Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (12): 5340-5348.doi: 10.11843/j.issn.0366-6964.2024.12.002
• Review • Previous Articles Next Articles
CAO Guancong1(), MA Lu1, REN Lingzhi2, LI Yang1, SHI Xin'e1, YANG Gongshe1, LI Xiao1,*(
)
Received:
2024-05-27
Online:
2024-12-23
Published:
2024-12-27
Contact:
LI Xiao
E-mail:caoguancong@nwafu.edu.cn;nicelixiao@nwsuaf.edu.cn
CLC Number:
CAO Guancong, MA Lu, REN Lingzhi, LI Yang, SHI Xin'e, YANG Gongshe, LI Xiao. Explore the "Cross-talk" between Skeletal Muscle Satellite Cells and the Niche Cells Based on Single-cell Sequencing Technology[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5340-5348.
Table 1
Comparison of single-cell RNA sequencing technologies"
测序技术 Method | 测序细胞数 Cell number | cDNA覆盖度 cDNA coverage | 扩增方式 Amplification method | 唯一分子标识符 UMI | 发表年份 Published year | 细胞分选技术 Isolation strategy | 参考文献 Reference |
Smart-seq | 1 000以下 | 全cDNA序列 | PCR | × | 2012 | FACS | [ |
Smart-seq2 | 1 000以下 | 全cDNA序列 | PCR | × | 2013 | FACS | [ |
Cel-seq | 1 000以下 | 3′端 | PCR | × | 2012 | FACS | [ |
cel-seq2 | 1 000以下 | 全cDNA序列 | IVT | √ | 2016 | FACS | [ |
Drop-seq | 高通量 | 3'端 | PCR | √ | 2015 | Microdroplets | [ |
inDrop-seq | 高通量 | 3'端 | IVT | √ | 2015 | Microdroplets | [ |
10×Genomics | 高通量 | 3'端 | PCR | √ | 2017 | Microdroplets | [ |
1 |
SCHMIDT M , SCHÜLER S C , HÜTTNER S S , et al. Adult stem cells at work: regenerating skeletal muscle[J]. Cell Mol Life Sci, 2019, 76 (13): 2559- 2570.
doi: 10.1007/s00018-019-03093-6 |
2 |
侯任达, 张润, 侯欣华, 等. 畜禽肌纤维发育规律及相关基因研究进展[J]. 畜牧兽医学报, 2022, 53 (10): 3279- 3286.
doi: 10.11843/j.issn.0366-6964.2022.10.001 |
HOU R D , ZHANG R , HOU X H , et al. Research progress on the pattern of muscle fiber development and related genes in livestock and poultry[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (10): 3279- 3286.
doi: 10.11843/j.issn.0366-6964.2022.10.001 |
|
3 |
SOUSA-VICTOR P , GARCÍA-PRAT L , MUÑOZ-CÁNOVES P . Control of satellite cell function in muscle regeneration and its disruption in ageing[J]. Nat Rev Mol Cell Biol, 2022, 23 (3): 204- 226.
doi: 10.1038/s41580-021-00421-2 |
4 |
ARPKE R W , SHAMS A S , COLLINS B C , et al. Preservation of satellite cell number and regenerative potential with age reveals locomotory muscle bias[J]. Skelet Muscle, 2021, 11 (1): 22.
doi: 10.1186/s13395-021-00277-2 |
5 |
ZHAO Y , CHEN M M , LIAN D , et al. Non-Coding RNA regulates the myogenesis of skeletal muscle satellite cells, injury repair and diseases[J]. Cells, 2019, 8 (9): 988.
doi: 10.3390/cells8090988 |
6 |
HICKS M R , PYLE A D . The emergence of the stem cell niche[J]. Trends Cell Biol, 2023, 33 (2): 112- 123.
doi: 10.1016/j.tcb.2022.07.003 |
7 |
HONG X T , CAMPANARIO S , RAMÍREZ-PARDO I , et al. Stem cell aging in the skeletal muscle: the importance of communication[J]. Ageing Res Rev, 2022, 73, 101528.
doi: 10.1016/j.arr.2021.101528 |
8 |
ZHANG L , LEE M , MASLOV A Y , et al. Analyzing somatic mutations by single-cell whole-genome sequencing[J]. Nat Protoc, 2024, 19 (2): 487- 516.
doi: 10.1038/s41596-023-00914-8 |
9 |
JOVIC D , LIANG X , ZENG H , et al. Single-cell RNA sequencing technologies and applications: a brief overview[J]. Clin Transl Med, 2022, 12 (3): e694.
doi: 10.1002/ctm2.694 |
10 |
WEN L , TANG F C . Recent advances in single-cell sequencing technologies[J]. Precis Clin Med, 2022, 5 (1): pbac002.
doi: 10.1093/pcmedi/pbac002 |
11 |
DANILENKO M , ZAKA M , KEELING C , et al. Single-cell DNA sequencing identifies risk-associated clonal complexity and evolutionary trajectories in childhood medulloblastoma development[J]. Acta Neuropathol, 2022, 144 (3): 565- 578.
doi: 10.1007/s00401-022-02464-x |
12 | UDUPA P , GHOSH D K . Implementation of exome sequencing to identify rare genetic diseases[J]. Methods Mol Biol, 2024, 2719, 79- 98. |
13 |
AHN J , HEO S , LEE J , et al. Introduction to single-cell DNA methylation profiling methods[J]. Biomolecules, 2021, 11 (7): 1013.
doi: 10.3390/biom11071013 |
14 |
WANG X L , HE Y , ZHANG Q M , et al. Direct comparative analyses of 10×genomics chromium and smart-seq2[J]. Genomics Proteomics Bioinf, 2021, 19 (2): 253- 266.
doi: 10.1016/j.gpb.2020.02.005 |
15 |
张肖旭, 李昊, 冯平捷, 等. 单细胞转录组测序技术在家养动物中的应用[J]. 畜牧兽医学报, 2024, 55 (8): 3276- 3287.
doi: 10.11843/j.issn.0366-6964.2024.08.002 |
ZHANG X X , LI H , FENG P J , et al. Application of single-cell transcriptome sequencing technology in domesticated animals[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (8): 3276- 3287.
doi: 10.11843/j.issn.0366-6964.2024.08.002 |
|
16 |
MA L , MENG Y Y , AN Y L , et al. Single-cell RNA-seq reveals novel interaction between muscle satellite cells and fibro-adipogenic progenitors mediated with FGF7 signalling[J]. J Cachexia Sarcopenia Muscle, 2024, 15 (4): 1388- 1403.
doi: 10.1002/jcsm.13484 |
17 |
XU D D , WAN B Y , QIU K , et al. Single-cell RNA-sequencing provides insight into skeletal muscle evolution during the selection of muscle characteristics[J]. Adv Sci (Weinh), 2023, 10 (35): 2305080.
doi: 10.1002/advs.202305080 |
18 |
XIAO W , JIANG N J , JI Z Y , et al. Single-cell RNA sequencing reveals the cellular landscape of longissimus dorsi in a newborn suhuai pig[J]. Int J Mol Sci, 2024, 25 (2): 1204.
doi: 10.3390/ijms25021204 |
19 |
CAI S F , HU B , WANG X Y , et al. Integrative single-cell RNA-seq and ATAC-seq analysis of myogenic differentiation in pig[J]. BMC Biol, 2023, 21 (1): 19.
doi: 10.1186/s12915-023-01519-z |
20 |
RAMSKÖLD D , LUO S J , WANG Y C , et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells[J]. Nat Biotechnol, 2012, 30 (8): 777- 782.
doi: 10.1038/nbt.2282 |
21 |
PICELLI S , BJÖRKLUND Å K , FARIDANI O R , et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Methods, 2013, 10, 1096- 1098.
doi: 10.1038/nmeth.2639 |
22 |
HASHIMSHONY T , WAGNER F , SHER N , et al. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification[J]. Cell Rep, 2012, 2 (3): 666- 673.
doi: 10.1016/j.celrep.2012.08.003 |
23 |
HASHIMSHONY T , SENDEROVICH N , AVITAl G , et al. CEL-Seq2:sensitive highly-multiplexed single-cell RNA-Seq[J]. Genome Biol, 2016, 17, 77.
doi: 10.1186/s13059-016-0938-8 |
24 |
MACOSKO E Z , BASU A , SATIJA R , et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161 (5): 1202- 1214.
doi: 10.1016/j.cell.2015.05.002 |
25 |
KLEIN A M , MAZUTIS L , AKARTUNA I , et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 2015, 161 (5): 1187- 1201.
doi: 10.1016/j.cell.2015.04.044 |
26 |
ZHENG G X Y , TERRY J M , BELGRADER P , et al. Massively parallel digital transcriptional profiling of single cells[J]. Nat Commun, 2017, 8, 14049.
doi: 10.1038/ncomms14049 |
27 |
BUENROSTRO J D , WU B J , LITZENBURGER U M , et al. Single-cell chromatin accessibility reveals principles of regulatory variation[J]. Nature, 2015, 523 (7561): 486- 490.
doi: 10.1038/nature14590 |
28 |
KLEMM S L , SHIPONY Z , GREENLEAF W J . Chromatin accessibility and the regulatory epigenome[J]. Nat Rev Genet, 2019, 20 (4): 207- 220.
doi: 10.1038/s41576-018-0089-8 |
29 | BEREST I , TANGHERLONI A . Integration of scATAC-Seq with scRNA-Seq data[J]. Methods Mol Biol, 2023, 2584, 293- 310. |
30 |
CAI C C , WAN P , WANG H , et al. Transcriptional and open chromatin analysis of bovine skeletal muscle development by single-cell sequencing[J]. Cell Prolif, 2023, 56 (9): e13430.
doi: 10.1111/cpr.13430 |
31 |
SLYPER M , PORTER C B M , ASHENBERG O , et al. A single-cell and single-nucleus RNA-seq toolbox for fresh and frozen human tumors[J]. Nat Med, 2020, 26 (5): 792- 802.
doi: 10.1038/s41591-020-0844-1 |
32 |
SYLOW L , TOKARZ V L , RICHTER E A , et al. The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia[J]. Cell Metab, 2021, 33 (4): 758- 780.
doi: 10.1016/j.cmet.2021.03.020 |
33 |
KASHIMA Y , SAKAMOTO Y , KANEKO K , et al. Single-cell sequencing techniques from individual to multiomics analyses[J]. Exp Mol Med, 2020, 52 (9): 1419- 1427.
doi: 10.1038/s12276-020-00499-2 |
34 |
JIANG S , WILLIAMS K , KONG X D , et al. Single-nucleus RNA-seq identifies divergent populations of FSHD2 myotube nuclei[J]. PLoS Genet, 2020, 16 (5): e1008754.
doi: 10.1371/journal.pgen.1008754 |
35 |
LIN H C , PENG H , SUN Y X , et al. Reprogramming of cis-regulatory networks during skeletal muscle atrophy in male mice[J]. Nat Commun, 2023, 14 (1): 6581.
doi: 10.1038/s41467-023-42313-3 |
36 |
GIORDANI L , HE G J , NEGRONI E , et al. High-dimensional single-cell cartography reveals novel skeletal muscle-resident cell populations[J]. Mol Cell, 2019, 74 (3): 609- 621. e6.
doi: 10.1016/j.molcel.2019.02.026 |
37 |
DELL'ORSO S , JUAN A H , KO K D , et al. Single cell analysis of adult mouse skeletal muscle stem cells in homeostatic and regenerative conditions[J]. Development, 2019, 146 (12): dev174177.
doi: 10.1242/dev.174177 |
38 |
XI H B , LANGERMAN J , SABRI S , et al. A human skeletal muscle atlas identifies the trajectories of stem and progenitor cells across development and from human pluripotent stem cells[J]. Cell Stem Cell, 2020, 27 (1): 158- 176. e10.
doi: 10.1016/j.stem.2020.04.017 |
39 |
YIN H , PRICE F , RUDNICKI M A . Satellite cells and the muscle stem cell niche[J]. Physiol Rev, 2013, 93 (1): 23- 67.
doi: 10.1152/physrev.00043.2011 |
40 |
DE MICHELI A J , SPECTOR J A , ELEMENTO O , et al. A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations[J]. Skelet Muscle, 2020, 10 (1): 19.
doi: 10.1186/s13395-020-00236-3 |
41 |
CHO D S , DOLES J D . Single cell transcriptome analysis of muscle satellite cells reveals widespread transcriptional heterogeneity[J]. Gene, 2017, 636, 54- 63.
doi: 10.1016/j.gene.2017.09.014 |
42 |
BARRUET E , GARCIA S M , STRIEDINGER K , et al. Functionally heterogeneous human satellite cells identified by single cell RNA sequencing[J]. Elife, 2020, 9, e51576.
doi: 10.7554/eLife.51576 |
43 |
LYU P , QI Y M , TU Z J , et al. Single-cell RNA sequencing reveals heterogeneity of cultured bovine satellite cells[J]. Front Genet, 2021, 12, 742077.
doi: 10.3389/fgene.2021.742077 |
44 | 姜正飞. 抗阻训练调控SPARC对高脂膳食小鼠骨骼肌质量的影响[D]. 上海: 华东师范大学, 2023. |
JIANG Z F. The effect of resistance training regulating SPARC on skeletal muscle mass in high-fat diet mice[D]. Shanghai: East China Normal University, 2023. (in Chinese) | |
45 |
WANG L Y , ZHOU Y B , WANG Y Z , et al. Integrative cross-species analysis reveals conserved and unique signatures in fatty skeletal muscles[J]. Sci Data, 2024, 11 (1): 290.
doi: 10.1038/s41597-024-03114-5 |
46 | YU Y Y , SU Y , WANG G X , et al. Reciprocal communication between FAPs and muscle cells via distinct extracellular vesicle miRNAs in muscle regeneration[J]. Proc Natl Acad Sci U S A, 2024, 121 (11): e1978423175. |
47 |
SAMPATH S C , SAMPATH S C , HO A T V , et al. Induction of muscle stem cell quiescence by the secreted niche factor Oncostatin M[J]. Nat Commun, 2018, 9 (1): 1531.
doi: 10.1038/s41467-018-03876-8 |
48 |
MURACH K A , PECK B D , POLICASTRO R A , et al. Early satellite cell communication creates a permissive environment for long-term muscle growth[J]. iScience, 2021, 24 (4): 102372.
doi: 10.1016/j.isci.2021.102372 |
49 |
HETTINGER Z R , KARGL C K , SHANNAHAN J H , et al. Extracellular vesicles released from stress-induced prematurely senescent myoblasts impair endothelial function and proliferation[J]. Exp Physiol, 2021, 106 (10): 2083- 2095.
doi: 10.1113/EP089423 |
50 |
VERMA M , ASAKURA Y , MURAKONDA B S R , et al. Muscle satellite cell cross-talk with a vascular niche maintains quiescence via VEGF and Notch signaling[J]. Cell Stem Cell, 2018, 23 (4): 530- 543. e9.
doi: 10.1016/j.stem.2018.09.007 |
51 |
SHEEHAN S M , TATSUMI R , TEMM-GROVE C J , et al. HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro[J]. Muscle Nerve, 2000, 23 (2): 239- 245.
doi: 10.1002/(SICI)1097-4598(200002)23:2<239::AID-MUS15>3.0.CO;2-U |
52 |
CHOI W , LEE J , LEE J , et al. Hepatocyte growth factor regulates macrophage transition to the M2 phenotype and promotes murine skeletal muscle regeneration[J]. Front Physiol, 2019, 10, 914.
doi: 10.3389/fphys.2019.00914 |
53 |
YARTSEVA V , GOLDSTEIN L D , RODMAN J , et al. Heterogeneity of satellite cells implicates DELTA1/NOTCH2 signaling in self-renewal[J]. Cell Rep, 2020, 30 (5): 1491- 1503. e6.
doi: 10.1016/j.celrep.2019.12.100 |
54 |
MURPHY C , WITHROW J , HUNTER M , et al. Emerging role of extracellular vesicles in musculoskeletal diseases[J]. Mol Aspects Med, 2018, 60, 123- 128.
doi: 10.1016/j.mam.2017.09.006 |
55 |
SHAO X Y , GONG W , WANG Q J , et al. Atrophic skeletal muscle fibre-derived small extracellular vesicle miR-690 inhibits satellite cell differentiation during ageing[J]. J Cachexia Sarcopenia Muscle, 2022, 13 (6): 3163- 3180.
doi: 10.1002/jcsm.13106 |
56 |
CONBOY I M , CONBOY M J , SMYTHE G M , et al. Notch-mediated restoration of regenerative potential to aged muscle[J]. Science, 2003, 302 (5650): 1575- 1577.
doi: 10.1126/science.1087573 |
57 |
ELIAZER S , MUNCIE J M , CHRISTENSEN J , et al. Wnt4 from the niche controls the mechano-properties and quiescent state of muscle stem cells[J]. Cell Stem Cell, 2019, 25 (5): 654- 665. e4.
doi: 10.1016/j.stem.2019.08.007 |
58 | 谢芳, 罗君谊, 陈婷, 等. 非编码RNA调控猪肌间脂肪沉积的研究进展[J]. 中国畜牧兽医, 2023, 50 (10): 4133- 4140. |
XIE F , LUO J Y , CHEN T , et al. Research progress on non-coding RNA regulating intermuscular fat deposition in pig[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50 (10): 4133- 4140. | |
59 |
STANLEY A , TICHY E D , KOCAN J , et al. Dynamics of skeletal muscle-resident stem cells during myogenesis in fibrodysplasia ossificans progressiva[J]. NPJ Regen Med, 2022, 7 (1): 5.
doi: 10.1038/s41536-021-00201-8 |
60 |
LUKJANENKO L , KARAZ S , STUELSATZ P , et al. Aging disrupts muscle stem cell function by impairing matricellular WISP1 secretion from fibro-adipogenic progenitors[J]. Cell Stem Cell, 2019, 24 (3): 433- 446. e7.
doi: 10.1016/j.stem.2018.12.014 |
61 |
SCHÜLER S C , KIRKPATRICK J M , SCHMIDT M , et al. Extensive remodeling of the extracellular matrix during aging contributes to age-dependent impairments of muscle stem cell functionality[J]. Cell Rep, 2021, 35 (10): 109223.
doi: 10.1016/j.celrep.2021.109223 |
62 |
WOSCZYNA M N , KONISHI C T , PEREZ CARBAJAL E E , et al. Mesenchymal stromal cells are required for regeneration and homeostatic maintenance of skeletal muscle[J]. Cell Rep, 2019, 27 (7): 2029- 2035. e5.
doi: 10.1016/j.celrep.2019.04.074 |
63 |
WANG L S , GAO P D , LI C Y , et al. A single-cell atlas of bovine skeletal muscle reveals mechanisms regulating intramuscular adipogenesis and fibrogenesis[J]. J Cachexia Sarcopenia Muscle, 2023, 14 (5): 2152- 2167.
doi: 10.1002/jcsm.13292 |
64 |
ROBERTSON T A , MALEY M A L , GROUNDS M D , et al. The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis[J]. Exp Cell Res, 1993, 207 (2): 321- 331.
doi: 10.1006/excr.1993.1199 |
65 |
ZHANG C C , CHENG N X , QIAO B K , et al. Age-related decline of interferon-gamma responses in macrophage impairs satellite cell proliferation and regeneration[J]. J Cachexia Sarcopenia Muscle, 2020, 11 (5): 1291- 1305.
doi: 10.1002/jcsm.12584 |
66 |
ARNOLD L , HENRY A , PORON F , et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis[J]. J Exp Med, 2007, 204 (5): 1057- 1069.
doi: 10.1084/jem.20070075 |
67 |
RATNAYAKE D , NGUYEN P D , ROSSELLO F J , et al. Macrophages provide a transient muscle stem cell niche via NAMPT secretion[J]. Nature, 2021, 591 (7849): 281- 287.
doi: 10.1038/s41586-021-03199-7 |
68 |
SHANG M , CAPPELLESSO F , AMORIM R , et al. Macrophage-derived glutamine boosts satellite cells and muscle regeneration[J]. Nature, 2020, 587 (7835): 626- 631.
doi: 10.1038/s41586-020-2857-9 |
69 | DORT J , FABRE P , MOLINA T , et al. Macrophages are key regulators of stem cells during skeletal muscle regeneration and diseases[J]. Stem Cells Int, 2019, 2019, 4761427. |
[1] | Ming FENG, Xudong YI, Weijun PANG. Advances in Intestinal Microorganism Regulating Pork Quality through Skeletal Muscle Fiber Type, Intramuscular Fat Content and Skeletal Muscle Metabolism [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2304-2312. |
[2] | LIU Yuan, LI Xiyue, ZHANG Weiya. Molecular Mechanism of MMP14 Regulating Skeletal Muscle Satellite Cell Differentiation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1592-1604. |
[3] | LIANG Shuyi, LI Fan, JIANG Qingyan, WANG Songbo. Regulation and Mechanism of Proline Hydroxylases(PHDs) on Skeletal Muscle Development and Fat Deposition in Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 867-873. |
[4] | WU Danni, XIE Yuchun, QIN Qing, ZHANG Chongyan, XU Xiaolong, ZHAO Dan, LAN Mingxi, YANG Ji, XU Songsong, LIU Zhihong. Research Progress on Cell Types and Identification Methods Related to Muscle Fiber Development in Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5325-5339. |
[5] | MIAO Shu, AN Jishan, WANG Zuo, XIAO Dingfu, LAN Xinyi, LIU Lei, SHEN Weijun, WAN Fachun. Leucine Promotes the Proliferation of Bovine Myoblasts through PI3K-AKT Signaling Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 142-152. |
[6] | YUN Jiale, LIU Chang, HUANG Xiaoyu, LIU Qiaoxia, SHI Mingyue, LI Wenxia, NIU Jin, WANG Shouyuan, GAO Pengfei, GUO Xiaohong, LI Bugao, LU Chang, CAO Guoqing. miR-145-5p Inhibits the Proliferation and Differentiation of Porcine Skeletal Muscle Satellite Cells by Targeting IGF1R-Mediated AKT Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1893-1904. |
[7] | YANG Guang, XU Jing, LI Xin, HU Debao, GUO Yiwen, DING Xiangbin, GUO Hong, ZHANG Linlin. Effect of Interfering lncbMD on Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1015-1025. |
[8] | JIA Zijie, BAO Tugeqin, DING Wenqi, REN Xiujuan, LIU Huiying, LI Xinze, CUI Fang, DUGARJAVIIN Manglai, BAI Dongyi. Construction and Comparative Study of the Phenotypic Spectrum of the Main Skeletal Muscles Throughout the Mongolian Horse [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 596-607. |
[9] | WANG Yanxing, ZHANG Yushi, JI Haigang, LIU Yang, NIU Yufang, HAN Ruili, LIU Xiaojun, TIAN Yadong, KANG Xiangtao, LI Zhuanjian. Establishment and Analysis of the Chicken Skeletal Satellite Cell Line [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4972-4981. |
[10] | XUE Linli, SUN Rui, HAO Xiaojing, CAO Xiaorui, WANG Haidong, LU Jiayin. The Promoting Effect Analysis of Danshensu on Skeletal Muscle Repair and Regeneration after Skeletal Muscle Injury in Mice based on a Mouse Skeletal Muscle Injury Model [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5252-5263. |
[11] | ZHANG Li, XU Jialong, HUANG Jinyu, XU Ziyue, LEI Xinnuo, LU Huipeng, ZHU Rui, SUN Weixiang, CAO Haiyue, WANG Anping, ZHU Shanyuan. Isolation, Culture, and Identification of Skeletal Muscle Satellite Cells in Goose [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4186-4195. |
[12] | LI Wenya, NIU Xinran, REN Tuanhui, CAI Hanfang, HAN Ruili, TIAN Yadong, LIU Xiaojun, KANG Xiangtao, LI Zhuanjian. Identification of Natural Antisense lncRNA VGLL2-AS in Chicken Skeletal Muscle and Its Relationship with VGLL2 [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 122-132. |
[13] | ZHOU Min, WANG Kaige, ZHANG Lian, MA Xi. Advances in Microbiota-Gut-Muscle Axis Regulating Skeletal Muscle Metabolism and Function [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2845-2857. |
[14] | ZHANG Dongjie, WANG Liang, MA Hong, LI Zhongqiu, WANG Wentao, LIU Di. Analysis of Transcriptional Regulation in Min Pig Skeletal Muscle under Low Temperature Stress [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2524-2536. |
[15] | YANG Guang, YANG Xu, ZI Jingjing, YU Jianjie, GUO Hong, DING Xiangbin, LIU Xinfeng, ZHANG Linlin. Effects of Interfering HNRNPAB on Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3412-3420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||