Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (12): 5325-5339.doi: 10.11843/j.issn.0366-6964.2024.12.001
• Review • Previous Articles Next Articles
WU Danni1(), XIE Yuchun5, QIN Qing1, ZHANG Chongyan1, XU Xiaolong1, ZHAO Dan1, LAN Mingxi1, YANG Ji4, XU Songsong4, LIU Zhihong1,2,3,*(
)
Received:
2024-05-08
Online:
2024-12-23
Published:
2024-12-27
Contact:
LIU Zhihong
E-mail:2604879241@qq.com;Liuzh7799@163.com
CLC Number:
WU Danni, XIE Yuchun, QIN Qing, ZHANG Chongyan, XU Xiaolong, ZHAO Dan, LAN Mingxi, YANG Ji, XU Songsong, LIU Zhihong. Research Progress on Cell Types and Identification Methods Related to Muscle Fiber Development in Livestock and Poultry[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5325-5339.
Table 1
The similarities and differences of cell type composition in skeletal muscle of different livestock and poultry"
动物 Animal | 肌肉部位 Muscle types | 时期 Period | 不同发育时期细胞类型变化情况 Changes of cell types at different developmental stages | 采用的技术 Used technology | 主要细胞类型 Main cell types | 参考文献 Reference |
牛 Cattle | 背最长肌 | 胚胎期(怀孕后60 d)、哺乳期(出生后4月龄)和成年期(出生后24月龄) | 胚胎期成纤维细胞占比最多;哺乳期内皮细胞占比最多,其次是IIX型肌纤维;成年期IIX型肌纤维占比最多 | 10×Genomics单细胞RNA测序 | 18个主要细胞类型:脂肪细胞、内皮细胞、红系细胞、成纤维细胞、淋巴细胞、单核细胞、成肌细胞、肌细胞、肌源性祖细胞、中性粒细胞、周细胞、雪旺氏细胞、腱细胞、Ⅰ型纤维1、Ⅰ型纤维2、IIA型纤维1、IA型纤维2和IIX型纤维 | [ |
猪 Pig | 背最长肌 | 1日龄新生猪 | / | 10×Genomics单细胞RNA测序 | 11种不同的细胞类群,包括内皮细胞(24.39%)、肌管(18.82%)、纤维成脂祖细胞(18.11%)、卫星细胞(16.74%)、成肌细胞(3.99%)、肌细胞(5.74%)、雪旺细胞(3.81%)、平滑肌细胞(3.22%)、树突状细胞(2.99%)、周细胞(1.86%)和中性粒细胞(0.33%) | [ |
鸡 Chicken | 胸肌 | 生长早期(孵化后第5天)和快速生长期(第100天) | 在生长早期鉴定到了5个成肌细胞群和2个脂肪细胞群,在快速生长期鉴定到了1个成肌细胞群和脂肪细胞群 | 10×Genomics单细胞RNA测序 | 生长早期(孵化后第5天)鉴定出4种细胞类型:成肌细胞、脂肪细胞、红细胞和其他细胞。快速生长期(第100天)鉴定出6种细胞类型:成肌细胞、脂肪细胞、干细胞、红细胞、内皮细胞和其他细胞 | [ |
1 | 杨飞云. 猪骨骼肌肌纤维类型分布及转化的分子机理研究[D]. 雅安: 四川农业大学, 2008. |
YANG F Y. Molecular mechanism of myofiber type distribution and transformation in skeletal muscle of pigs[D]. Yaan: Sichuan Agricultural University, 2008. (in Chinese) | |
2 |
CAI C C , YUE Y , YUE B L . Single-cell RNA sequencing in skeletal muscle developmental biology[J]. Biomed Pharmacother, 2023, 162, 114631.
doi: 10.1016/j.biopha.2023.114631 |
3 |
XU D D , WAN B Y , QIU K , et al. Single-cell RNA-sequencing provides insight into skeletal muscle evolution during the selection of muscle characteristics[J]. Adv Sci (Weinh), 2023, 10 (35): e2305080.
doi: 10.1002/advs.202305080 |
4 |
BRYSON-RICHARDSON R J , CURRIE P D . The genetics of vertebrate myogenesis[J]. Nat Rev Genet, 2008, 9 (8): 632- 646.
doi: 10.1038/nrg2369 |
5 |
PRASAD V , MILLAY D P . Skeletal muscle fibers count on nuclear numbers for growth[J]. Semin Cell Dev Biol, 2021, 119, 3- 10.
doi: 10.1016/j.semcdb.2021.04.015 |
6 |
ALLEN R E , MERKEL R A , YOUNG R B . Cellular aspect of muscle growth: myogenic cell proliferation[J]. J Anim Sci, 1979, 49 (1): 115- 127.
doi: 10.2527/jas1979.491115x |
7 |
TE PAS M F W , DE WIT A A W , PRIEM J , et al. Transcriptome expression profiles in prenatal pigs in relation to myogenesis[J]. J Muscle Res Cell Motil, 2005, 26 (2-3): 157- 165.
doi: 10.1007/s10974-005-7004-6 |
8 |
HAWKE T J , GARRY D J . Myogenic satellite cells: physiology to molecular biology[J]. J Appl Physiol, 2001, 91 (2): 534- 551.
doi: 10.1152/jappl.2001.91.2.534 |
9 | 贾径. 鸭MyoG、MRF4基因的克隆及其在骨骼肌组织中的发育表达研究[D]. 雅安: 四川农业大学, 2009. |
JIA J. Clone and developmental expression of MyoG and MRF4 genes in duck skeletal muscle[D]. Yaan: Sichuan Agricultural University, 2009. (in Chinese) | |
10 | 张江丽. 胚胎发育中骨骼肌组织的形成及调控[J]. 安徽农业科技, 2007, 35 (21): 6447-6448, 6566. |
ZHANG J L . Morphogenesis and regulation of skeletal muscle tissue in the embryo development[J]. Journal of Anhui Agricultural Sciences, 2007, 35 (21): 6447-6448, 6566. | |
11 |
TANG Z L , LI Y , WAN P , et al. LongSAGE analysis of skeletal muscle at three prenatal stages in TongCheng and Landrace pigs[J]. Genome Biol, 2007, 8 (6): R115.
doi: 10.1186/gb-2007-8-6-r115 |
12 |
BUCKINGHAM M , VINCENT S D . Distinct and dynamic myogenic populations in the vertebrate embryo[J]. Curr Opin Genet Dev, 2009, 19 (5): 444- 453.
doi: 10.1016/j.gde.2009.08.001 |
13 | 杨朝永, 张若彤, 陈若楠, 等. 鸡胚胎期肌纤维的发育特征及相关基因表达研究[J]. 中国畜牧杂志, 2023, 59 (9): 171- 176. |
YANG C Y , ZHANG R T , CHEN R N , et al. Study on the development characteristics and related gene expression of chicken embryonic muscle fibers[J]. Chinese Journal of Animal Science, 2023, 59 (9): 171- 176. | |
14 | 彭颖. Dll1在小鼠骨骼肌发育和再生中的作用及机制研究[D]. 杨陵: 西北农林科技大学, 2020. |
PANG Y. The Function and mechanism of Dll1 in the development and regeneration of mouse skeletal muscle[D]. Yangling: Northwest A & F University, 2020. (in Chinese) | |
15 | 李雪娇, 刘晨曦, 杨开伦, 等. 德美羊与中美羊胎儿期骨骼肌组织学结构发育特征差异性研究[J]. 草食家畜, 2017, (4): 1- 6. |
LI X J , LIU C X , YANG K L , et al. Study on differentiation of fetal skeletal muscle development characteristics between German and Chinese Merino Sheep[J]. Grass-Feeding Livestock, 2017, (4): 1- 6. | |
16 |
WANG T J , LIU C , FENG C P , et al. IUGR alters muscle fiber development and proteome in fetal pigs[J]. Front Biosci (Landmark Ed), 2013, 18 (2): 598- 607.
doi: 10.2741/4123 |
17 |
BÉRARD J , KALBE C , LÖSEL D , et al. Potential sources of early-postnatal increase in myofibre number in pig skeletal muscle[J]. Histochem Cell Biol, 2011, 136 (2): 217- 225.
doi: 10.1007/s00418-011-0833-z |
18 |
VELOTTO S , CRASTO A . Histochemical and morphometrical characterization and distribution of fibre types in four muscles of ostrich (Struthio camelus)[J]. Anat, Histol, Embryol, 2004, 33 (5): 251- 256.
doi: 10.1111/j.1439-0264.2004.00535.x |
19 | 欧秀琼, 梅学华, 李星, 等. 猪肌肉肌纤维类型组成的影响因素研究进展[J]. 饲料工业, 2023, 44 (15): 30- 35. |
OU X Q , MEI X H , LI X , et al. Research progress on influencing factors of muscle fiber type composition in pigs[J]. Feed Industry, 2023, 44 (15): 30- 35. | |
20 | 高一, 刘庆雨, 李兆华, 等. 新吉林黑猪不同部位肌纤维特性研究[J]. 中国畜牧杂志, 2023, 59 (11): 170- 174. |
GAO Y , LIU Q Y , LI Z H , et al. Study on the characteristics of muscle fiber in differentpartsof new Jilin black pig[J]. Chinese Journal of Animal Science, 2023, 59 (11): 170- 174. | |
21 |
杨飞云, 陈代文, 黄金秀, 等. 猪背最长肌肌纤维类型的发育性变化及品种与营养影响特点[J]. 畜牧兽医学报, 2008, 39 (12): 1701- 1708.
doi: 10.3321/j.issn:0366-6964.2008.12.012 |
YANG F Y , CHEN D W , HUANG J X , et al. Developmental changes of myofiber types in longissimus dorsi muscle of rongchang and DLY pigs under different nutrient condition[J]. Acta Veterinaria et Zootechnica Sinica, 2008, 39 (12): 1701- 1708.
doi: 10.3321/j.issn:0366-6964.2008.12.012 |
|
22 |
WENG K Q , HUO W R , LI Y , et al. Fiber characteristics and meat quality of different muscular tissues from slow- and fast-growing broilers[J]. Poult Sci, 2022, 101 (1): 101537.
doi: 10.1016/j.psj.2021.101537 |
23 |
杨玉莹, 张一敏, 毛衍伟, 等. 不同部位牦牛肉肌纤维特性与肉品质差异[J]. 食品科学, 2019, 40 (21): 72- 77.
doi: 10.7506/spkx1002-6630-20181025-296 |
YANG Y Y , ZHANG Y M , MAO Y W , et al. Differences in myofiber characteristics and meat quality of different yak muscles[J]. Food Science, 2019, 40 (21): 72- 77.
doi: 10.7506/spkx1002-6630-20181025-296 |
|
24 | 郎玉苗. 肌纤维类型对牛肉嫩度的影响机制研究[D]. 北京: 中国农业科学院, 2016. |
LANG Y M. Mechanism and effects of muscle fiber types on beef tenderness[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese) | |
25 | LEFAUCHEUR L . Myofiber typing and pig meat production[J]. Slov Vet Zborn, 2001, 38 (1): 5- 33. |
26 | 丁文淇, 图格琴, 任秀娟, 等. 胎儿期与成年期蒙古马骨骼肌肌纤维类型转化研究[J]. 畜牧兽医学报, 2022, 53 (1): 88- 99. |
DING W Q , BAO T G Q , REN X J , et al. Study on muscle fiber type transformation of mongolian horse during fetal and adult period[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (1): 88- 99. | |
27 | 周力, 高占红, 侯生珍, 等. 初生和成年黑藏羊肉品质与肌纤维特性差异分析[J]. 畜牧兽医学报, 2022, 53 (3): 700- 710. |
ZHOU L , GAO Z H , HOU S Z , et al. Difference analysis of meat quality and muscle fiber characteristics between newborn and adult Black Tibetan sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (3): 700- 710. | |
28 |
CHO D S , SCHMITT R E , DASGUPTA A , et al. Single-cell deconstruction of post-sepsis skeletal muscle and adipose tissue microenvironments[J]. J Cachexia Sarcopenia Muscle, 2020, 11 (5): 1351- 1363.
doi: 10.1002/jcsm.12596 |
29 |
CAI S F , HU B , WANG X Y , et al. Integrative single-cell RNA-seq and ATAC-seq analysis of myogenic differentiation in pig[J]. BMC Biol, 2023, 21 (1): 19.
doi: 10.1186/s12915-023-01519-z |
30 |
KALUCKA J , DE ROOIJ L P M H , GOVEIA J , et al. Single-cell transcriptome atlas of murine endothelial cells[J]. Cell, 2020, 180 (4): 764- 779.e20.
doi: 10.1016/j.cell.2020.01.015 |
31 |
PAIK D T , TIAN L , WILLIAMS I M , et al. Single-cell RNA sequencing unveils unique transcriptomic signatures of organ-specific endothelial cells[J]. Circulation, 2020, 142 (19): 1848- 1862.
doi: 10.1161/CIRCULATIONAHA.119.041433 |
32 | 于敏, 王伟卓, 郭雄. 硒蛋白在内皮细胞发育和心肌功能中的重要作用[J]. 国外医学医学地理分册, 2010, 31 (1): 44- 48. |
YU M , WANG W Z , GUO X . The important role of selenoproteins in endothelial cell development and myocardial function[J]. Foreign Medical Sciences Section of Medgeography, 2010, 31 (1): 44- 48. | |
33 |
FERRERO E , FERRERO M E , PARDI R , et al. The platelet endothelial cell adhesion molecule-1 (PECAM1) contributes to endothelial barrier function[J]. FEBS Lett, 1995, 374 (3): 323- 326.
doi: 10.1016/0014-5793(95)01110-Z |
34 |
ETICH J , BERGMEIER V , FRIE C , et al. PECAM1+/Sca1+/CD38+ vascular cells transform into myofibroblast-like cells in skin wound repair[J]. PLoS One, 2013, 8 (1): e53262.
doi: 10.1371/journal.pone.0053262 |
35 |
OKABE Y . Molecular control of the identity of tissue-resident macrophages[J]. Int Immunol, 2018, 30 (11): 485- 491.
doi: 10.1093/intimm/dxy019 |
36 |
DOMÍNGUEZ CONDE C , XU C , JARVIS L B , et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans[J]. Science, 2022, 376 (6594): eabl5197.
doi: 10.1126/science.abl5197 |
37 |
XU D D , WAN B Y , QIU K , et al. Single-cell RNA-sequencing provides insight into skeletal muscle evolution during the selection of muscle characteristics[J]. Adv Sci (Weinh), 2023, 10 (35): e2305080.
doi: 10.1002/advs.202305080 |
38 |
ZHAO F R , ZHAO C , XU T P , et al. Single-cell and bulk RNA sequencing analysis of B cell marker genes in TNBC TME landscape and immunotherapy[J]. Front Immunol, 2023, 14, 1245514.
doi: 10.3389/fimmu.2023.1245514 |
39 |
COULIS G , JAIME D , GUERRERO-JUAREZ C , et al. Single-cell and spatial transcriptomics identify a macrophage population associated with skeletal muscle fibrosis[J]. Sci Adv, 2023, 9 (27): eadd9984.
doi: 10.1126/sciadv.add9984 |
40 |
LENDAHL U , MUHL L , BETSHOLTZ C . Identification, discrimination and heterogeneity of fibroblasts[J]. Nat Commun, 2022, 13 (1): 3409.
doi: 10.1038/s41467-022-30633-9 |
41 | 戴生明. Myofibroblast宜译为"肌性成纤维细胞"而不是"肌成纤维细胞"[J]. 中国医学前沿杂志(电子版), 2023, 15 (7): 81. |
DAI S M . Myofibroblast should be translated as 'myofibroblast' rather than 'myofibroblast'[J]. Chinese Journal of the Frontiers of Medical Science (Electronic Version), 2023, 15 (7): 81. | |
42 |
FAN C Q , LIAO M C , XIE L C , et al. Single-cell transcriptome integration analysis reveals the correlation between mesenchymal stromal cells and fibroblasts[J]. Front Genet, 2022, 13, 798331.
doi: 10.3389/fgene.2022.798331 |
43 |
COLLINS B C , KARDON G . It takes all kinds: heterogeneity among satellite cells and fibro-adipogenic progenitors during skeletal muscle regeneration[J]. Development, 2021, 148 (21): dev199861.
doi: 10.1242/dev.199861 |
44 |
WOSCZYNA M N , KONISHI C T , PEREZ-CARBAJAL E E , et al. Mesenchymal stromal cells are required for regeneration and homeostatic maintenance of skeletal muscle[J]. Cell Rep, 2019, 27 (7): 2029- 2035.e5.
doi: 10.1016/j.celrep.2019.04.074 |
45 |
CHEN W T , YOU W J , VALENCAK T G , et al. Bidirectional roles of skeletal muscle fibro-adipogenic progenitors in homeostasis and disease[J]. Ageing Res Rev, 2022, 80, 101682.
doi: 10.1016/j.arr.2022.101682 |
46 |
PLIKUS M V , WANG X J , SINHA S , et al. Fibroblasts: origins, definitions, and functions in health and disease[J]. Cell, 2021, 184 (15): 3852- 3872.
doi: 10.1016/j.cell.2021.06.024 |
47 |
XU Z Y , YOU W J , CHEN W T , et al. Single-cell RNA sequencing and lipidomics reveal cell and lipid dynamics of fat infiltration in skeletal muscle[J]. J Cachexia Sarcopenia Muscle, 2021, 12 (1): 109- 129.
doi: 10.1002/jcsm.12643 |
48 |
UEZUMI A , FUKADA S , YAMAMOTO N , et al. Identification and characterization of PDGFRα+ mesenchymal progenitors in human skeletal muscle[J]. Cell Death Dis, 2014, 5 (4): e1186.
doi: 10.1038/cddis.2014.161 |
49 | 蔡翠翠. 基于scRNA-seq及scATAC-seq构建牛骨骼肌发育的单细胞图谱[D]. 杨陵: 西北农林科技大学, 2023. |
CAI C C. Single cell atlas construction of bovine skeletal muscle development based on scRNA-seq and scATAC-seq[D]. Yangling: Northwest A&F University, 2023. (in Chinese) | |
50 |
QIU X , WANG H Y , YANG Z Y , et al. Uncovering the prominent role of satellite cells in paravertebral muscle development and aging by single-nucleus RNA sequencing[J]. Genes Dis, 2023, 10 (6): 2597- 2613.
doi: 10.1016/j.gendis.2023.01.005 |
51 | DUMONT N A , BENTZINGER C F , SINCENNES M C , et al. Satellite cells and skeletal muscle regeneration[J]. Compr Physiol, 2015, 5 (3): 1027- 1059. |
52 |
SEALE P , SABOURIN L A , GIRGIS-GABARDO A , et al. Pax7 is required for the specification of myogenic satellite cells[J]. Cell, 2000, 102 (6): 777- 786.
doi: 10.1016/S0092-8674(00)00066-0 |
53 | 孙伟. 关于绵羊肌肉生长遗传调控机理的研究[D]. 北京: 中国农业科学院, 2011. |
SUN W. Study on genetic control mechanism of sheep muscle growth[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese) | |
54 | 赵欢乐. 梅花鹿肌肉组织生肌调节因子(MRFs)基因的差异表达研究[D]. 哈尔滨: 东北林业大学, 2022. |
ZHAO H L. Differential expression of myogenic regulatory factors gene in Sika Deer muscle tissue[D]. Harbin: Northeast Forestry University, 2022. (in Chinese) | |
55 |
YIN Z , LIN J X , YAN R J , et al. Atlas of musculoskeletal stem cells with the soft and hard tissue differentiation architecture[J]. Adv Sci (Weinh), 2020, 7 (23): 2000938.
doi: 10.1002/advs.202000938 |
56 |
GIORDANI L , HE G J , NEGRONI E , et al. High-dimensional single-cell cartography reveals novel skeletal muscle-resident cell populations[J]. Mol Cell, 2019, 74 (3): 609- 621.e6.
doi: 10.1016/j.molcel.2019.02.026 |
57 |
吴震, 张子旺, 王晓艾, 等. 转录因子SCX和MKX在肌腱发育和分化中的研究进展[J]. 中国细胞生物学学报, 2016, 38 (12): 1549- 1554.
doi: 10.11844/cjcb.2016.12.0101 |
WU Z , ZHANG Z W , WANG X A , et al. Transcription factors SCX and MKX research progress in tendon development and differentiation[J]. Chinese Journal of Cell Biology, 2016, 38 (12): 1549- 1554.
doi: 10.11844/cjcb.2016.12.0101 |
|
58 |
XU P , ZHANG B Y , DENG B , et al. Mechanical stretch facilitates tenomodulin expression to induce tenocyte migration via MAPK signaling pathway[J]. Arch Biochem Biophys, 2023, 734, 109486.
doi: 10.1016/j.abb.2022.109486 |
59 |
LI P S , GONG Z , SHULTZ L D , et al. Mesenchymal stem cells: from regeneration to cancer[J]. Pharmacol Therapeut, 2019, 200, 42- 54.
doi: 10.1016/j.pharmthera.2019.04.005 |
60 |
VEZZANI B , PIERANTOZZI E , SORRENTINO V . Not all pericytes are born equal: pericytes from human adult tissues present different differentiation properties[J]. Stem Cells Dev, 2016, 25 (20): 1549- 1558.
doi: 10.1089/scd.2016.0177 |
61 |
COLLINS B C , KARDON G . It takes all kinds: heterogeneity among satellite cells and fibro-adipogenic progenitors during skeletal muscle regeneration[J]. Development, 2021, 148 (21): dev199861.
doi: 10.1242/dev.199861 |
62 |
CHEN B D , SHAN T Z . The role of satellite and other functional cell types in muscle repair and regeneration[J]. J Muscle Res Cell Motil, 2019, 40 (1): 1- 8.
doi: 10.1007/s10974-019-09511-3 |
63 |
QUINN L S , ONG L D , ROEDER R A . Paracrine control of myoblast proliferation and differentiation by fibroblasts[J]. Dev Biol, 1990, 140 (1): 8- 19.
doi: 10.1016/0012-1606(90)90048-N |
64 |
AHMAD S S , CHUN H J , AHMAD K , et al. The roles of growth factors and hormones in the regulation of muscle satellite cells for cultured meat production[J]. J Anim Sci Technol, 2023, 65 (1): 16- 31.
doi: 10.5187/jast.2022.e114 |
65 |
AHMAD S S , AHMAD K , LEE E J , et al. Implications of insulin-like growth factor-1 in skeletal muscle and various diseases[J]. Cells, 2020, 9 (8): 1773.
doi: 10.3390/cells9081773 |
66 |
XIAO W , JIANG N J , JI Z Y , et al. Single-cell RNA sequencing reveals the cellular landscape of Longissimus dorsi in a newborn Suhuai Pig[J]. Int J Mol Sci, 2024, 25 (2): 1204- 1204.
doi: 10.3390/ijms25021204 |
67 |
王铁, 王子旭, 陈耀星. 鸡胚脾脏石蜡切片制作及H.E.染色方法改良的探讨[J]. 中国兽医杂志, 2013, 49 (9): 86- 87.
doi: 10.3969/j.issn.0529-6005.2013.09.038 |
WANG T , WANG Z X , CHEN Y X . Study on the production of paraffin sections of chickenembryo spleen and the improvement of H.E. staining method[J]. Chinese Journal of Veterinary Medicine, 2013, 49 (9): 86- 87.
doi: 10.3969/j.issn.0529-6005.2013.09.038 |
|
68 | 王秀文. 石蜡切片法中染色技术的改良[J]. 植物研究, 2015, 35 (1): 158- 160. |
WANG X W . The improved stained methods of paraffin sections production[J]. Bulletin of Botanical Research, 2015, 35 (1): 158- 160. | |
69 |
CHAN J K C . The wonderful colors of the hematoxylin-eosin stain in diagnostic surgical pathology[J]. Int J Surg Pathol, 2014, 22 (1): 12- 32.
doi: 10.1177/1066896913517939 |
70 | CARDIFF R D , MILLER C H , MUNN R J . Manual hematoxylin and eosin staining of mouse tissue sections[J]. Cold Spring Harb Protoc, 2014, 2014 (6): 655- 658. |
71 | CHEN L L , JIN Y Q , YANG X N , et al. Fat tissue, a potential Schwann cell reservoir: isolation and identification of adipose-derived Schwann cells[J]. Am J Transl Res, 2017, 9 (5): 2579- 2594. |
72 |
HAO Y H , LIU Z Z , ZHAO H , et al. Identification and characterization of murine adipose tissue-derived somatic stem cells of Shenque (CV8) acupoint[J]. Chin Med J, 2021, 134 (22): 2730- 2737.
doi: 10.1097/CM9.0000000000001850 |
73 | 王东林, 毛宝龄. 生肌调节因子及其作用机理[J]. 国外医学(分子生物学分册), 1995, 17 (4): 157- 160. |
WANG D L , MAO B L . Myogenic regulatory factor and its mechanism of action[J]. Journal of Medical Molecular Biology, 1995, 17 (4): 157- 160. | |
74 | 韩建刚, 关伟军, 何晓红, 等. 生肌调节因子在绵羊不同胎儿期心肌和骨骼肌中的表达[J]. 中国畜牧兽医, 2020, 47 (10): 3123- 3131. |
HAN J G , GUAN W J , HE X H , et al. Expression of myogenic regulatory factors in myocardium and skeletal muscle at different fetal stages[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47 (10): 3123- 3131. | |
75 |
NAIDU P S , LUDOLPH D C , TO R Q , et al. Myogenin and MEF2 function synergistically to activate the MRF4 promoter during myogenesis[J]. Mol Cell Biol, 1995, 15 (5): 2707- 2718.
doi: 10.1128/MCB.15.5.2707 |
76 |
BEAUCHAMP J R , HESLOP L , YU D S W , et al. Expression of Cd34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells[J]. J Cell Biol, 2000, 151 (6): 1221- 1234.
doi: 10.1083/jcb.151.6.1221 |
77 |
HERNÁNDEZ-HERNÁNDEZ J M , GARCÍA-GONZÁLEZ E G , BRUN C E , et al. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration[J]. Semin Cell Dev Biol, 2017, 72, 10- 18.
doi: 10.1016/j.semcdb.2017.11.010 |
78 |
MOLKENTIN J D , OLSON E N . Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors[J]. Proc Natl Acad Sci U S A, 1996, 93 (18): 9366- 9373.
doi: 10.1073/pnas.93.18.9366 |
79 | IM K, MARENINOV S, DIAZ M F P, et al. An introduction to performing immunofluorescence staining[M]//YONG W H. Biobanking: Methods and Protocols. New York: Humana, 2019: 299-311. |
80 | FENG X S , NAZ F , JUAN A H , et al. Identification of skeletal muscle satellite cells by immunofluorescence with Pax7 and Laminin Antibodies[J]. J Vis Exp, 2018, (134): 57212. |
81 | DUMONT N A, RUDNICKI M A. Characterizing satellite cells and myogenic progenitors during skeletal muscle regeneration[M]//PELLICCIARI C, BIGGIOGERA M. Histochemistry of Single Molecules: Methods and Protocols. New York: Humana, 2017: 179-188. |
82 | HUSSAINI H M, SEO B, RICH A M. Immunohistochemistry and Immunofluorescence[M]//SEYMOUR G J, CULLINAN M P, HENG N C K, et al. Oral Biology: Molecular Techniques and Applications. 3rd ed. New York: Humana, 2023: 439-450. |
83 | MAGAKI S, HOJAT S A, WEI B W, et al. An introduction to the performance of immunohistochemistry [M]//YONG W H. Biobanking: Methods and Protocols. New York: Humana, 2019: 289-298. |
84 |
CEFIS M , CHANEY R , QUIRIÉ A , et al. Endothelial cells are an important source of BDNF in rat skeletal muscle[J]. Sci Rep, 2022, 12 (1): 311.
doi: 10.1038/s41598-021-03740-8 |
85 |
KALBE C , METZGER K , GARIÉPY C , et al. Effect of muscle fibre types and carnosine levels on the expression of carnosine-related genes in pig skeletal muscle[J]. Histochem Cell Biol, 2023, 160 (1): 63- 77.
doi: 10.1007/s00418-023-02193-6 |
86 | KEINATH M, TIMOSHEVSKIY V. Fluorescence in situ hybridization of DNA probes on mitotic chromosomes of the Mexican axolotl[M]//SEIFERT A W, CURRIE J D. Salamanders. New York: Humana, 2023: 165-173. |
87 | YUE L, CHEUNG T H. Visualization of RNA transcripts in muscle stem cells using single-molecule fluorescence in situ hybridization[M]//ASAKURA A. Skeletal Muscle Stem Cells: Methods and Protocols. New York: Humana, 2023: 445-452. |
88 | CANIZO J, VANDAL K, BIONDIC S, et al. Whole-mount RNA, single-molecule RNA (smRNA), and DNA fluorescence in situ hybridization (FISH) in mammalian embryos[M]//ZERNICKA-GOETZ M, TURKSEN K. Embryo Models In Vitro: Methods and Protocols. New York: Humana, 2024: 307-320. |
89 |
LAWRENCE J B , TANEJA K , SINGER R H . Temporal resolution and sequential expression of muscle-specific genes revealed by in situ hybridization[J]. Dev Biol, 1989, 133 (1): 235- 246.
doi: 10.1016/0012-1606(89)90314-Xap.2021.115465 |
90 |
KERNOHAN K D , BÉRUBÉ N G . Three-dimensional dual labelled DNA fluorescent in situ hybridization analysis in fixed tissue sections[J]. MethodsX, 2014, 1, 30- 35.
doi: 10.1016/j.mex.2014.04.001 |
91 | GELALI E, CUSTODIO J, GIRELLI G, et al. An application-directed, versatile DNA FISH platform for research and diagnostics[M]//VAVOURI T, PEINADO M A. CpG Islands: Methods and Protocols. New York: Humana, 2018: 303-333. |
92 |
JACKAMAN C , NOWAK K J , RAVENSCROFT G , et al. Novel application of flow cytometry: determination of muscle fiber types and protein levels in whole murine skeletal muscles and heart[J]. Cell Motil Cytoskeleton, 2007, 64 (12): 914- 925.
doi: 10.1002/cm.20239 |
93 | KOSMAC K , PECK B D , WALTON R G , et al. Immunohistochemical identification of human skeletal muscle macrophages[J]. Bio Protoc, 2018, 8 (12): e2883. |
94 |
GATTAZZO F , LAURENT B , RELAIX F , et al. Distinct phases of postnatal skeletal muscle growth govern the progressive establishment of muscle stem cell quiescence[J]. Stem Cell Reports, 2020, 15 (3): 597- 611.
doi: 10.1016/j.stemcr.2020.07.011 |
95 | ACˇG AMERNIK K, ZUPAN J. Surface antigen-based identification of in vitro expanded skeletal muscle-derived mesenchymal stromal/stem cells using flow cytometry[M]//TURKSEN K. Stem Cells and Aging: Methods and Protocols. 2nd ed. New York: Humana, 2019: 225-233. |
96 |
KRASNIEWSKI L K , CHAKRABORTY P , CUI C Y , et al. Single-cell analysis of skeletal muscle macrophages reveals age-associated functional subpopulations[J]. eLife, 2022, 11, e77974.
doi: 10.7554/eLife.77974 |
97 |
MONTARRAS D , MORGAN J , COLLINS C , et al. Direct isolation of satellite cells for skeletal muscle regeneration[J]. Science, 2005, 309 (5743): 2064- 2067.
doi: 10.1126/science.1114758 |
98 |
LUK H Y , MCFARLIN B K , VINGREN J L . Using image-based flow cytometry to monitor satellite cells proliferation and differentiation in vitro[J]. Methods, 2017, 112, 175- 181.
doi: 10.1016/j.ymeth.2016.08.005 |
99 | PERCOPO C M, LIMKAR A R, SEK A C, et al. Detection of mouse eosinophils in tissue by flow cytometry and isolation by fluorescence-activated cell sorting (FACS)[M]//WALSH G M. Eosinophils: Methods and Protocols. 2nd ed. New York: Humana, 2021: 49-58. |
100 |
COULIS G , JAIME D , GUERRERO-JUAREZ C , et al. Single-cell and spatial transcriptomics identify a macrophage population associated with skeletal muscle fibrosis[J]. Sci Adv, 2023, 9 (27): eadd9984.
doi: 10.1126/sciadv.add9984 |
101 |
GIORDANI L , HE G J , NEGRONI E , et al. High-dimensional single-cell cartography reveals novel skeletal muscle-resident cell populations[J]. Mol Cell, 2019, 74 (3): 609- 621.e6.
doi: 10.1016/j.molcel.2019.02.026 |
102 |
CAI C C , WAN P , WANG H , et al. Transcriptional and open chromatin analysis of bovine skeletal muscle development by single-cell sequencing[J]. Cell Prolif, 2023, 56 (9): e13430.
doi: 10.1111/cpr.13430 |
103 |
LI J H , XING S Y , ZHAO G P , et al. Identification of diverse cell populations in skeletal muscles and biomarkers for intramuscular fat of chicken by single-cell RNA sequencing[J]. BMC Genomics, 2020, 21 (1): 752.
doi: 10.1186/s12864-020-07136-2 |
104 |
DE MICHELI A J , SPECTOR J A , ELEMENTO O , et al. A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations[J]. Skelet Muscle, 2020, 10 (1): 19.
doi: 10.1186/s13395-020-00236-3 |
105 |
DE MICHELI A J , LAURILLIARD E J , HEINKE C L , et al. Single-cell analysis of the muscle stem cell hierarchy identifies heterotypic communication signals involved in skeletal muscle regeneration[J]. Cell Rep, 2020, 30 (10): 3583- 3595.e5.
doi: 10.1016/j.celrep.2020.02.067 |
[1] | Ming FENG, Xudong YI, Weijun PANG. Advances in Intestinal Microorganism Regulating Pork Quality through Skeletal Muscle Fiber Type, Intramuscular Fat Content and Skeletal Muscle Metabolism [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2304-2312. |
[2] | LIU Yuan, LI Xiyue, ZHANG Weiya. Molecular Mechanism of MMP14 Regulating Skeletal Muscle Satellite Cell Differentiation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1592-1604. |
[3] | LIANG Shuyi, LI Fan, JIANG Qingyan, WANG Songbo. Regulation and Mechanism of Proline Hydroxylases(PHDs) on Skeletal Muscle Development and Fat Deposition in Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 867-873. |
[4] | CAO Guancong, MA Lu, REN Lingzhi, LI Yang, SHI Xin'e, YANG Gongshe, LI Xiao. Explore the "Cross-talk" between Skeletal Muscle Satellite Cells and the Niche Cells Based on Single-cell Sequencing Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5340-5348. |
[5] | MIAO Shu, AN Jishan, WANG Zuo, XIAO Dingfu, LAN Xinyi, LIU Lei, SHEN Weijun, WAN Fachun. Leucine Promotes the Proliferation of Bovine Myoblasts through PI3K-AKT Signaling Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 142-152. |
[6] | YUN Jiale, LIU Chang, HUANG Xiaoyu, LIU Qiaoxia, SHI Mingyue, LI Wenxia, NIU Jin, WANG Shouyuan, GAO Pengfei, GUO Xiaohong, LI Bugao, LU Chang, CAO Guoqing. miR-145-5p Inhibits the Proliferation and Differentiation of Porcine Skeletal Muscle Satellite Cells by Targeting IGF1R-Mediated AKT Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1893-1904. |
[7] | YANG Guang, XU Jing, LI Xin, HU Debao, GUO Yiwen, DING Xiangbin, GUO Hong, ZHANG Linlin. Effect of Interfering lncbMD on Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1015-1025. |
[8] | JIA Zijie, BAO Tugeqin, DING Wenqi, REN Xiujuan, LIU Huiying, LI Xinze, CUI Fang, DUGARJAVIIN Manglai, BAI Dongyi. Construction and Comparative Study of the Phenotypic Spectrum of the Main Skeletal Muscles Throughout the Mongolian Horse [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 596-607. |
[9] | WANG Yanxing, ZHANG Yushi, JI Haigang, LIU Yang, NIU Yufang, HAN Ruili, LIU Xiaojun, TIAN Yadong, KANG Xiangtao, LI Zhuanjian. Establishment and Analysis of the Chicken Skeletal Satellite Cell Line [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4972-4981. |
[10] | XUE Linli, SUN Rui, HAO Xiaojing, CAO Xiaorui, WANG Haidong, LU Jiayin. The Promoting Effect Analysis of Danshensu on Skeletal Muscle Repair and Regeneration after Skeletal Muscle Injury in Mice based on a Mouse Skeletal Muscle Injury Model [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5252-5263. |
[11] | ZHANG Li, XU Jialong, HUANG Jinyu, XU Ziyue, LEI Xinnuo, LU Huipeng, ZHU Rui, SUN Weixiang, CAO Haiyue, WANG Anping, ZHU Shanyuan. Isolation, Culture, and Identification of Skeletal Muscle Satellite Cells in Goose [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4186-4195. |
[12] | LI Wenya, NIU Xinran, REN Tuanhui, CAI Hanfang, HAN Ruili, TIAN Yadong, LIU Xiaojun, KANG Xiangtao, LI Zhuanjian. Identification of Natural Antisense lncRNA VGLL2-AS in Chicken Skeletal Muscle and Its Relationship with VGLL2 [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 122-132. |
[13] | ZHOU Min, WANG Kaige, ZHANG Lian, MA Xi. Advances in Microbiota-Gut-Muscle Axis Regulating Skeletal Muscle Metabolism and Function [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2845-2857. |
[14] | ZHANG Dongjie, WANG Liang, MA Hong, LI Zhongqiu, WANG Wentao, LIU Di. Analysis of Transcriptional Regulation in Min Pig Skeletal Muscle under Low Temperature Stress [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2524-2536. |
[15] | YANG Guang, YANG Xu, ZI Jingjing, YU Jianjie, GUO Hong, DING Xiangbin, LIU Xinfeng, ZHANG Linlin. Effects of Interfering HNRNPAB on Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3412-3420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||