Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (7): 3096-3106.doi: 10.11843/j.issn.0366-6964.2025.07.006
• Review • Previous Articles Next Articles
LI Qian1,2(), GAO Huan1,2, FU Shuang1,2, SUO Zhuo1,2, DAI Yue2, CHEN Chen2, LI Rongtian2, LENG Jing1,2,*(
)
Received:
2024-07-24
Online:
2025-07-23
Published:
2025-07-25
Contact:
LENG Jing
E-mail:1162967164@qq.com;2370140328@qq.com
CLC Number:
LI Qian, GAO Huan, FU Shuang, SUO Zhuo, DAI Yue, CHEN Chen, LI Rongtian, LENG Jing. Anaerobic Fungi of Digestive Tract and Their Interactions with Other Microorganisms[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3096-3106.
1 | DEARING M D , KOHL K D . Beyond fermentation: Other important services provided to endothermic herbivores by their gut microbiota[J]. Integr Comp Biol, 2017, 57 (4): 723- 731. |
2 | SOLOMON K V , HAITJEMA C H , HENSKE J K , et al. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes[J]. Science, 2016, 351 (6278): 1192- 1195. |
3 | GRUNINGER R J , PUNIYA A K , CALLAGHAN T M , et al. Anaerobic fungi (phylum Neocallimastigomycota): Advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential[J]. FEMS Microbiol Ecol, 2014, 90 (1): 1- 17. |
4 | MORAÏS S , MIZRAHI I . Islands in the stream: from individual to communal fiber degradation in the rumen ecosystem[J]. FEMS Microbiol Rev, 2019, 43 (4): 362- 379. |
5 | ORPIN C G . Studies on the rumen flagellate Neocallimastix frontalis[J]. J Gen Microbiol, 1975, 91 (2): 249- 262. |
6 | 杨闯, 郭勇庆, 王明月, 等. 草食动物肠道厌氧真菌分离培养技术及其在农牧业的应用现状[J]. 饲料工业, 2022, 43 (24): 49- 53. |
YANG C , GUO Y Q , WANG M Y , et al. Isolation and cultivation technology of anaerobic gut fungi of herbivores and its application status in agriculture and animal husbandry[J]. Feed Industry, 2022, 43 (24): 49- 53. | |
7 |
张亚伟, 王月红, 刘强, 等. 草食动物肠道厌氧真菌生物学特性研究进展[J]. 动物营养学报, 2022, 34 (3): 1398- 1407.
doi: 10.3969/j.issn.1006-267x.2022.03.004 |
ZHANG Y W , WANG Y H , LIU Q , et al. Advances in biological characteristics of gut anaerobic fungi in herbivores[J]. Chinese Journal of Animal Nutrition,, 2022, 34 (3): 1398- 1407.
doi: 10.3969/j.issn.1006-267x.2022.03.004 |
|
8 | 郭子琦, 李与琦, 成艳芬, 等. 厌氧真菌纤维降解酶及其应用潜力的研究进展[J]. 微生物学通报, 2023, 50 (1): 377- 391. |
GUO Z Q , LI Y Q , CHENG Y F , et al. Fiber-degrading enzymes of anaerobic fungi and their potential for applications: A review[J]. Microbiology China, 2023, 50 (1): 377- 391. | |
9 | HEATH I B , BAUCHOP T , SKIPP R A . Assignment of the rumen anaerobe Neocallimastix frontalis to the Spizellomycetales (Chytridiomycetes) on the basis of its polyflagellate zoospore ultrastructure[J]. Can J Bot, 1983, 61 (1): 295- 307. |
10 | GOLD J J , HEATH I B , BAUCHOP T . Ultrastructural description of a new chytrid genus of caecum anaerobe, Caecomyces equi gen. nov., sp. nov., assigned to the Neocallimasticaceae[J]. Biosystems, 1988, 21 (3-4): 403- 415. |
11 | BARR D J S , KUDO H , JAKOBER K D , et al. Morphology and development of rumen fungi: Neocallimastix sp., Piromyces communis, and Orpinomyces bovis gen.nov., sp.nov[J]. Can J Bot, 1989, 67 (9): 2815- 2824. |
12 | BRETON A , BERNALIER A , DUSSER M , et al. Anaeromyces mucronatus nov. gen., nov. sp. A new strictly anaerobic rumen fungus with polycentric thallus[J]. FEMS Microbiol Lett, 1990, 58 (2): 177- 182. |
13 | OZKOSE E , THOMAS B J , DAVIES D R , et al. Cyllamyces aberensis gen.nov. sp.nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle[J]. Can J Bot, 2001, 79 (6): 666- 673. |
14 | CALLAGHAN T M , PODMIRSEG S M , HOHLWECK D , et al. Buwchfawromyces eastonii gen. nov., sp. nov.: A new anaerobic fungus (Neocallimastigomycota) isolated from buffalo faeces[J]. MycoKeys, 2015, 9, 11- 28. |
15 | DAGAR S S , KUMAR S , GRIFFITH G W , et al. A new anaerobic fungus (Oontomyces anksri gen. nov., sp. nov.) from the digestive tract of the Indian camel (Camelus dromedarius[J]. Fungal Biol, 2015, 119 (8): 731- 737. |
16 | HANAFY R A , ELSHAHED M S , LIGGENSTOFFER A S , et al. Pecoramyces ruminantium, gen. nov., sp. nov., an anaerobic gut fungus from the feces of cattle and sheep[J]. Mycologia, 2017, 109 (2): 231- 243. |
17 | JOSHI A , LANJEKAR V B , DHAKEPHALKAR P K , et al. Liebetanzomycespolymorphus gen. et sp. nov., a new anaerobic fungus (Neocallimastigomycota) isolated from the rumen of a goat[J]. MycoKeys, 2018 (40): 89- 110. |
18 | HANAFY R A , ELSHAHED M S , YOUSSEF N H . Feramyces austinii, gen. nov., sp. nov., an anaerobic gut fungus from rumen and fecal samples of wild Barbary sheep and fallow deer[J]. Mycologia, 2018, 110 (3): 513- 525. |
19 | STABEL M , HANAFY R A , SCHWEITZER T , et al. Aestipascuomyces dupliciliberans gen. nov, sp. nov., the first cultured representative of the uncultured SK4 clade from Aoudad Sheep and Alpaca[J]. Microorganisms, 2020, 8 (11): 1734. |
20 | HANAFY R A , LANJEKAR V B , DHAKEPHALKAR P K , et al. Seven new Neocallimastigomycota genera from wild, zoo-housed, and domesticated herbivores greatly expand the taxonomic diversity of the phylum[J]. Mycologia, 2020, 112 (6): 1212- 1239. |
21 | HANAFY R A , YOUSSEF N H , ELSHAHED M S . Paucimyces polynucleatus gen. nov, sp. nov., a novel polycentric genus of anaerobic gut fungi from the faeces of a wild blackbuck antelope[J]. Int J Syst Evol Microbiol, 2021, 71, 004832. |
22 | MEILI C H , TAGELDEIN M A , JONES A L , et al. Diversity and community structure of anaerobic gut fungi in the rumen of wild and domesticated herbivores[J]. Appl Environ Microbiol, 2024, 90 (2): e0149223.. |
23 | WANG H , LI P , LIU X , et al. The composition of fungal communities in the rumen of Gayals (Bos frontalis), Yaks (Bos grunniens), and Yunnan and Tibetan Yellow Cattle (Bos taurs)[J]. Pol J Microbiol, 2019, 68 (4): 505- 514. |
24 | RABEE A E , FORSTER R J , ELEKWACHI C O , et al. Community structure and fibrolytic activities of anaerobic rumen fungi in dromedary camels[J]. J Basic Microbiol, 2019, 59 (1): 101- 110. |
25 | LIANG Z , ZHANG J , AHMAD A A , et al. Forage lignocellulose is an important factor in driving the seasonal dynamics of rumen anaerobic fungi in grazing yak and cattle[J]. Microbiol Spectr, 2023, 11 (5): e0078823. |
26 | YOU C , ZHANG X Z , SATHITSUKSANOH N , et al. Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex[J]. Appl Environ Microbiol, 2012, 78 (5): 1437- 1444. |
27 | LILLINGTON S P , CHRISLER W , HAITJEMA C H , et al. Cellulosome localization patterns vary across life stages of Anaerobic fungi[J]. mBio, 2021, 12 (3): e0083221. |
28 | ALI B R , ZHOU L , GRAVES F M , et al. Cellulases and hemicellulases of the anaerobic fungus Piromyces constitute a multiprotein cellulose-binding complex and are encoded by multigene families[J]. FEMS Microbiol Lett, 1995, 125 (1): 15- 21. |
29 | DALRYMPLE B P , CYBINSKI D H , LAYTON I , et al. Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases[J]. Microbiology (Reading), 1997, 143 (Pt 8): 2506- 2614. |
30 | FELIX C R , LJUNGDAHL L G . The cellulosome: the exocellular organelle of Clostridium[J]. Annu Rev Microbiol, 1993, 47, 791- 819. |
31 | WILSON C A , WOOD T M . The anaerobic fungus Neocallimastix frontalis: isolation and properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose[J]. Appl Microbiol Biotechnol, 1992, 37, 125- 129. |
32 | HAITJEMA C H , GILMORE S P , HENSKE J K , et al. A parts list for fungal cellulosomes revealed by comparative genomics[J]. Nat Microbiol, 2017, 2, 17087. |
33 | MA J , ZHONG P , LI Y , et al. Hydrogenosome, pairing Anaerobic fungi and H2-utilizing microorganisms based on metabolic ties to facilitate biomass utilization[J]. J Fungi(Basel), 2022, 8 (4): 338. |
34 | XU Q , RESCH M G , PODKAMINER K , et al. Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities[J]. Sci Adv, 2016, 2 (2): e1501254. |
35 | STEENBAKKERS P J M , FREELOVE A , VAN CRANENBROEK B , et al. The major component of the cellulosomes of anaerobic fungi from the genus Piromyces is a family 48 glycoside hydrolase[J]. DNA Seq, 2002, 13 (6): 313- 320. |
36 | STEENBAKKERS P J M , UBHAYASEKERA W , GOOSSEN H J , et al. An intron-containing glycoside hydrolase family 9 cellulase gene encodes the dominant 90 kDa component of the cellulosome of the anaerobic fungus Piromyces sp. strain E2[J]. Biochem J, 2002, 365 (Pt 1): 193- 204. |
37 | FILLINGHAM I J , KROON P A , WILLIAMSON G , et al. A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multiprotein cellulose-binding cellulase-hemicellulase complex[J]. Biochem J, 1999, 343 (Pt 1): 215- 224. |
38 | LANKIEWICZ T S , LILLINGTON S P , O MALLEY M A . Enzyme discovery in Anaerobic fungi (Neocallimastigomycetes) enables lignocellulosic biorefinery innovation[J]. Microbiol Mol Biol Rev, 2022, 86 (4): e0004122. |
39 | AKHMANOVA A , VONCKEN F G J , HOSEA K M , et al. A hydrogenosome with pyruvate formate-lyase: Anaerobic chytrid fungi use an alternative route for pyruvate catabolism[J]. Mol Microbiol, 1999, 32 (5): 1103- 1114. |
40 | HACKSTEIN J H P, AKHMANOVA A, BOXMA B, et al. Hydrogenosomes: eukaryotic adaptations to anaerobic environments[Z]. Trends Microbiol, 1999, 7(11), 441-447. |
41 | HAITJEMA C H , SOLOMON K V , HENSKE J K , et al. Anaerobic gut fungi: Advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production[J]. Biotechnol Bioeng, 2014, 111 (8): 1471- 1482. |
42 | EDWARDS J E , FORSTER R J , CALLAGHAN T M , et al. PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: Insights, challenges and opportunities[J]. Front Microbiol, 2017, 8, 1657. |
43 | HRDY I, TACHEZY J, MVLLER M. Metabolism of Trichomonad hydrogenosomes[M]//Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic eukaryotes. Springer, Berlin, Heidelberg. 2007, 9: 113-145. |
44 | BOXMA B , DE GRAAF R M , VAN DER STAAY G W M , et al. An anaerobic mitochondrion that produces hydrogen[J]. Nature, 2005, 434 (7029): 74- 79. |
45 | ORPIN C G , BOUNTIFF L . Zoospore chemotaxis in the rumen phycomycete Neocallimastix frontalis[J]. J Gen Microbiol, 1978, 104 (1): 113- 122. |
46 | WUBAH D A , KIM D S . Chemoattraction of anaerobic ruminal fungi zoospores to selected phenolic acids[J]. Microbiol Res, 1996, 151 (3): 257- 262. |
47 | AGUSTINA S , WIRYAWAN I K G , SUHARTI S , et al. The addition of anaerobic fungi isolates from buffalo rumen to increase fiber digestibility, fermentation, and microbial population in ruminants[J]. Biodiversitas,, 2024, 25 (1): 107- 115. |
48 |
KRÓL B , SŁUPCZYŃSKAL M , WILK M , et al. Anaerobic rumen fungi and fungal direct-fed microbials in ruminant feeding[J]. Journal of Animal and Feed Sciences, 2023, 32 (1)
doi: 10.22358/jafs/153961/2022 |
49 | MORRISON J M , ELSHAHED M S , YOUSSEF N . A multifunctional GH39 glycoside hydrolase from the anaerobic gut fungus Orpinomyces sp. strain C1A[J]. PeerJ, 2016, 4, e2289. |
50 | DOLLHOFER V , PODMIRSEG S M , CALLAGHAN T M , et al. Anaerobic fungi and their potential for biogas production[J]. Adv Biochem Eng Biotechnol, 2015, 151, 41- 61. |
51 | CHENG Y , SHI Q , SUN R , et al. The biotechnological potential of anaerobic fungi on fiber degradation and methane production[J]. World J Microbiol Biotechnol, 2018, 34 (10): 155. |
52 | LI Y , MENG Z , XU Y , et al. Interactions between anaerobic fungi and methanogens in the rumen and their biotechnological potential in biogas production from lignocellulosic materials[J]. Microorganisms, 2021, 9 (1): 190. |
53 | HAGEN L H , BROOKE C G , SHAW C A , et al. Proteome specialization of anaerobic fungi during ruminal degradation of recalcitrant plant fiber[J]. ISME J, 2021, 15 (2): 421- 434. |
54 | DASHTBAN M , SCHRAFT H , QIN W . Fungal bioconversion of lignocellulosic residues; opportunities & perspectives[J]. Int J Biol Sci, 2009, 5 (6): 578- 595. |
55 | GRUNINGER R J , NGUYEN T T M , REID I D , et al. Application of transcriptomics to compare the carbohydrate active enzymes that are expressed by diverse genera of anaerobic fungi to degrade plant cell wall carbohydrates[J]. Front Microbiol, 2018, 9, 1581. |
56 | COUGER M B , YOUSSEF N H , STRUCHTEMEYER C G , et al. Transcriptomic analysis of lignocellulosic biomass degradation by the anaerobic fungal isolate Orpinomyces sp. strain C1A[J]. Biotechnol Biofuels, 2015, 8, 208. |
57 | LI Y , JIN W , MU C , et al. Indigenously associated methanogens intensified the metabolism in hydrogenosomes of anaerobic fungi with xylose as substrate[J]. J Basic Microbiol, 2017, 57 (11): 933- 940. |
58 | KYAWT Y Y , AUNG M , XU Y , et al. Methane production and lignocellulosic degradation of waste from rice, corn and sugarcane by natural co-culture of anaerobic fungi and methanogens[J]. World J Microbiol Biotechnol, 2024, 40 (4): 109. |
59 | WANG L , YAN W , CHEN J , et al. Function of the iron-binding chelator produced by Coriolus versicolor in lignin biodegradation[J]. Sci China C Life Sci, 2008, 51 (3): 214- 221. |
60 | DEHHAGHI M , PANAHI H K S , JOUZANI G S , et al. Anaerobic rumen fungi for biofuel production[J]. Fungi in Fuel Biotechnology, 2020, 149- 175. |
61 | MARTÍNEZ A T , SPERANZA M , RUIZ-DUEÑAS F J , et al. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin[J]. Int Microbiol, 2005, 8 (3): 195- 204. |
62 | JYOTHI C , MUWEL N , NAYAK S , et al. Anaerobic rumen fungi as a feed additive in ruminants: a review[J]. Journal of Livestock Science, 2024, 15 (1): 78- 85. |
63 | PENG X , WILKEN S E , LANKIEWICZ T S , et al. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes[J]. Nat Microbiol, 2021, 6 (4): 499- 511. |
64 | LEE S S , HA J K , CHENG K J . Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions[J]. Appl Environ Microbiol, 2000, 66 (9): 3807- 3813. |
65 | SWIFT C L , LOUIE K , BOWEN B P , et al. Cocultivation of Anaerobic fungi with rumen bacteria establishes an antagonistic relationship[J]. mBio, 2021, 12 (4): e0144221. |
66 | AZAD E , FEHR K B , DERAKHSHANI H , et al. Interrelationships of fiber-associated anaerobic fungi and bacterial communities in the rumen of bloated cattle grazing alfalfa[J]. Microorganisms, 2020, 8 (10): 1543. |
67 | KAPITAN M , NIEMIEC M J , STEIMLE A , et al. Fungi as part of the microbiota and interactions with intestinal bacteria[J]. Curr Top Microbiol Immunol, 2019, 422, 265- 301. |
68 | GAO A W , WANG H , YANG J L , et al. The effects of elimination of fungi on microbial population and fiber degradation in sheep rumen[J]. Applied Mechanics and Materials, 2013, 295-298, 224- 231. |
69 | WEIMER P J . Degradation of cellulose and hemicellulose by ruminal microorganisms[J]. Microorganisms, 2022, 10 (12): 2345. |
70 | 金巍, 刘军花, 李袁飞, 等. 甲烷菌对厌氧真菌不同碳源代谢的影响[J]. 微生物学报, 2017, 57 (7): 1106- 1111. |
JIN W , LIU J H , LI Y F , et al. Effect of methanogens on carbon metabolism of anaerobic fungi[J]. Acta Microbiologica Sinica, 2017, 57 (7): 1106- 1111. | |
71 | LEGGIERI P A , KERDMAN-ANDRADE C , LANKIEWICZ T S , et al. Non-destructive quantification of anaerobic gut fungi and methanogens in co-culture reveals increased fungal growth rate and changes in metabolic flux relative to mono-culture[J]. Microb Cell Fact, 2021, 20 (1): 199. |
72 | 张垄菲, 林波, 高晓梅, 等. 瘤胃厌氧真菌与产甲烷菌的关系及应用研究进展[J]. 饲料研究, 2021, 44 (1): 120- 123. |
ZHANG L F , LIN B , GAO X M , et al. Research progress on relationship between rumen anaerobic fungi and methanogens and their application[J]. Feed Research, 2021, 44 (1): 120- 123. | |
73 | 李袁飞, 贡继尚, 饶友生, 等. 厌氧真菌和甲烷菌共培养的研究进展[J]. 微生物学报, 2021, 61 (1): 1- 12. |
LI Y F , GONG J S , RAO Y S , et al. Advance in the co-culture of anaerobic fungi and methanogens[J]. Acta Microbiologica Sinica, 2021, 61 (1): 1- 12. | |
74 | CHENG Y F , JIN W , MAO S Y , et al. Production of citrate by anaerobic fungi in the presence of co-culture methanogens as revealed by 1H NMR spectrometry[J]. Asian-Australas J Anim Sci, 2013, 26 (10): 1416- 1423. |
75 | LI Y , GUO Z , LIU X , et al. Bioaugmentation protocols involving Methanobrevibacter thaueri and Pecoramyces ruminantium for investigating lignocellulose degradation and methane production from alfalfa stalks[J]. Bioresour Technol, 2024, 408, 131172. |
76 | SWIFT C L , BROWN J L , SEPPÄLÄ S , et al. Co-cultivation of the anaerobic fungus Anaeromyces robustus with Methanobacterium bryantii enhances transcription of carbohydrate active enzymes[J]. J Ind Microbiol Biotechnol, 2019, 46 (9-10): 1427- 1433. |
77 | BROWN J L , SWIFT C L , MONDO S J , et al. Co-cultivation of the anaerobic fungus Caecomyces churrovis with Methanobacterium bryantii enhances transcription of carbohydrate binding modules, dockerins, and pyruvate formate lyases on specific substrates[J]. Biotechnol Biofuels, 2021, 14 (1): 234. |
78 | MA Y , LI Y , LI Y , et al. The enrichment of anaerobic fungi and methanogens showed higher lignocellulose degrading and methane producing ability than that of bacteria and methanogens[J]. World J Microbiol Biotechnol, 2020, 36 (9): 125. |
79 | WEI Y , YANG H , WANG Z , et al. Roughage biodegradation by natural co-cultures of rumen fungi and methanogens from Qinghai yaks[J]. AMB Express, 2022, 12 (1): 123. |
80 | WEI Y Q , YANG H J , LUAN Y , et al. Isolation, identification and fibrolytic characteristics of rumen fungi grown with indigenous methanogen from yaks (Bos grunniens) grazing on the Qinghai-Tibetan Plateau[J]. J Appl Microbiol, 2016, 120 (3): 571- 587. |
81 | MISHRA P , TULSANI N J , JAKHESARA S J , et al. Exploring the eukaryotic diversity in rumen of Indian camel (Camelus dromedarius) using 18S rRNA amplicon sequencing[J]. Arch Microbiol, 2020, 202 (7): 1861- 1872. |
82 | LIANG J , NABI M , ZHANG P , et al. Promising biological conversion of lignocellulosic biomass to renewable energy with rumen microorganisms: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2020, 134, 110335. |
83 | WILLIAMS C L , THOMAS B J , MCEWAN N R , et al. Rumen protozoa play a significant role in fungal predation and plant carbohydrate breakdown[J]. Front Microbiol, 2020, 11, 720. |
[1] | SUN Shujia, ZHENG Jiaqi, LU Shuwan, LIU Jinsong, YAO Chunlei, YANG Caimei, XU Yinglei, ZHANG Ruiqiang. Effects of Lactic Acid Bacteria on Growth Performance, Digestive Function and Nutrient Utilization of Yellow-feathered Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3335-3343. |
[2] | LI Wenchao, LI Weiqiao, LI Xin, WANG Jiaqing, ZHANG Yawei, LI Junping. Research Progress on Antimicrobial Resistance of Animal-derived Bacteria and Elimination of Antimicrobial Resistance by Traditional Chinese Medicine [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2555-2576. |
[3] | GUO Deyang, HU Hui, ZHENG Xueli, JIANG Yanfen. Prokaryotic Expression and Analysis of Bacteriostatic Effects of Porcine β-defensin-1 [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2836-2846. |
[4] | CHEN Xingyu, LI Nanxin, CHEN Lian, DAI Dongmei, FU Hualin. Preparation of HNK/HKUST-1 Containing Honokiol and Its Anti MRSA Effects [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2990-3001. |
[5] | LI Xiaohan, LI Guiping, HUO Caiyun, ZHANG Qilong, SUN Yingjian, SUN Huiling. Class II CRISPR/Cas Systems and Their Applications in Bacterial Synthetic Biology [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1608-1620. |
[6] | QIU Qian, SANG Rui, WANG Wei, LIU Xinman, YU Minghong, LIU Xiaotong, YU Tian, ZHANG Xuemei. Study on the Activity of Huning Powder against Chicken Lung-derived E. coli and the in vitro Effects of Anti-inflammation and Anti-oxidation [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1969-1980. |
[7] | ZHAO Wenyue, YANG Jing, SHAO Yilan, LI Jiaxuan, JIANG Yanping, CUI Wen, WANG Xiaona, TANG Lijie. Screening and Identification of Secretory Signal Peptide of Lactobacillus reuteri Expressing Lactoferrin Peptide [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1431-1440. |
[8] | ZHANG Lei, CHEN Liang, FENG Wanyu, LAN Shijie, MIAO Yan, TIAN Qiufeng, BAI Changsheng, ZHANG Bei, DONG Jiaqiang, JIANG Botao, WANG Hongbao, SHI Tongrui, HUANG Xuankai. The Role of Biofilms in the Pathogenesis of Animal Bacterial Infections [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 107-114. |
[9] | Bibo LI, Ke WU, Xiaolong SHI, Yining YAN, Jiahao LI, Guoqing DUAN, Xiong LI, Yanpeng REN, Jianing DONG, Chunxiang ZHANG, Youshe REN. Sheep-derived Lactobacillus plantarum Regulates the Bacterial Community and Mucosal Barrier in Jejunum of Diarrheic Lambs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3552-3569. |
[10] | Wenjun XU, Nan ZHENG, Jiaqi WANG, Lu MENG. Study on the Community Structure of Psychrophilic Bacteria in Raw Milk from North Regions of China based on Metagenomic Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3659-3668. |
[11] | Sijia LIU, Nan ZHENG, Jiaqi WANG, Shengguo ZHAO. Effects of Red Clover Extract on Microbial Diversity and Urea Decomposition in Rumen Fermentation of Dairy Cows in vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2510-2518. |
[12] | Huijie REN, Xun MA, Jing WANG, Caixia LIU, Dongdong ZENG, Lijun KOU, Weidi SHI, Shuangfei LÜ, Ruixuan QIAN, Shengjie GAO. Construction and Partial Biological Characteristics Trial of Lm4b_02325/26 Double Gene Deletion Strain of Listeria monocytogenes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2578-2587. |
[13] | Ming LI, Hongwei CUI, Jie GAO, Lele AN, Songli LI, Zhenghua RAO. Identification and Genomic Analysis of Pathogenic Escherichia coli in Small Intestinal Content of White Feather Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2692-2700. |
[14] | HUANG Jie, RUAN Zihao, CAI Rui. Advances of the Application of Antimicrobial Peptides in the Preservation of Porcine Semen at Room Temperature [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1401-1411. |
[15] | GAO Yuanji, LIU Chang, CHEN Miao, CHEN Songbiao, ZHANG Junfeng, LI Jing, JIA Yanyan, LIAO Chengshui, GUO Rongxian, DING Ke, YU Zuhua, SHANG Ke. Structure, Secretory Characteristics, and Pathogenic Mechanism of Bacterial Outer Membrane Vesicles [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 971-983. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||