Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (3): 1441-1452.doi: 10.11843/j.issn.0366-6964.2025.03.042
• Clinical Veterinary Medicine • Previous Articles Next Articles
LI Changying1(), LI Jun2,3, LI Xifeng3, BI Shicheng3,4, CAO Liting3,4,*(
)
Received:
2024-06-25
Online:
2025-03-23
Published:
2025-04-02
Contact:
CAO Liting
E-mail:licy1983@163.com;caoliting@swu.edu.cn
CLC Number:
LI Changying, LI Jun, LI Xifeng, BI Shicheng, CAO Liting. Effect of Dietary Yeast β-glucan Supplementation on Intestinal Immune Function in Chickens Immunized against Newcastle Disease Vaccine based on Transcriptomic[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1441-1452.
Table 1
Composition and nutrients of the basal diet %"
日粮组成 Feed ingredient | 1~21日龄 1~21 day-old | 22-35日龄 22~35 day-old |
玉米Corn | 55.34 | 60.53 |
麸皮Wheat bran | 2.70 | 2.70 |
植物油Vegetable oil | 3.17 | 3.83 |
鱼粉Fish meal | 5.01 | 4.90 |
豆粕Soybean meal | 19.00 | 12.00 |
胡麻饼Hemp cake | 4.50 | 5.20 |
棉籽粕Cottonseed meal | 3.20 | 4.10 |
菜籽粕Rapeseed meal | 2.70 | 3.06 |
DL-蛋氨酸DL-Methionine | 0.12 | 0.02 |
磷酸氢钙CaHPO4 | 3.13 | 2.46 |
石粉Limestone | 0.15 | 0.33 |
食盐NaCl | 0.27 | 0.26 |
氯化胆碱Choline chloride | 0.12 | 0.02 |
预混料a Premixa | 0.50 | 0.50 |
合计Total | 100 | 100 |
营养水平b Nutrient contentb | ||
粗蛋白质Crude protein | 20.00 | 18.90 |
代谢能/(MJ·kg-1)ME | 12.11 | 12.54 |
蛋氨酸Methionine | 0.48 | 0.38 |
赖氨酸Lysine | 1.09 | 0.94 |
钙Calcium | 1.00 | 0.90 |
有效磷Effective phosphorus | 0.45 | 0.41 |
Table 2
Primer sequences for RT-qPCR"
基因 Genes | 引物序列(5′→3′) Primer sequences(5′→3′) | 扩增长度/bp Length |
β-actin | 5′-GAGAAATTGTGCGTGACATCA-3′ 5′-CCTGAACCTCTCATTGCCA-3′ | 134 |
TGF-β | F: 5′-TTCCAACACCAGGTCCTACTCCAG-3′ R: 5′-AAGCAGACAGGTCCAGCAATAACAG-3′ | 88 |
IL-6 | F: 5′-GAAATCCCTCCTCGCCAATCTGAAG-3′ R: 5′-GCCCTCACGGTCTTCTCCATAAAC-3′ | 108 |
IFN-γ | F: 5′-ACGACACCATCCTGGACACC-3′ R: 5′-TTTGGCGTTGGCTGTCGTTC-3′ | 129 |
NF-κB | F: 5′-CTTGCCAAGCGTCACTGCAA-3′ R: 5′-GCAGTGAGATGGCGCTGAAC-3′ | 89 |
CD40 | F: 5′-GGGCTCGTGGTGAAGGTGAAAG-3′ R: 5′-GGATCAGCACTGACAGCGATGAG-3′ | 85 |
CD80 | F: 5′-TCGTTCAGAGTCTCCAGTCTTCACC-3′ R: 5′-CAGCGGTAACAAAGAGGGTCACAG-3′ | 84 |
CCR7 | F: 5′-CCGACGACTATGACGCCAACAC-3′ R: 5′-GGAGGAAGGCAGCACGGAAATC-3′ | 96 |
CCR-9 | F: 5′-AGTGCTCCTCCTTGGGTGACAG-3′ R: 5′-GGCATGAGGCAGGAACAACAGAG-3′ | 132 |
TLR-3 | F: 5′-GCAAGCTATTGAGCAAAGTCGAGAC-3′ R: 5′-GCCAGTTCAAGATGCAGCAAGATC-3′ | 128 |
TLR-4 | F: 5′-CATCCCAACCCAACCACAGTAGC-3′ R: 5′-CCACTGAGCAGCACCAATGAGTAG-3′ | 119 |
TLR-5 | F: 5′-ACTCCCTTCCTTCCCACATCTGAC-3′ R: 5′-TGTGTTGCTACTATTGCCGTGTGAG-3′ | 87 |
GATA-3 | F: 5′-CTACTTGTGTAACGCCTGTGGACTC-3′ R: 5′-GTGGTGGTGGTCTGACAGTTAGC-3′ | 132 |
J-CHAIN | F: 5′-GGTTCGTCCTTGTGGCAGGTTATC-3′ R: 5′-GAGGTCACCGTTACGCACTTACAC-3′ | 88 |
pIgR | F: 5′-AAGGGCTCTCCAACAGGGTCAG-3′ R: 5′-AGAACTTCCTCGTGCTGGCATAATC-3′ | 144 |
MHC-Ⅰ | F: 5′-GCACAGCCCCATCCTCT-3′ R: 5′-TGGCCCATCATTTTATTTCA-3′ | 101 |
MHC-Ⅱ | F: 5′-CAGCGTTCTTCTTCTGCGGT-3′ R: 5′-GGTTGTAGATTTCCCGTTCCAG-3′ | 90 |
AN04 | 5′-CAGCCCTTCCAAAGATGATGACTCC-3′ 5′-TTCCTCTCCCACCACTTCCAACC-3′ | 94 |
ASPA | 5′-AATCTTGGACAGACAGTGGTGGAAG-3′ 5′-TGTTAGCAGTGGTGTTGTGAAGGTC-3′ | 136 |
IL-17RD | 5′-GCCTTCCTCCTCGCTCTCCTC-3′ 5′-ATTGCTCTTGGTGACAGATGACAGG-3′ | 135 |
MYH | 5′-AGCCGAAGCACAAGCCAATCTG-3′ 5′-GCCAATATCCCTTGACTTGCTCCTC-3′ | 133 |
CLDN3 | 5′-CTTCATCGGCAACAACATCGTGAC-3′ 5′-CCAGCATGGAGTCGTACACCTTG-3′ | 113 |
TMEM158 | 5′-GCTCAACTTCTGCTGCTTGGATTTC-3′ 5′-CCACGCTCCACACGATGATGAC-3′ | 134 |
RRS1 | 5′-GGCAAGAAACGGCGCTTCCAG-3′ 5′-CTCGCGGAGCTGCTTGTTGAC-3′ | 138 |
MT3 | 5′-ACCTGCACGTGTGGAGACAA-3′ 5′-GCACACTTGGCACATCCTGC-3′ | 101 |
Table 3
Down- and up-regulated differentially expressed genes"
基因ID Gene ID | 基因名称 Gene name | 差异倍数 log2FC | 基因描述 Gene characterization |
下调基因 Down-regulated genes | |||
ENSGALG00000053991 | SERF2 | -3.070914732 | small EDRK-rich factor 2 |
ENSGALG00000039489 | 5-8S rRNA | -3.027282516 | 5_8S ribosomal RNA |
ENSGALG00000030890 | RRS1 | -2.198902274 | ribosome biogenesis regulator homolog |
ENSGALG00000034326 | TMEM158 | -2.198603339 | transmembrane protein 158 |
ENSGALG00000041752 | CD164L2 | -1.965298427 | CD164 molecule like 2 |
ENSGALG00000049538 | RPS28 | -1.921395818 | ribosomal protein S28 |
ENSGALG00000002517 | TMEM35B | -1.741653236 | transmembrane protein 35B |
ENSGALG00000043641 | JUND | -1.618482633 | JunD proto-oncogene |
ENSGALG00000037713 | FNDC10 | -1.458563877 | fibronectin type Ⅲ |
ENSGALG00000049153 | -1.400669956 | peptide deformylase | |
ENSGALG00000029768 | PTGDR | -1.375135892 | prostaglandin D2 receptor-like |
ENSGALG00000037716 | UBA52 | -1.330577817 | ubiquitin A-52 |
ENSGALG00000031067 | TMEM132A | -1.305910743 | transmembrane protein 132A |
ENSGALG00000030407 | IL-6R | -1.268521422 | interleukin 6 receptor |
ENSGALG00000041232 | TMEM223 | -1.142077014 | transmembrane protein 223 |
上调基因 Up-regulated genes | |||
ENSGALG00000011614 | ANO4 | 2.392598397 | anoctamin 4 |
ENSGALG00000015358 | MYH15 | 1.956091863 | myosin, heavy chain 15 |
ENSGALG00000051773 | JHY | 1.822528177 | chromosome 11 open reading frame 63 |
ENSGALG00000005499 | IL17-RD | 1.615012462 | interleukin 17 receptor |
ENSGALG00000003876 | TIMD4 | 1.524616906 | T-cell immunoglobulin and mucin domain containing 4 |
ENSGALG00000043027 | HEPHL1 | 1.417362402 | hephaestin like 1 |
ENSGALG00000005360 | CA4 | 1.377146878 | carbonic anhydrase 4 |
ENSGALG00000049288 | CD86 | 1.278387892 | CD86 molecule |
ENSGALG00000028790 | DNASE2B | 1.267707784 | deoxyribonuclease 2 beta |
ENSGALG00000019651 | AGR3 | 1.241116654 | anterior gradient 3 |
ENSGALG00000030703 | CYBRD1 | 1.197753577 | cytochrome b reductase 1 |
ENSGALG00000002390 | CA6 | 1.123467369 | carbonic anhydrase 6 |
ENSGALG00000037077 | CCR5 | 1.038338392 | C-C motif chemokine receptor 5 |
ENSGALG00000013748 | CD226 | 1.02970962 | CD226 molecule |
Table 4
KEGG Pathways"
通路 Pathway | 数量 Count | q值 q-value | 基因 Gene |
核糖体 Ribosome | 11 | 0.001 | RPS28/MRPL9、MRPS14/MRPL17、MRPL4/UBA52、MRPL20/RPS19、MRPS12/RPL35A、MRPS21 |
MAPK信号通路 MAPK signaling pathway | 9 | 0.23 | JUND/ECSIT NFKB2/TGFA/GADD45G/PGF |
细胞黏附分子 Cell adhesion molecules | 7 | 0.032 | CLDN3/BLB1、CD40/ITGB7、CD86/CD226 |
黏着斑 Focal adhesion | 7 | 0.26 | PPP1R12C/ITGB7/PGF |
1 |
CATTOLI G , SUSTA L , TERREGINO C , et al. Newcastle disease: a review of field recognition and current methods of laboratory detection[J]. J Vet Diagn Invest, 2011, 23 (4): 637- 656.
doi: 10.1177/1040638711407887 |
2 | 王林浩, 康一岚, 刘兆霞, 等. 鸡新城疫的诊断及疫苗免疫情况[J]. 特种经济动植物, 2024, 27 (11): 72- 74. |
WANG L H , KANG Y L , LIU Z X , et al. Diagnosis and vaccine immunization of Newcastle disease in chickens[J]. Special Economic Animals and Plants, 2024, 27 (11): 72- 74. | |
3 |
张高峰, 魏家阳, 冯贺龙, 等. 生物矿化对新城疫病毒LaSota株生物学特性及免疫原性的影响[J]. 畜牧兽医学报, 2024, 55 (12): 5663- 5671.
doi: 10.11843/j.issn.0366-6964.2024.12.029 |
ZHANG G F , WEI J Y , FENG H L , et al. Effects of biomineralization on the biological characteristics and immunogenicity of the LaSota strain of Newcastle disease virus[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (12): 5663- 5671.
doi: 10.11843/j.issn.0366-6964.2024.12.029 |
|
4 | BELLO M B , YUSOFF K , IDERIS A , et al. Diagnostic and vaccination approaches for newcastle disease virus in poultry: the current and emerging perspectives[J]. Biomed Res Int, 2018, 2018, 7278459. |
5 | BI S , ZHANG J , QU Y , et al. Yeast cell wall product enhanced intestinal IgA response and changed cecum microflora species after oral vaccination in chickens[J]. Poult Sci, 2020, 99 (12): 6576- 6585. |
6 |
CAO L T , LI J , ZHANG J R , et al. Beta-glucan enhanced immune response to Newcastle disease vaccine and changed mRNA expression of spleen in chickens[J]. Poult Sci, 2023, 102 (2): 102414.
doi: 10.1016/j.psj.2022.102414 |
7 |
RAJPUT I R , LI L Y , XIN X , et al. Effect of Saccharomyces boulardii and Bacillus subtilis B10 on intestinal ultrastructure modulation and mucosal immunity development mechanism in broiler chickens[J]. Poult Sci, 2013, 92 (4): 956- 965.
doi: 10.3382/ps.2012-02845 |
8 | BI S , ZHANG J , ZHANG L , et al. Yeast cell wall upregulated cell-mediated immune responses to Newcastle disease virus vaccine[J]. Poult Sci, 2022, 101 (4): 101712. |
9 | 王燕飞, 刘璇, 张若男, 等. 复合益生菌对肉鸡肠道免疫、抗氧化与细胞凋亡的影响[J]. 动物营养学报, 2023, 35 (5): 2916- 2928. |
WANG Y F , LIU X , ZHANG R N , et al. Effects of compound probiotics on intestinal immunity, antioxidation and apoptosis of broilers[J]. Chinese Journal of Animal Nutrition, 2023, 35 (5): 2916- 2928. | |
10 | ISHO B , FLORESCU A , WANG A A , et al. Fantastic IgA plasma cells and where to find them[J]. Immunol Rev, 2021, 303 (1): 119- 137. |
11 | 李丹, 苏冀彦, 苏璐, 等. 喂食蛹虫草的小鼠血清对小鼠脾淋巴细胞增殖及活化的影响[J]. 食用菌学报, 2019, 26 (2): 72- 82. |
LI D , SU J Y , SU L , et al. Effect of serum from mice fed with Cordyceps militaris on proliferation and activation of mouse spleen lymphocytes[J]. Acta Edulis Fungi, 2019, 26 (2): 72- 82. | |
12 | ZHANG J J , JI Y H , WANG Z X , et al. Effective improvements to the live-attenuated Newcastle disease virus vaccine by polyethylenimine-based biomimetic silicification[J]. Vaccine, 2022, 40 (6): 886- 896. |
13 | SAWANT P M , VERMA P C , SUBUDHI P K , et al. Immunomodulation of bivalent Newcastle disease DNA vaccine induced immune response by co-delivery of chicken IFN-γ and IL-4 genes[J]. Vet Immunol Immunopathol, 2011, 144 (1-2): 36- 44. |
14 | GARDNER A , RUFFELL B . Dendritic cells and cancer immunity[J]. Trends Immunol, 2016, 37 (12): 855- 865. |
15 | ZHOU M X , OUYANG W J . The function role of GATA-3 in Th1 and Th2 differentiation[J]. Immunol Res, 2003, 28 (1): 25- 37. |
16 | HUANG L L , WANG J L , WANG Y H , et al. Upregulation of CD4+CD8+memory cells in the piglet intestine following oral administration of Bacillus subtilis spores combined with PEDV whole inactivated virus[J]. Vet Microbiol, 2019, 235, 1- 9. |
17 | COMERFORD I , HARATA-LEE Y , BUNTING M D , et al. A myriad of functions and complex regulation of the CCR7/CCL19/CCL21 chemokine axis in the adaptive immune system[J]. Cytokine Growth Factor Rev, 2013, 24 (3): 269- 283. |
18 | WANI S M , GANI A , MIR S A , et al. β-glucan: a dual regulator of apoptosis and cell proliferation[J]. Int J Biol Macromol, 2021, 182, 1229- 1237. |
19 | GOODRIDGE H S , WOLF A J , UNDERHILL D M . β-glucan recognition by the innate immune system[J]. Immunol Rev, 2009, 230 (1): 38- 50. |
20 | KANKKUNEN P , TEIRILÄ L , RINTAHAKA J , et al. (1, 3)-β-glucans activate both dectin-1 and NLRP3 inflammasome in human macrophages[J]. J Immunol, 2010, 184 (11): 6335- 6342. |
21 | MASUDA Y , TOGO T , MIZUNO S , et al. Soluble β-glucan from Grifola frondosa induces proliferation and Dectin-1/Syk signaling in resident macrophages via the GM-CSF autocrine pathway[J]. J Leukoc Biol, 2012, 91 (4): 547- 556. |
22 | XU J , LIU D B , YIN Q , et al. Tetrandrine suppresses β-glucan-induced macrophage activation via inhibiting NF-κB, ERK and STAT3 signaling pathways[J]. Mol Med Rep, 2016, 13 (6): 5177- 5184. |
23 | BYUN E B , PARK S H , JANG B S , et al. Gamma-irradiated β-glucan induces immunomodulation and anticancer activity through MAPK and NF-κB pathways[J]. J Sci Food Agric, 2016, 96 (2): 695- 702. |
24 | WANG S , ZHOU H , FENG T , et al. β-glucan attenuates inflammatory responses in oxidized LDL-induced THP-1 cells via the p38 MAPK pathway[J]. Nutr Metab Cardiovasc Dis, 2014, 24 (3): 248- 255. |
25 | RUIZ DE MORALES J M G , PUIG L , DAUDÉN E , et al. Critical role of interleukin (IL)-17 in inflammatory and immune disorders: an updated review of the evidence focusing in controversies[J]. Autoimmun Rev, 2020, 19 (1): 102429. |
26 | 葛晓龙, 曹裕, 王婷婷. 肠道内Th17细胞的特征及其在炎症性肠病中的作用[J]. 免疫学杂志, 2014, 30 (12): 1113- 1117. |
GE X L , CAO Y , WANG T T . The features of Th17 in the intestine and its function in inflammatory bowel disease[J]. Immunological Journal, 2014, 30 (12): 1113- 1117. | |
27 | ABUSLEME L , MOUTSOPOULOS N M . IL-17:overview and role in oral immunity and microbiome[J]. Oral Dis, 2017, 23 (7): 854- 865. |
28 | 郭思呈, 李铁松, 李庆伟. TMEM16A: 一种钙离子激活的氯离子通道[J]. 中国生物化学与分子生物学报, 2017, 33 (12): 1187- 1194. |
GUO S C , LI T S , LI Q W . TMEM16A: a type of calcium-activated chloride channel[J]. Chinese Journal of Biochemistry and Molecular Biology, 2017, 33 (12): 1187- 1194. | |
29 | 魏晶, 陈纪飞, 王冰, 等. TMEM家族成员免疫功能的研究进展[J]. 中国免疫学杂志, 2016, 32 (1): 127- 130. |
WEI J , CHEN J F , WANG B , et al. Research progress on immune function of TMEM family members[J]. Chinese Journal of Immunology, 2016, 32 (1): 127- 130. | |
30 | TONG J C , LI H R , HU Y , et al. TMEM158 regulates the canonical and non-canonical pathways of TGF-β to mediate EMT in triple-negative breast cancer[J]. J Cancer, 2022, 13 (8): 2694- 2704. |
31 | FU Y , YAO N , DING D , et al. TMEM158 promotes pancreatic cancer aggressiveness by activation of TGFβ1 and PI3K/AKT signaling pathway[J]. J Cell Physiol, 2020, 235 (3): 2761- 2775. |
[1] | WANG Shengqi, JI Xinyu, HUANG Fuqing, HU Manli, WANG Rouqi, GENG Yuxin, SUN Yingxue, QI Zhili, ZHANG Xin. Effects of Salidroside-added Complete Nutrition Food on Blood Biochemical Indexes and Liver Transcriptomics in Dogs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 455-465. |
[2] | Yue LI, Changchun ZHANG, Guangyu LIU, Mengyuan GAO, Chaojun FU, Jiabao XING, Sijia XU, Qiyuan KUANG, Jing LIU, Xiaopeng GAO, Heng WANG, Lang GONG, Guihong ZHANG, Yankuo SUN. Application and Analysis of Meta-transcriptomics Sequencing Technology in the Diagnosis of Viral Diarrhea Diseases in Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3579-3589. |
[3] | XIAO Le, LIU Junyuan, ZENG Wenyu, WANG Qin, HAN Wenjue, LIU Yanling, FAN Yu, XU Yuting, YANG Beini, XIAO Xiong, WANG Zili. Microbiome and Transcriptome Analyses Revealed the Regulatory Mechanism of Xiangsha Liujunzi Decoction on Ileal Injury Induced by ETEC in Weaned Piglets with Diarrhea [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 797-808. |
[4] | LI Wufeng, QIU Lixia, GUAN Jiawei, LI Li, DU Min. Exploring the Differences of Key Volatile Compounds in Donkey Meat with Different Tenderness Based on HS-SPME-GC-MS and OPLS-DA Models [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4258-4270. |
[5] | LIU Jiamin, YU Baojun, MU Tong, ZHANG Di, FENG Xiaofang, ZHANG Juan, WANG Ying, WEN Wan, GU Yaling. Screening and Identification of Key miRNAs for Milk Fat Metabolism in Dairy Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4244-4257. |
[6] | MENG Zhen, SUN Mengke, XU Yongde, QIN Tao, REN Zhe. Structural Characterization and Immune Enhancement of Phyllanthus emblica Polysaccharide [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(12): 3627-3640. |
[7] | LI Longlong, ZHU Yanling, ZENG Bin, HE Jiajian, SUN Jiajie, CHEN Ting, LUO Junyi, ZHANG Yongliang, XI Qianyun. Screening of Genes and Signaling Pathway Related to Testicular Development in miR-125b-2 Knockout Mouse Based on Transcriptomics [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(10): 2022-2031. |
[8] | ZHANG Haibin;ZHOU Mingdong;ZHOU Xia;HU Jingdong;ZHAO Hongkun; . Effect of Mature Chicken Interleukin-18 Protein on Its Immunoenhancement on Newcastle Disease Vaccine [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2012, 43(8): 1287-1291. |
[9] | ZHOU Yi;DIAO Qi-yu;TU Yan;YUN Qiang;GUO Xu-dong. Effect of Yeast β-glucan and Antibiotics on Growth and IntestinalMicroflora in Early-weaning Calves [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2010, 41(6): 685-691. |
[10] | CHENG Xiang-chao;ZHAO De-ming;WU Ting-cai;LI Yin-ju;ZHANG Chun-jie. Construction of Eukaryotic Expression Plasmids Encoding Chicken IL-18 Gene and Study on Its Immunoenhancement on Newcastle Disease Vaccine [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2005, 36(5): 476-481. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||