[1]GUILHERME A, VIRBASIUS J V, PURI V, et al. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes[J]. Nat Rev Mol Cell Biol, 2008, 9(5): 367-377.
[2]ABOOUF M A, HAMDY N M, AMIN A I, et al. Genotype screening of APLN rs3115757 variant in Egyptian women population reveals an association with obesity and insulin resistance[J]. Diabetes Res Clin Pract, 2015, 109(1): 40-47.
[3]CHEN H, XU X, TENG J, et al. CXCR4 inhibitor attenuates allergen-induced lung inflammation by down-regulating MMP-9 and ERK1/2[J]. Int J Clin Exp Pathol, 2015, 8(6): 6700-6707.
[4]BAO M H, ZHANG Y W, ZHOU H H. Paeonol suppresses oxidized low-density lipoprotein induced endothelial cell apoptosis via activation of LOX-1/p38MAPK/NF-kappaB pathway[J]. J Ethnopharmacol, 2013, 146(2): 543-551.
[5]LIU J, CHANG F, LI F, et al. Palmitate promotes autophagy and apoptosis through ROS-dependent JNK and p38 MAPK[J]. Biochem Biophys Res Commun, 2015, 463(3): 262-267.
[6]HU K H, LI W X, SUN M Y, et al. Cadmium induced apoptosis in MG63 cells by increasing ROS, activation of p38 MAPK and inhibition of ERK 1/2 pathways[J]. Cell Physiol Biochem, 2015, 36(2): 642-654.
[7]TURPIN E, MUSCAT A, VATIER C, et al. Carbamazepine directly inhibits adipocyte differentiation through activation of the ERK 1/2 pathway[J]. Br J Pharmacol, 2013, 168(1): 139-150.
[8]CONSTANT V A, GAGNON A, YARMO M, et al. The antiadipogenic effect of macrophage-conditioned medium depends on ERK1/2 activation[J]. Metabolism, 2008, 57(4): 465-472.
[9]GWON S Y, AHN J Y, JUNG C H, et al. Shikonin suppresses ERK 1/2 phosphorylation during the early stages of adipocyte differentiation in 3T3-L1 cells[J]. BMC Complement Altern Med, 2013, 13:207.
[10]KWAK D H, LEE J H, KIM D G, et al. Inhibitory effects of hwangryunhaedok-tang in 3T3-L1 adipogenesis by regulation of Raf/MEK1/ERK1/2 pathway and PDK1/Akt phosphorylation[J]. Evid Based Complement Alternat Med, 2013, 2013: 413906.
[11]LIAO Q C, LI Y L, QIN Y F, et al. Inhibition of adipocyte differentiation by phytoestrogen genistein through a potential downregulation of extracellular signal- regulated kinases 1/2 activity[J]. J Cell Biochem, 2008, 104(5): 1853-1864.
[12]CHOI J S, KIM J H, ALI M Y, et al. Anti-adipogenic effect of epiberberine is mediated by regulation of the Raf/MEK1/2/ERK1/2 and AMPKalpha/Akt pathways[J]. Arch Pharm Res, 2015, 38(12):2153-2162.
[13]PRUSTY D, PARK B H, DAVIS K E, et al. Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma(PPAR gamma) and C/EBPalpha gene expression during the differentiation of 3T3-L1 preadipocytes[J]. J Biol Chem, 2002, 277(48): 46226-46232.
[14]TANABE Y, KOGA M, SAITO M,et al. Inhibition of adipocyte differentiation by mechanical stretching through ERK-mediated downregulation of PPARγ2[J]. J Cell Sci, 2004, 117(Pt 16): 3605-3614.
[15]REGINATO M J, KRAKOW S L, BAILEY S T, et al. Prostaglandins promote and block adipogenesis through opposing effects on peroxisome proliferator-activated receptor gamma[J]. J Biol Chem, 1998, 273(4): 1855-1858.
[16]BREWSTER J L, DE VALOIR T, DWYER N D, et al. An osmosensing signal transduction pathway in yeast[J]. Science, 1993, 259(5102): 1760-1763.
[17]AOUADI M, JAGER J, LAURENT K, et al. p38MAP Kinase activity is required for human primary adipocyte differentiation[J]. FEBS Lett, 2007, 581(29): 5591-5596.
[18]JI J, ZHU J, HU X, et al. (2S)-7,4'-dihydroxy-8-prenylflavan stimulates adipogenesis and glucose uptake through p38MAPK pathway in 3T3-L1 cells[J]. Biochem Biophys Res Commun, 2015, 460(3): 578-582.
[19]AOUADI M, LAURENT K, PROT M, et al. Inhibition of p38MAPK increases adipogenesis from embryonic to adult stages[J]. Diabetes, 2006, 55(2): 281-289.
[20]TOMINAGA S, YAMAGUCHI T, TAKAHASHI S, et al. Negative regulation of adipogenesis from human mesenchymal stem cells by Jun N-terminal kinase[J]. Biochem Biophys Res Commun, 2005, 326(2): 499-504.
[21]FENG M, TIAN L, GAN L, et al. Mark4 promotes adipogenesis and triggers apoptosis in 3T3-L1 adipocytes by activating JNK1 and inhibiting p38MAPK pathways[J]. Biol Cell, 2014, 106(9): 294-307.
[22]ZHU H, GUARIGLIA S, LI W, et al. Role of extracellular signal-regulated kinase 5 in adipocyte signaling[J]. J Biol Chem, 2014, 289(9): 6311-6322.
[23]SHARMA G, GOALSTONE M L. Dominant negative FTase (DNFTalpha) inhibits ERK5, MEF2C and CREB activation in adipogenesis[J]. Mol Cell Endocrinol, 2005, 245(1-2): 93-104.
[24]VALENCIA-SANCHEZ M A, LIU J, HANNON G J, et al. Control of translation and mRNA degradation by miRNAs and siRNAs[J]. Genes Dev, 2006, 20(5): 515-524.
[25]BARCKMANN B, SIMONELIG M. Control of maternal mRNA stability in germ cells and early embryos[J]. Biochim Biophys Acta, 2013, 1829(6-7): 714-724.
[26]LOH B, JONAS S, IZAURRALDE E. The SMG5-SMG7 heterodimer directly recruits the CCR4-NOT deadenylase complex to mRNAs containing nonsense codons via interaction with POP2[J]. Genes Dev, 2013, 27(19): 2125-2138.
[27]XUE Z, ZHAO J, NIU L, et al. Up-regulation of miR-300 promotes proliferation and invasion of osteosarcoma by targeting BRD7[J]. PLoS One, 2015, 10(5): e0127682.
[28]VIMALRAJ S, SELVAMURUGAN N. Regulation of proliferation and apoptosis in human osteoblastic cells by microRNA-15b[J]. Int J Biol Macromol, 2015, 79:490-497.
[29]ZHAO M, SUN L, CHEN S, et al. Borna disease virus infection impacts microRNAs associated with nervous system development, cell differentiation, proliferation and apoptosis in the hippocampi of neonatal rats[J]. Mol Med Rep, 2015, 12(3):3697-3703.
[30]贾夏丽,潘洋洋,乔利英, 等. 脂肪分化相关信号通路及microRNA调节研究进展[J]. 畜牧兽医学报, 2015,46(4): 518-525.
JIA X L, PAN Y Y, QIAO L Y, et al. Research progress in signaling pathways and microRNA regulation of adipocyte differentiation[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46(4): 518-525.(in Chinese)
[31]TANG Y F, ZHANG Y, LI X Y, et al. Expression of miR-31, miR-125b-5p, and miR-326 in the adipogenic differentiation process of adipose-derived stem cells[J]. OMICS, 2009, 13(4): 331-336.
[32]KIM S Y, KIM A Y, LEE H W, et al. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression[J]. Biochem Biophys Res Commun, 2010, 392(3): 323-328.
[33]LEE E K, LEE M J, ABDELMOHSEN K, et al. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression[J]. Mol Cell Biol, 2011, 31(4): 626-638.
[34]ESAU C, KANG X, PERALTA E, et al. MicroRNA-143 regulates adipocyte differentiation[J]. J Biol Chem, 2004, 279(50): 52361-52365.
[35]CHEN L, HOU J, YE L, et al. MicroRNA-143 regulates adipogenesis by modulating the MAP2K5-ERK5 signaling[J]. Sci Rep, 2014, 4:3819.
[36]SEEGER T, FISCHER A, MUHLY- REINHOLZ M, et al. Long-term inhibition of miR-21 leads to reduction of obesity in db/db mice[J]. Obesity (Silver Spring), 2014, 22(11): 2352-2360.
[37]KIM Y J, HWANG S J, BAE Y C, et al. MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue[J]. Stem Cells, 2009, 27(12): 3093-3102.
[38]MEI Y, BIAN C, LI J, et al. miR-21 modulates the ERK-MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation[J]. J Cell Biochem, 2013, 114(6): 1374-1384.
[39]CASCI T, VINÓS J, FREEMAN M. Sprouty, an intracellular inhibitor of Ras signaling[J]. Cell, 1999, 96(5): 655-665.
[40]POY M N, ELIASSON L, KRUTZFELDT J, et al. A pancreatic islet-specific microRNA regulates insulin secretion[J]. Nature, 2004, 432(7014): 226-230.
[41]LYNN F C. Meta-regulation: microRNA regulation of glucose and lipid metabolism[J]. Trends Endocrinol Metab, 2009, 20(9): 452-459.
[42]EL OUAAMARI A, BAROUKH N, MARTENS G A, et al. miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells[J]. Diabetes, 2008, 57(10): 2708-2717.
[43]ABDELMOHSEN K, HUTCHISON E R, LEE E K, et al. miR-375 inhibits differentiation of neurites by lowering HuD levels[J]. Mol Cell Biol, 2010, 30(17): 4197-4210.
[44]LING H Y, WEN G B, FENG S D, et al. MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling[J]. Clin Exp Pharmacol Physiol, 2011, 38(4): 239-246.
[45]VARGHESE J, LIM S F, COHEN S M. Drosophila miR-14 regulates insulin production and metabolism through its target, sugarbabe[J]. Genes Dev, 2010, 24(24): 2748-2753.
[46]XU P, VERNOOY S Y, GUO M, et al. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism[J]. Curr Biol, 2003, 13(9): 790-795.
[47]陈晨,胡雄贵,朱吉, 等. 猪脂肪发育相关miRNAs的功能研究进展[J]. 畜牧兽医学报, 2015,46(12): 2117-2126.
CHEN C, HU X G, ZHU J, et al. Progress on the research of miRNAs associated with fat development in pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2015,46(12): 2117-2126.(in Chinese)
[48]KANG T, LU W, XU W, et al. MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells[J]. J Biol Chem, 2013, 288(48): 34394-34402.
[49]ANDE S R, XU Z, GU Y, et al. Prohibitin has an important role in adipocyte differentiation[J]. Int J Obes (Lond), 2012, 36(9): 1236-1244.
[50]LIN Q, GAO Z, ALARCON R M, et al. A role of miR-27 in the regulation of adipogenesis[J]. FEBS J, 2009, 276(8): 2348-2358.
[51]KINOSHITA M, ONO K, HORIE T, et al. Regulation of adipocyte differentiation by activation of serotonin (5-HT) receptors 5-HT2AR and 5-HT2CR and involvement of microRNA-448 mediated repression of KLF5[J]. Mol Endocrinol, 2010, 24(10): 1978-1987.
[52]HUANG N, WANG J, XIE W, et al. MiR-378a-3p enhances adipogenesis by targeting mitogen-activated protein kinase 1[J]. Biochem Biophys Res Commun, 2015, 457(1): 37-42.
[53]PARK H J, YUN J, JANG S H, et al. Coprinus comatus cap inhibits adipocyte differentiation via regulation of PPARγ and Akt signaling pathway[J]. PLoS One, 2014, 9(9): e105809.
[54]WANG Q, LI Y C, WANG J, et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130[J]. Proc Natl Acad Sci U S A, 2008, 105(8): 2889-2894.
[55]CHEN C, PENG Y, PENG Y, et al. miR-135a-5p inhibits 3T3-L1 adipogenesis through activation of canonical Wnt/beta-catenin signaling[J]. J Mol Endocrinol, 2014, 52(3): 311-320.
[56]ELMÉN J, LINDOW M, SCHÜTZ S, et al. LNA-mediated microRNA silencing in non-human primates[J]. Nature, 2008, 452(7189): 896-899.
[57]WAHID F, SHEHZAD A, KHAN T, et al. MicroRNAs: synthesis, mechanism, function, and recent clinical trials[J]. Biochim Biophys Acta, 2010, 1803(11): 1231-1243. |