Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (10): 4325-4333.doi: 10.11843/j.issn.0366-6964.2024.10.008
• Animal Genetics and Breeding • Previous Articles Next Articles
Junfeng WU1,2(), Yiyuan YAN3, Ning YANG1,2, Congjiao SUN1,2, Guangqi LI3, Bin WANG3, Guiqin WU3, Ling LIAN1,2,*(
)
Received:
2024-03-06
Online:
2024-10-23
Published:
2024-11-04
Contact:
Ling LIAN
E-mail:wjf960428@163.com;lianlinglara@126.com
CLC Number:
Junfeng WU, Yiyuan YAN, Ning YANG, Congjiao SUN, Guangqi LI, Bin WANG, Guiqin WU, Ling LIAN. Accuracy Analysis of Genotype Imputation from 10K to 50K SNP Loci in Layers[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4325-4333.
Table 1
Descriptive statistics of 10K and 50K SNP loci on each chromosome"
染色体 Chromosome | 10K | 50K | |||||||
SNPs数 Number of SNPs | 平均间隔/bp Average distance | 最小等位 基因频率 MAF | 连锁不平衡 程度 R2 | SNPs数 Number of SNPs | 平均间隔/bp Average distance | 最小等位 基因频率 MAF | 连锁不平衡 程度 R2 | ||
Chr1 | 1 639 | 120 290 | 0.298 | 0.389 | 7 807 | 25 263 | 0.302 | 0.389 | |
Chr2 | 1 167 | 126 163 | 0.313 | 0.401 | 5 556 | 26 624 | 0.306 | 0.401 | |
Chr3 | 978 | 112 598 | 0.291 | 0.410 | 4 656 | 23 696 | 0.291 | 0.409 | |
Chr4 | 746 | 120 931 | 0.296 | 0.377 | 3 552 | 25 606 | 0.293 | 0.377 | |
Chr5 | 521 | 112 847 | 0.292 | 0.324 | 2 480 | 23 938 | 0.300 | 0.324 | |
Chr6 | 356 | 98 085 | 0.337 | 0.369 | 1 697 | 20 635 | 0.332 | 0.366 | |
Chr7 | 387 | 92 890 | 0.293 | 0.346 | 1 844 | 19 739 | 0.314 | 0.346 | |
Chr8 | 290 | 101 059 | 0.296 | 0.292 | 1 383 | 21 511 | 0.299 | 0.294 | |
Chr9 | 272 | 83 585 | 0.300 | 0.291 | 1 296 | 18 175 | 0.333 | 0.289 | |
Chr10 | 238 | 82 340 | 0.291 | 0.289 | 1 134 | 17 391 | 0.295 | 0.286 | |
Chr11 | 201 | 99 018 | 0.297 | 0.273 | 886 | 22 476 | 0.285 | 0.273 | |
Chr12 | 307 | 59 453 | 0.328 | 0.358 | 1 230 | 16 078 | 0.323 | 0.358 | |
Chr13 | 240 | 60 477 | 0.313 | 0.349 | 961 | 16 035 | 0.305 | 0.346 | |
Chr14 | 181 | 69 687 | 0.275 | 0.267 | 724 | 19 543 | 0.298 | 0.267 | |
Chr15 | 194 | 62 109 | 0.262 | 0.248 | 815 | 15 450 | 0.337 | 0.246 | |
Chr16 | 3 | 555 532 | 0.336 | 0.235 | 14 | 119 643 | 0.336 | 0.237 | |
Chr17 | 149 | 57 342 | 0.323 | 0.244 | 595 | 15 625 | 0.338 | 0.250 | |
Chr18 | 161 | 64 390 | 0.299 | 0.191 | 685 | 15 755 | 0.307 | 0.191 | |
Chr19 | 168 | 58 214 | 0.291 | 0.195 | 672 | 14 710 | 0.294 | 0.199 | |
Chr20 | 205 | 64 342 | 0.305 | 0.251 | 859 | 15 882 | 0.277 | 0.252 | |
Chr21 | 119 | 56 265 | 0.330 | 0.215 | 476 | 14 123 | 0.338 | 0.215 | |
Chr22 | 54 | 84 299 | 0.279 | 0.167 | 218 | 21 123 | 0.276 | 0.167 | |
Chr23 | 73 | 78 035 | 0.290 | 0.134 | 294 | 19 376 | 0.255 | 0.133 | |
Chr24 | 100 | 61 991 | 0.285 | 0.167 | 401 | 15 459 | 0.279 | 0.165 | |
Chr25 | 23 | 166 397 | 0.268 | 0.140 | 94 | 41 112 | 0.266 | 0.140 | |
Chr26 | 133 | 38 166 | 0.291 | 0.182 | 532 | 9 666 | 0.294 | 0.182 | |
Chr27 | 80 | 48 474 | 0.341 | 0.169 | 320 | 16 639 | 0.310 | 0.171 | |
Chr28 | 93 | 50 277 | 0.271 | 0.159 | 374 | 13 079 | 0.276 | 0.158 | |
Chr30 | 2 | 242 272 | 0.294 | 0.190 | 5 | 96 909 | 0.271 | 0.243 | |
Chr31 | 2 | 483 221 | 0.348 | 0.241 | 9 | 166 190 | 0.355 | 0.249 | |
Chr32 | 2 | 59 559 | 0.360 | 0.210 | 9 | 13 235 | 0.350 | 0.209 | |
Chr33 | 21 | 326 054 | 0.320 | 0.271 | 86 | 79 839 | 0.307 | 0.271 | |
合计Total | 10 146 | 118 000 | 0.300 | 0.263 | 43 681 | 30 000 | 0.290 | 0.261 |
Table 3
The effect of kinship on genotype imputation consistency"
参考群体规模 Reference population size | 方法 Method | 基因型一致性 Genotype consistency | 显著性检验P P-value |
1 000(以18世代组成的禽类群体) 1 000(birds from 18th generation) | Beagle | 0.972±0.000 82(0.000 84) | 8.176×10-5 |
1 000(以16、17、18世代组成的禽类群体) 1 000 (birds from 16th, 17th, 18th generation) | Beagle | 0.968±0.001 32(0.001 36) |
Table 4
The effect of reference population size on genotype imputation consistency"
参考群体规模 Reference population | 方法 Method | 基因型一致性 Genotype consistency | 显著性检验P P-value |
500 | Beagle | 0.959±0.013 53(0.014 11) | 2.693×10-7 |
1 000 | Beagle | 0.973±0.009 58(0.009 85) | 7.672×10-9 |
2 000 | Beagle | 0.980±0.006 56(0.006 69) | 1.148×10-7 |
3 000 | Beagle | 0.984±0.005 45(0.005 54) |
1 | 叶绍潘. 基于全基因组测序数据的基因型填充准确性研究[D]. 广州: 华南农业大学, 2017. |
YE S P. Research on genotype imputation accuracy based on whole genome sequencing data[D]. Guangzhou: South China Agricultural University, 2017. (in Chinese) | |
2 | KUMAR S , BANKS T W , CLOUTIER S . SNP discovery through next-generation sequencing and its applications[J]. Int J Plant Genomics, 2012, 2012, 831460. |
3 |
滕晓坤, 肖华胜. 基因芯片与高通量DNA测序技术前景分析[J]. 中国科学C辑: 生命科学, 2008, 38 (10): 891- 899.
doi: 10.3321/j.issn:1006-9259.2008.10.003 |
TENG X K , XIAO H S . Prospect analysis of gene chip and high-throughput DNA sequencing technology[J]. Science China Life Sciences, 2008, 38 (10): 891- 899.
doi: 10.3321/j.issn:1006-9259.2008.10.003 |
|
4 |
YAN G R , LIU X X , XIAO S J , et al. An imputed whole-genome sequence-based GWAS approach pinpoints causal mutations for complex traits in a specific swine population[J]. Sci China Life Sci, 2022, 65 (4): 781- 794.
doi: 10.1007/s11427-020-1960-9 |
5 | 王珏, 刘成琨, 刘德武, 等. 基于不同密度SNP芯片在杜洛克公猪中的全基因组选择效果分析[J]. 中国畜牧杂志, 2019, 55 (12): 75- 79. |
WANG J , LIU C K , LIU D W , et al. Analysis of genomic selection based on SNP data of various density chips in Duroc male pig population[J]. Chinese Journal of Animal Science, 2019, 55 (12): 75- 79. | |
6 | 李勇, 杨漫漫, 苗泽圃, 等. 低深度全基因组测序在大白猪繁殖性状基因组选择的应用[J]. 农业生物技术学报, 2022, 30 (2): 325- 334. |
LI Y , YANG M M , MIAO Z P , et al. Application of low-depth whole genome sequencing in genomic selection of reproductive traits in large white pigs (Sus scrofa)[J]. Journal of Agricultural Biotechnology, 2022, 30 (2): 325- 334. | |
7 |
尹畅, 朱墨, 陈艳茹, 等. 基于芯片和填充测序数据的肉鸡屠宰性状基因组选择准确性评估[J]. 中国农业科学, 2023, 56 (15): 3032- 3039.
doi: 10.3864/j.issn.0578-1752.2023.15.016 |
YIN C , ZHU M , CHEN Y R , et al. Evaluation of accuracy of genome selection for broiler slaughtering traits based on chip and imputation sequencing data[J]. Scientia Agricultura Sinica, 2023, 56 (15): 3032- 3039.
doi: 10.3864/j.issn.0578-1752.2023.15.016 |
|
8 |
DAS S , FORER L , SCHÖNHERR S , et al. Next-generation genotype imputation service and methods[J]. Nat Genet, 2016, 48 (10): 1284- 1287.
doi: 10.1038/ng.3656 |
9 |
ZHANG Z , DRUET T . Marker imputation with low-density marker panels in Dutch Holstein cattle[J]. J Dairy Sci, 2010, 93 (11): 5487- 5494.
doi: 10.3168/jds.2010-3501 |
10 |
WEIGEL K A , VAN TASSELL C P , O'CONNELL J R , et al. Prediction of unobserved single nucleotide polymorphism genotypes of Jersey cattle using reference panels and population-based imputation algorithms[J]. J Dairy Sci, 2010, 93 (5): 2229- 2238.
doi: 10.3168/jds.2009-2849 |
11 |
MARINA H , SUAREZ-VEGA A , PELAYO R , et al. Accuracy of imputation of microsatellite markers from a 50K SNP chip in Spanish Assaf sheep[J]. Animals, 2021, 11 (1): 86.
doi: 10.3390/ani11010086 |
12 |
ROS-FREIXEDES R , WHALEN A , CHEN C Y , et al. Accuracy of whole-genome sequence imputation using hybrid peeling in large pedigreed livestock populations[J]. Genet Sel Evol, 2020, 52 (1): 17.
doi: 10.1186/s12711-020-00536-8 |
13 | 曾浩南, 钟展明, 徐志婷, 等. 3款猪50K SNP芯片基因型填充至序列数据的效果评估[J]. 华南农业大学学报, 2022, 43 (4): 10- 15. |
ZENG H N , ZHONG Z M , XU Z T , et al. Evaluation on genotype imputation performance of three porcine 50K SNP chips from chip data to sequencing data[J]. Journal of South China Agricultural University, 2022, 43 (4): 10- 15. | |
14 |
WANG Z , ZHANG Z , CHEN Z , et al. PHARP: a pig haplotype reference panel for genotype imputation[J]. Sci Rep, 2022, 12 (1): 12645.
doi: 10.1038/s41598-022-15851-x |
15 |
RUBINACCI S , DELANEAU O , MARCHINI J . Genotype imputation using the positional burrows wheeler transform[J]. PLoS Genet, 2020, 16 (11): e1009049.
doi: 10.1371/journal.pgen.1009049 |
16 |
WHALEN A , HICKEY J M . AlphaImpute2: fast and accurate pedigree and population based imputation for hundreds of thousands of individuals in livestock populations[J]. bioRxiv, 2020,
doi: 10.1101/2020.09.16.299677 |
17 |
KREINER-MØLLER E , MEDINA-GOMEZ C , UITTERLINDEN A G , et al. Improving accuracy of rare variant imputation with a two-step imputation approach[J]. Eur J Hum Genet, 2015, 23 (3): 395- 400.
doi: 10.1038/ejhg.2014.91 |
18 |
ROS-FREIXEDES R , WHALEN A , GORJANC G , et al. Evaluation of sequencing strategies for whole-genome imputation with hybrid peeling[J]. Genet Sel Evol, 2020, 52 (1): 18.
doi: 10.1186/s12711-020-00537-7 |
19 | DAETWYLER H D , VILLANUEVA B , WOOLLIAMS J A . Accuracy of predicting the genetic risk of disease using a genome-wide approach[J]. PLoS One, 2017, 3 (10): e3395. |
20 |
HAYES B J , BOWMAN P J , CHAMBERLAIN A J , et al. Invited review: genomic selection in dairy cattle: progress and challenges[J]. J Dairy Sci, 2009, 92 (2): 433- 443.
doi: 10.3168/jds.2008-1646 |
21 |
YE S P , YUAN X L , LIN X R , et al. Imputation from SNP chip to sequence: a case study in a Chinese indigenous chicken population[J]. J Anim Sci Biotechnol, 2018, 9, 30.
doi: 10.1186/s40104-018-0241-5 |
22 |
RUBINACCI S , RIBEIRO D M , HOFMEISTER R J , et al. Efficient phasing and imputation of low-coverage sequencing data using large reference panels[J]. Nat Genet, 2021, 53 (1): 120- 126.
doi: 10.1038/s41588-020-00756-0 |
23 |
DAVIES R W , KUCKA M , SU D W , et al. Rapid genotype imputation from sequence with reference panels[J]. Nat Genet, 2021, 53 (7): 1104- 1111.
doi: 10.1038/s41588-021-00877-0 |
24 | 丁向东, 王楚端, 张勤. 基于液相芯片的猪基因组选择实施新策略[J]. 中国畜牧杂志, 2022, 58 (4): 65- 69. |
DING X D , WANG C D , ZHANG Q . New strategy for pig genome selection based on liquid microarray[J]. Chinese Journal of Animal Science, 2022, 58 (4): 65- 69. | |
25 | 林雨浓. 低密度SNP集合填充准确性比较及基因组预测准确性验证[D]. 通辽: 内蒙古民族大学, 2022. |
LIN Y N. The imputation accuracy comparison of low-density SNP sets and validation of genome prediction accuracy[D]. Tongliao: Inner Mongolia University for Nationalities, 2022. (in Chinese) | |
26 |
PURCELL S , NEALE B , TODD-BROWN K , et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81 (3): 559- 575.
doi: 10.1086/519795 |
27 | BROWNING S R , BROWNING B L . Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering[J]. Am J Hum Genet, 2007, 81 (5): 1084- 1097. |
28 | 邱奥, 王雪, 孟庆利, 等. 3款猪50K SNP芯片基因型填充效果研究[J]. 中国畜牧杂志, 2021, 57 (1): 33- 38. |
QIU A , WANG X , MENG Q L , et al. Research on genotype imputation effect of 3 pig 50K SNP chips[J]. Chinese Journal of Animal Science, 2021, 57 (1): 33- 38. | |
29 | KAI-LI Z , XIA P , SAI-XIAN Z , et al. A comprehensive evaluation of factors affecting the accuracy of pig genotype imputation using a single or multi-breed reference population[J]. J Integr Agric, 2022, 21 (2): 486- 495. |
30 | 滕军. 荷斯坦牛全基因组序列数据填充方法评估及产奶性状纵向全基因组关联分析[D]. 泰安: 山东农业大学, 2022. |
TENG J. Assessment of imputation methods for whole genome sequence data and longitudinal genome-wide association studies for milk production traits in Holstein[D]. Tai'an: Shandong Agricultural University, 2022. (in Chinese) | |
31 | 阳文攀, 叶绍潘, 叶浩强, 等. 参考群筛选方法及规模对基因型填充准确性的影响[J]. 畜牧兽医学报, 2021, 52 (12): 3357- 3365. |
YANG W P , YE S P , YE H Q , et al. Effect of reference population selection method and size on genotype imputation accuracy[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (12): 3357- 3365. | |
32 | YU X J , WOOLLIAMS J A , MEUWISSEN T H . Prioritizing animals for dense genotyping in order to impute missing genotypes of sparsely genotyped animals[J]. Genet Sel Evol, 2014, 46 (1): 46. |
33 | PAUSCH H , AIGNER B , EMMERLING R , et al. Imputation of high-density genotypes in the Fleckvieh cattle population[J]. Genet Sel Evol, 2013, 45 (1): 3. |
34 | TSAIRIDOU S , HAMILTON A , ROBLEDO D , et al. Optimizing Low-cost genotyping and imputation strategies for genomic selection in Atlantic salmon[J]. G3 (Bethesda), 2020, 10 (2): 581- 590. |
35 | WANG H Y , WOODWARD B , BAUCK S , et al. Imputation of missing SNP genotypes using low density panels[J]. Livest Sci, 2012, 146 (1): 80- 83. |
36 | YANG W Q , YANG Y B , ZHAO C C , et al. Animal-ImputeDB: a comprehensive database with multiple animal reference panels for genotype imputation[J]. Nucleic Acids Res, 2020, 48 (D1): D659- D667. |
37 | BADKE Y M , BATES R O , ERNST C W , et al. Accuracy of estimation of genomic breeding values in pigs using low-density genotypes and imputation[J]. G3 (Bethesda), 2014, 4 (4): 623- 631. |
38 | WENG Z , ZHANG Z , ZHANG Q , et al. Comparison of different imputation methods from low-to high-density panels using Chinese Holstein cattle[J]. Animal, 2012, 7 (5): 729- 735. |
39 | GHOREISHIFAR S M , MORADI-SHAHRBABAK H , MORADI-SHAHRBABAK M , et al. Accuracy of imputation of single-nucleotide polymorphism marker genotypes for water buffaloes (Bubalus bubalis) using different reference population sizes and imputation tools[J]. Livest Sci, 2018, 216, 174- 182. |
40 | BUTTY A M , SARGOLZAEI M , MIGLIOR F , et al. Optimizing selection of the reference population for genotype imputation from array to sequence variants[J]. Front Genet, 2019, 10, 510. |
41 | LEE D , KIM Y , CHUNG Y , et al. Accuracy of genotype imputation based on reference population size and marker density in Hanwoo cattle[J]. J Anim Sci Technol, 2021, 63 (6): 1232- 1246. |
[1] | Qi ZHANG, Jiangpeng GUO, Aixin NI, Hongfeng DU, Jilan CHEN, Yanyan SUN. Research Progress on Influencing Factors and Genetic Architecture of Feather Pecking in Laying Hens [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3745-3756. |
[2] | Xiuju YU, Yanjiao HU, Jiayue LIU, Haidong WANG, Zhiwei ZHU, Kuohai FAN, Rongrong WANG, Chenghao DUAN, Jiawei SHI, Lihua YANG. Isolation and Identification of a Chicken Source Lactobacillus salivary Strain and Its Effect on Intestinal Health of Laying Hens in Early Brood Period [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4161-4171. |
[3] | Tengfei DOU, Jiahao WU, Ziyi WU, Liyao BAI, Xinjian LI, Xuelei HAN, Ruimin QIAO, Kejun WANG, Feng YANG, Yining WANG, Xiuling LI. Application Progress of Genomic Selection and Mating Allocation Techniques in Pig Breeding [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2795-2808. |
[4] | Xiaoxu WANG, Yanqing CHEN, Jiaqi ZHANG, Ye WANG, Rui WANG, Hanlin YU, Kaiqi YANG, Jun BAO, Runxiang ZHANG. Effect of Foot Pad Dermatitis on Production Performance, Egg Quality, Behavioral Responses, and Immune Levels of Laying Hens in Furnished Cages [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2680-2691. |
[5] | WANG Zhongbo, LIU Shuang, HE Lixia, FENG Xue, YANG Mengli, WANG Shuzhe, LIU Yuan, FENG Lan, DING Xiaoling, JI Guoshang, YANG Runjun, ZHANG Lupei, MA Yun. Metabolomics Analysis on Different Muscle Tissues of Guyuan Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1565-1578. |
[6] | PIAN Huifang, DU Xubin, LI Yan, ZHANG Yuchen, HE Hui, YU Debing. Effects of Betaine on Performance, Egg Quality and Antioxidant Capacity of Late-phase Laying Hens [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1085-1094. |
[7] | ZHANG Yinliang, ZHANG Ran, WANG Wenjun, WANG Dehe, LI Lanhui, ZHOU Rongyan. Mining of Key Candidate Genes Involved in Bone Metabolism Differences at Pre- and Post-laying Stage Based on Transcriptome Data in Laying Hens [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4455-4465. |
[8] | LU Jian, ZHANG Xin, JIANG Dongcai, MA Meng, WANG Qiang, WANG Xingguo, LI Yongfeng, GUO Jun, DOU Taocun, HU Yuping, LI Shangmin, SHAO Dan, QU Liang. Effects of Glycine Manganese on Laying Performance and Gut Microbiota in Aged Laying Hens [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 218-231. |
[9] | RU Meng, ZENG Wenhui, PENG Jianling, ZENG Qingjie, YIN Chao, CUI Yong, WEI Qing, LIANG Haiping, XIE Xianhua, HUANG Jianzhen. Research Progress on Follicles Development of Hens and Its Epigenetic Regulatory Mechanism [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3613-3622. |
[10] | HAN Kunliang, LAN Wei, HU Xin, CUI Yadong, KONG Xiangfeng. Effects of Compound Chinese Herb Ultrafine Powder on Antioxidant Ability and Related Gene Expression in Laying Hens [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3784-3792. |
[11] | YANG Qing, GONG Jing, ZHAO Xueyan, ZHU Xiaodong, GENG Liying, ZHANG Chuansheng, WANG Jiying. Comparison of Array and Resequencing in Pig Genetic Structure Studies [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2772-2782. |
[12] | CHANG Xinyu, WANG Jiguang, WANG Jing, ZHANG Haijun, QI Guanghai, QIU Kai, WU Shugeng. Research Progress of Precision Rearing Technology for Commercial Layers [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1815-1823. |
[13] | DING Xiaowei, HE Wanling, LI Xiaoli, DING Meijie, YANG Longbang. Effects of Schizochytrium Fermented Products on Production Performance, Egg Quality and Cecum Microorganism of Laying Hens [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1135-1147. |
[14] | WANG Xi, LI Ke, LI Tingcui, YAN Hongya, ZHAO Rong, CHANG Zhishun, LIAO Ming, SUN Minhua, XIN Aiguo. MLST Typing and Drug Resistance Analysis of 75 Salmonella Strains Isolated from Laying Hens [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1626-1631. |
[15] | AO Rui, XU Chenyuan, ZHU Chongmiao, YAO Wen, ZHENG Weijiang. Effect of Cyst of Fallopian Tubes on Slaughter Performance,Organ Index,Serum Biochemistry and Histopathology of Hy-Line Grey Laying Hens [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 990-998. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||