FAN Yikai, BAO Xiangnan, XIANG Shixin, LIU Rui, LUO Xuelu, REN Xiaoli, LI Chunfang, LIU Wenju, WANG Liang, LIU Li, LI Yongqing, JIANG Han, LI Weiqi, SUN Wei, LI Xihe, WEN Wan, ZHOU Jiamin, ZHANG Shujun. Establishment and Application of Prediction Model of Three Amino Acids in Milk Based on Mid-infrared Spectroscopy [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3299-3312. | 
| [10] | DING Jiqiang, LI Qinghe, ZHANG Gaomeng, LI Sen, ZHENG Maiqing, WEN Jie, ZHAO Guiping. Comparing the Accuracy of Estimated Breeding Value by Several Algorithms on Laying Traits in Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1364-1372. | 
| [11] | WANG Qi, ZHU Di, WANG Yuzhe, WU Jie, HU Xiaoxiang, ZHAO Yiqiang. Research Progress of Genomic-wide SNP Genotyping and Genomic Prediction Methods [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(2): 205-216. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||