畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (7): 3096-3106.doi: 10.11843/j.issn.0366-6964.2025.07.006
李茜1,2(), 高欢1,2, 符爽1,2, 锁卓1,2, 代悦2, 陈晨2, 李荣天2, 冷静1,2,*(
)
收稿日期:
2024-07-24
出版日期:
2025-07-23
发布日期:
2025-07-25
通讯作者:
冷静
E-mail:1162967164@qq.com;2370140328@qq.com
作者简介:
李茜(1999-),女,云南昭通人,硕士生,主要从事反刍动物营养研究,E-mail:1162967164@qq.com
基金资助:
LI Qian1,2(), GAO Huan1,2, FU Shuang1,2, SUO Zhuo1,2, DAI Yue2, CHEN Chen2, LI Rongtian2, LENG Jing1,2,*(
)
Received:
2024-07-24
Online:
2025-07-23
Published:
2025-07-25
Contact:
LENG Jing
E-mail:1162967164@qq.com;2370140328@qq.com
摘要:
厌氧真菌在草食动物消化道中扮演着关键角色,特别是在木质纤维素的分解和转化过程中尤为重要。这类微生物通过其独特的结构和功能高效地分解顽固的植物纤维,满足宿主动物的营养和能量需求。此外,厌氧真菌与其他微生物的互作关系不仅有助于维持肠道内环境平衡,还提高了能量回收效率,显示出其在生态和生物能源领域的潜在重要性。本文详细探讨了消化道厌氧真菌的生物学特征、功能特性以及与其他微生物的互作关系,旨在为厌氧真菌在可持续农业和可再生能源开发中的利用提供思路。
中图分类号:
李茜, 高欢, 符爽, 锁卓, 代悦, 陈晨, 李荣天, 冷静. 消化道厌氧真菌及与其他微生物的互作关系[J]. 畜牧兽医学报, 2025, 56(7): 3096-3106.
LI Qian, GAO Huan, FU Shuang, SUO Zhuo, DAI Yue, CHEN Chen, LI Rongtian, LENG Jing. Anaerobic Fungi of Digestive Tract and Their Interactions with Other Microorganisms[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3096-3106.
1 | DEARING M D , KOHL K D . Beyond fermentation: Other important services provided to endothermic herbivores by their gut microbiota[J]. Integr Comp Biol, 2017, 57 (4): 723- 731. |
2 | SOLOMON K V , HAITJEMA C H , HENSKE J K , et al. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes[J]. Science, 2016, 351 (6278): 1192- 1195. |
3 | GRUNINGER R J , PUNIYA A K , CALLAGHAN T M , et al. Anaerobic fungi (phylum Neocallimastigomycota): Advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential[J]. FEMS Microbiol Ecol, 2014, 90 (1): 1- 17. |
4 | MORAÏS S , MIZRAHI I . Islands in the stream: from individual to communal fiber degradation in the rumen ecosystem[J]. FEMS Microbiol Rev, 2019, 43 (4): 362- 379. |
5 | ORPIN C G . Studies on the rumen flagellate Neocallimastix frontalis[J]. J Gen Microbiol, 1975, 91 (2): 249- 262. |
6 | 杨闯, 郭勇庆, 王明月, 等. 草食动物肠道厌氧真菌分离培养技术及其在农牧业的应用现状[J]. 饲料工业, 2022, 43 (24): 49- 53. |
YANG C , GUO Y Q , WANG M Y , et al. Isolation and cultivation technology of anaerobic gut fungi of herbivores and its application status in agriculture and animal husbandry[J]. Feed Industry, 2022, 43 (24): 49- 53. | |
7 |
张亚伟, 王月红, 刘强, 等. 草食动物肠道厌氧真菌生物学特性研究进展[J]. 动物营养学报, 2022, 34 (3): 1398- 1407.
doi: 10.3969/j.issn.1006-267x.2022.03.004 |
ZHANG Y W , WANG Y H , LIU Q , et al. Advances in biological characteristics of gut anaerobic fungi in herbivores[J]. Chinese Journal of Animal Nutrition,, 2022, 34 (3): 1398- 1407.
doi: 10.3969/j.issn.1006-267x.2022.03.004 |
|
8 | 郭子琦, 李与琦, 成艳芬, 等. 厌氧真菌纤维降解酶及其应用潜力的研究进展[J]. 微生物学通报, 2023, 50 (1): 377- 391. |
GUO Z Q , LI Y Q , CHENG Y F , et al. Fiber-degrading enzymes of anaerobic fungi and their potential for applications: A review[J]. Microbiology China, 2023, 50 (1): 377- 391. | |
9 | HEATH I B , BAUCHOP T , SKIPP R A . Assignment of the rumen anaerobe Neocallimastix frontalis to the Spizellomycetales (Chytridiomycetes) on the basis of its polyflagellate zoospore ultrastructure[J]. Can J Bot, 1983, 61 (1): 295- 307. |
10 | GOLD J J , HEATH I B , BAUCHOP T . Ultrastructural description of a new chytrid genus of caecum anaerobe, Caecomyces equi gen. nov., sp. nov., assigned to the Neocallimasticaceae[J]. Biosystems, 1988, 21 (3-4): 403- 415. |
11 | BARR D J S , KUDO H , JAKOBER K D , et al. Morphology and development of rumen fungi: Neocallimastix sp., Piromyces communis, and Orpinomyces bovis gen.nov., sp.nov[J]. Can J Bot, 1989, 67 (9): 2815- 2824. |
12 | BRETON A , BERNALIER A , DUSSER M , et al. Anaeromyces mucronatus nov. gen., nov. sp. A new strictly anaerobic rumen fungus with polycentric thallus[J]. FEMS Microbiol Lett, 1990, 58 (2): 177- 182. |
13 | OZKOSE E , THOMAS B J , DAVIES D R , et al. Cyllamyces aberensis gen.nov. sp.nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle[J]. Can J Bot, 2001, 79 (6): 666- 673. |
14 | CALLAGHAN T M , PODMIRSEG S M , HOHLWECK D , et al. Buwchfawromyces eastonii gen. nov., sp. nov.: A new anaerobic fungus (Neocallimastigomycota) isolated from buffalo faeces[J]. MycoKeys, 2015, 9, 11- 28. |
15 | DAGAR S S , KUMAR S , GRIFFITH G W , et al. A new anaerobic fungus (Oontomyces anksri gen. nov., sp. nov.) from the digestive tract of the Indian camel (Camelus dromedarius[J]. Fungal Biol, 2015, 119 (8): 731- 737. |
16 | HANAFY R A , ELSHAHED M S , LIGGENSTOFFER A S , et al. Pecoramyces ruminantium, gen. nov., sp. nov., an anaerobic gut fungus from the feces of cattle and sheep[J]. Mycologia, 2017, 109 (2): 231- 243. |
17 | JOSHI A , LANJEKAR V B , DHAKEPHALKAR P K , et al. Liebetanzomycespolymorphus gen. et sp. nov., a new anaerobic fungus (Neocallimastigomycota) isolated from the rumen of a goat[J]. MycoKeys, 2018 (40): 89- 110. |
18 | HANAFY R A , ELSHAHED M S , YOUSSEF N H . Feramyces austinii, gen. nov., sp. nov., an anaerobic gut fungus from rumen and fecal samples of wild Barbary sheep and fallow deer[J]. Mycologia, 2018, 110 (3): 513- 525. |
19 | STABEL M , HANAFY R A , SCHWEITZER T , et al. Aestipascuomyces dupliciliberans gen. nov, sp. nov., the first cultured representative of the uncultured SK4 clade from Aoudad Sheep and Alpaca[J]. Microorganisms, 2020, 8 (11): 1734. |
20 | HANAFY R A , LANJEKAR V B , DHAKEPHALKAR P K , et al. Seven new Neocallimastigomycota genera from wild, zoo-housed, and domesticated herbivores greatly expand the taxonomic diversity of the phylum[J]. Mycologia, 2020, 112 (6): 1212- 1239. |
21 | HANAFY R A , YOUSSEF N H , ELSHAHED M S . Paucimyces polynucleatus gen. nov, sp. nov., a novel polycentric genus of anaerobic gut fungi from the faeces of a wild blackbuck antelope[J]. Int J Syst Evol Microbiol, 2021, 71, 004832. |
22 | MEILI C H , TAGELDEIN M A , JONES A L , et al. Diversity and community structure of anaerobic gut fungi in the rumen of wild and domesticated herbivores[J]. Appl Environ Microbiol, 2024, 90 (2): e0149223.. |
23 | WANG H , LI P , LIU X , et al. The composition of fungal communities in the rumen of Gayals (Bos frontalis), Yaks (Bos grunniens), and Yunnan and Tibetan Yellow Cattle (Bos taurs)[J]. Pol J Microbiol, 2019, 68 (4): 505- 514. |
24 | RABEE A E , FORSTER R J , ELEKWACHI C O , et al. Community structure and fibrolytic activities of anaerobic rumen fungi in dromedary camels[J]. J Basic Microbiol, 2019, 59 (1): 101- 110. |
25 | LIANG Z , ZHANG J , AHMAD A A , et al. Forage lignocellulose is an important factor in driving the seasonal dynamics of rumen anaerobic fungi in grazing yak and cattle[J]. Microbiol Spectr, 2023, 11 (5): e0078823. |
26 | YOU C , ZHANG X Z , SATHITSUKSANOH N , et al. Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex[J]. Appl Environ Microbiol, 2012, 78 (5): 1437- 1444. |
27 | LILLINGTON S P , CHRISLER W , HAITJEMA C H , et al. Cellulosome localization patterns vary across life stages of Anaerobic fungi[J]. mBio, 2021, 12 (3): e0083221. |
28 | ALI B R , ZHOU L , GRAVES F M , et al. Cellulases and hemicellulases of the anaerobic fungus Piromyces constitute a multiprotein cellulose-binding complex and are encoded by multigene families[J]. FEMS Microbiol Lett, 1995, 125 (1): 15- 21. |
29 | DALRYMPLE B P , CYBINSKI D H , LAYTON I , et al. Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases[J]. Microbiology (Reading), 1997, 143 (Pt 8): 2506- 2614. |
30 | FELIX C R , LJUNGDAHL L G . The cellulosome: the exocellular organelle of Clostridium[J]. Annu Rev Microbiol, 1993, 47, 791- 819. |
31 | WILSON C A , WOOD T M . The anaerobic fungus Neocallimastix frontalis: isolation and properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose[J]. Appl Microbiol Biotechnol, 1992, 37, 125- 129. |
32 | HAITJEMA C H , GILMORE S P , HENSKE J K , et al. A parts list for fungal cellulosomes revealed by comparative genomics[J]. Nat Microbiol, 2017, 2, 17087. |
33 | MA J , ZHONG P , LI Y , et al. Hydrogenosome, pairing Anaerobic fungi and H2-utilizing microorganisms based on metabolic ties to facilitate biomass utilization[J]. J Fungi(Basel), 2022, 8 (4): 338. |
34 | XU Q , RESCH M G , PODKAMINER K , et al. Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities[J]. Sci Adv, 2016, 2 (2): e1501254. |
35 | STEENBAKKERS P J M , FREELOVE A , VAN CRANENBROEK B , et al. The major component of the cellulosomes of anaerobic fungi from the genus Piromyces is a family 48 glycoside hydrolase[J]. DNA Seq, 2002, 13 (6): 313- 320. |
36 | STEENBAKKERS P J M , UBHAYASEKERA W , GOOSSEN H J , et al. An intron-containing glycoside hydrolase family 9 cellulase gene encodes the dominant 90 kDa component of the cellulosome of the anaerobic fungus Piromyces sp. strain E2[J]. Biochem J, 2002, 365 (Pt 1): 193- 204. |
37 | FILLINGHAM I J , KROON P A , WILLIAMSON G , et al. A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multiprotein cellulose-binding cellulase-hemicellulase complex[J]. Biochem J, 1999, 343 (Pt 1): 215- 224. |
38 | LANKIEWICZ T S , LILLINGTON S P , O MALLEY M A . Enzyme discovery in Anaerobic fungi (Neocallimastigomycetes) enables lignocellulosic biorefinery innovation[J]. Microbiol Mol Biol Rev, 2022, 86 (4): e0004122. |
39 | AKHMANOVA A , VONCKEN F G J , HOSEA K M , et al. A hydrogenosome with pyruvate formate-lyase: Anaerobic chytrid fungi use an alternative route for pyruvate catabolism[J]. Mol Microbiol, 1999, 32 (5): 1103- 1114. |
40 | HACKSTEIN J H P, AKHMANOVA A, BOXMA B, et al. Hydrogenosomes: eukaryotic adaptations to anaerobic environments[Z]. Trends Microbiol, 1999, 7(11), 441-447. |
41 | HAITJEMA C H , SOLOMON K V , HENSKE J K , et al. Anaerobic gut fungi: Advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production[J]. Biotechnol Bioeng, 2014, 111 (8): 1471- 1482. |
42 | EDWARDS J E , FORSTER R J , CALLAGHAN T M , et al. PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: Insights, challenges and opportunities[J]. Front Microbiol, 2017, 8, 1657. |
43 | HRDY I, TACHEZY J, MVLLER M. Metabolism of Trichomonad hydrogenosomes[M]//Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic eukaryotes. Springer, Berlin, Heidelberg. 2007, 9: 113-145. |
44 | BOXMA B , DE GRAAF R M , VAN DER STAAY G W M , et al. An anaerobic mitochondrion that produces hydrogen[J]. Nature, 2005, 434 (7029): 74- 79. |
45 | ORPIN C G , BOUNTIFF L . Zoospore chemotaxis in the rumen phycomycete Neocallimastix frontalis[J]. J Gen Microbiol, 1978, 104 (1): 113- 122. |
46 | WUBAH D A , KIM D S . Chemoattraction of anaerobic ruminal fungi zoospores to selected phenolic acids[J]. Microbiol Res, 1996, 151 (3): 257- 262. |
47 | AGUSTINA S , WIRYAWAN I K G , SUHARTI S , et al. The addition of anaerobic fungi isolates from buffalo rumen to increase fiber digestibility, fermentation, and microbial population in ruminants[J]. Biodiversitas,, 2024, 25 (1): 107- 115. |
48 |
KRÓL B , SŁUPCZYŃSKAL M , WILK M , et al. Anaerobic rumen fungi and fungal direct-fed microbials in ruminant feeding[J]. Journal of Animal and Feed Sciences, 2023, 32 (1)
doi: 10.22358/jafs/153961/2022 |
49 | MORRISON J M , ELSHAHED M S , YOUSSEF N . A multifunctional GH39 glycoside hydrolase from the anaerobic gut fungus Orpinomyces sp. strain C1A[J]. PeerJ, 2016, 4, e2289. |
50 | DOLLHOFER V , PODMIRSEG S M , CALLAGHAN T M , et al. Anaerobic fungi and their potential for biogas production[J]. Adv Biochem Eng Biotechnol, 2015, 151, 41- 61. |
51 | CHENG Y , SHI Q , SUN R , et al. The biotechnological potential of anaerobic fungi on fiber degradation and methane production[J]. World J Microbiol Biotechnol, 2018, 34 (10): 155. |
52 | LI Y , MENG Z , XU Y , et al. Interactions between anaerobic fungi and methanogens in the rumen and their biotechnological potential in biogas production from lignocellulosic materials[J]. Microorganisms, 2021, 9 (1): 190. |
53 | HAGEN L H , BROOKE C G , SHAW C A , et al. Proteome specialization of anaerobic fungi during ruminal degradation of recalcitrant plant fiber[J]. ISME J, 2021, 15 (2): 421- 434. |
54 | DASHTBAN M , SCHRAFT H , QIN W . Fungal bioconversion of lignocellulosic residues; opportunities & perspectives[J]. Int J Biol Sci, 2009, 5 (6): 578- 595. |
55 | GRUNINGER R J , NGUYEN T T M , REID I D , et al. Application of transcriptomics to compare the carbohydrate active enzymes that are expressed by diverse genera of anaerobic fungi to degrade plant cell wall carbohydrates[J]. Front Microbiol, 2018, 9, 1581. |
56 | COUGER M B , YOUSSEF N H , STRUCHTEMEYER C G , et al. Transcriptomic analysis of lignocellulosic biomass degradation by the anaerobic fungal isolate Orpinomyces sp. strain C1A[J]. Biotechnol Biofuels, 2015, 8, 208. |
57 | LI Y , JIN W , MU C , et al. Indigenously associated methanogens intensified the metabolism in hydrogenosomes of anaerobic fungi with xylose as substrate[J]. J Basic Microbiol, 2017, 57 (11): 933- 940. |
58 | KYAWT Y Y , AUNG M , XU Y , et al. Methane production and lignocellulosic degradation of waste from rice, corn and sugarcane by natural co-culture of anaerobic fungi and methanogens[J]. World J Microbiol Biotechnol, 2024, 40 (4): 109. |
59 | WANG L , YAN W , CHEN J , et al. Function of the iron-binding chelator produced by Coriolus versicolor in lignin biodegradation[J]. Sci China C Life Sci, 2008, 51 (3): 214- 221. |
60 | DEHHAGHI M , PANAHI H K S , JOUZANI G S , et al. Anaerobic rumen fungi for biofuel production[J]. Fungi in Fuel Biotechnology, 2020, 149- 175. |
61 | MARTÍNEZ A T , SPERANZA M , RUIZ-DUEÑAS F J , et al. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin[J]. Int Microbiol, 2005, 8 (3): 195- 204. |
62 | JYOTHI C , MUWEL N , NAYAK S , et al. Anaerobic rumen fungi as a feed additive in ruminants: a review[J]. Journal of Livestock Science, 2024, 15 (1): 78- 85. |
63 | PENG X , WILKEN S E , LANKIEWICZ T S , et al. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes[J]. Nat Microbiol, 2021, 6 (4): 499- 511. |
64 | LEE S S , HA J K , CHENG K J . Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions[J]. Appl Environ Microbiol, 2000, 66 (9): 3807- 3813. |
65 | SWIFT C L , LOUIE K , BOWEN B P , et al. Cocultivation of Anaerobic fungi with rumen bacteria establishes an antagonistic relationship[J]. mBio, 2021, 12 (4): e0144221. |
66 | AZAD E , FEHR K B , DERAKHSHANI H , et al. Interrelationships of fiber-associated anaerobic fungi and bacterial communities in the rumen of bloated cattle grazing alfalfa[J]. Microorganisms, 2020, 8 (10): 1543. |
67 | KAPITAN M , NIEMIEC M J , STEIMLE A , et al. Fungi as part of the microbiota and interactions with intestinal bacteria[J]. Curr Top Microbiol Immunol, 2019, 422, 265- 301. |
68 | GAO A W , WANG H , YANG J L , et al. The effects of elimination of fungi on microbial population and fiber degradation in sheep rumen[J]. Applied Mechanics and Materials, 2013, 295-298, 224- 231. |
69 | WEIMER P J . Degradation of cellulose and hemicellulose by ruminal microorganisms[J]. Microorganisms, 2022, 10 (12): 2345. |
70 | 金巍, 刘军花, 李袁飞, 等. 甲烷菌对厌氧真菌不同碳源代谢的影响[J]. 微生物学报, 2017, 57 (7): 1106- 1111. |
JIN W , LIU J H , LI Y F , et al. Effect of methanogens on carbon metabolism of anaerobic fungi[J]. Acta Microbiologica Sinica, 2017, 57 (7): 1106- 1111. | |
71 | LEGGIERI P A , KERDMAN-ANDRADE C , LANKIEWICZ T S , et al. Non-destructive quantification of anaerobic gut fungi and methanogens in co-culture reveals increased fungal growth rate and changes in metabolic flux relative to mono-culture[J]. Microb Cell Fact, 2021, 20 (1): 199. |
72 | 张垄菲, 林波, 高晓梅, 等. 瘤胃厌氧真菌与产甲烷菌的关系及应用研究进展[J]. 饲料研究, 2021, 44 (1): 120- 123. |
ZHANG L F , LIN B , GAO X M , et al. Research progress on relationship between rumen anaerobic fungi and methanogens and their application[J]. Feed Research, 2021, 44 (1): 120- 123. | |
73 | 李袁飞, 贡继尚, 饶友生, 等. 厌氧真菌和甲烷菌共培养的研究进展[J]. 微生物学报, 2021, 61 (1): 1- 12. |
LI Y F , GONG J S , RAO Y S , et al. Advance in the co-culture of anaerobic fungi and methanogens[J]. Acta Microbiologica Sinica, 2021, 61 (1): 1- 12. | |
74 | CHENG Y F , JIN W , MAO S Y , et al. Production of citrate by anaerobic fungi in the presence of co-culture methanogens as revealed by 1H NMR spectrometry[J]. Asian-Australas J Anim Sci, 2013, 26 (10): 1416- 1423. |
75 | LI Y , GUO Z , LIU X , et al. Bioaugmentation protocols involving Methanobrevibacter thaueri and Pecoramyces ruminantium for investigating lignocellulose degradation and methane production from alfalfa stalks[J]. Bioresour Technol, 2024, 408, 131172. |
76 | SWIFT C L , BROWN J L , SEPPÄLÄ S , et al. Co-cultivation of the anaerobic fungus Anaeromyces robustus with Methanobacterium bryantii enhances transcription of carbohydrate active enzymes[J]. J Ind Microbiol Biotechnol, 2019, 46 (9-10): 1427- 1433. |
77 | BROWN J L , SWIFT C L , MONDO S J , et al. Co-cultivation of the anaerobic fungus Caecomyces churrovis with Methanobacterium bryantii enhances transcription of carbohydrate binding modules, dockerins, and pyruvate formate lyases on specific substrates[J]. Biotechnol Biofuels, 2021, 14 (1): 234. |
78 | MA Y , LI Y , LI Y , et al. The enrichment of anaerobic fungi and methanogens showed higher lignocellulose degrading and methane producing ability than that of bacteria and methanogens[J]. World J Microbiol Biotechnol, 2020, 36 (9): 125. |
79 | WEI Y , YANG H , WANG Z , et al. Roughage biodegradation by natural co-cultures of rumen fungi and methanogens from Qinghai yaks[J]. AMB Express, 2022, 12 (1): 123. |
80 | WEI Y Q , YANG H J , LUAN Y , et al. Isolation, identification and fibrolytic characteristics of rumen fungi grown with indigenous methanogen from yaks (Bos grunniens) grazing on the Qinghai-Tibetan Plateau[J]. J Appl Microbiol, 2016, 120 (3): 571- 587. |
81 | MISHRA P , TULSANI N J , JAKHESARA S J , et al. Exploring the eukaryotic diversity in rumen of Indian camel (Camelus dromedarius) using 18S rRNA amplicon sequencing[J]. Arch Microbiol, 2020, 202 (7): 1861- 1872. |
82 | LIANG J , NABI M , ZHANG P , et al. Promising biological conversion of lignocellulosic biomass to renewable energy with rumen microorganisms: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2020, 134, 110335. |
83 | WILLIAMS C L , THOMAS B J , MCEWAN N R , et al. Rumen protozoa play a significant role in fungal predation and plant carbohydrate breakdown[J]. Front Microbiol, 2020, 11, 720. |
[1] | 李文超, 李维俏, 李欣, 王家庆, 张雅为, 李俊平. 动物源细菌耐药性及中药消减耐药性的研究进展[J]. 畜牧兽医学报, 2025, 56(6): 2555-2576. |
[2] | 李晓晗, 李桂萍, 霍彩云, 张启龙, 孙英健, 孙惠玲. Ⅱ类CRISPR/Cas系统及其在细菌合成生物学中的应用[J]. 畜牧兽医学报, 2025, 56(4): 1608-1620. |
[3] | 张蕾, 陈亮, 冯万宇, 兰世捷, 苗艳, 田秋丰, 白长胜, 张备, 董佳强, 江波涛, 王洪宝, 史同瑞, 黄宣凯. 生物被膜在动物细菌感染致病机理中的作用[J]. 畜牧兽医学报, 2025, 56(1): 107-114. |
[4] | 黄杰, 阮子豪, 蔡瑞. 抗菌肽在猪精液常温保存中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1401-1411. |
[5] | 高远集, 刘畅, 陈淼, 陈松彪, 张俊峰, 李静, 贾艳艳, 廖成水, 郭荣显, 丁轲, 余祖华, 尚珂. 细菌外膜囊泡结构、分泌特性及致病机制[J]. 畜牧兽医学报, 2024, 55(3): 971-983. |
[6] | 周祉玉, 杜吉革, 莘若兰, 张嘉雯, 潘晨帆, 印春生, 陈小云, 朱真. 中国三株牛结节性皮肤病病毒的分离鉴定及其GPCR基因分析[J]. 畜牧兽医学报, 2024, 55(12): 5620-5630. |
[7] | 安一娜, 谭姝瑜, 冯岚迪, 鲍明悦, 刘梦晗, 尹勤昊, 董彦君. 鸢尾素对感染大肠埃希菌小鼠组织损伤及细菌清除的影响[J]. 畜牧兽医学报, 2024, 55(11): 5267-5277. |
[8] | 付涵, 卢冲, 缪荣浩, 卢亚宾, 李建龙, 刘建华, 耿明阳, 郭庆勇, 买占海, 况玲. 流产对母马阴道和肠道菌群多样性的影响及阴道细菌的分离鉴定[J]. 畜牧兽医学报, 2024, 55(10): 4700-4719. |
[9] | 于秀菊, 张敏爱, 胡燕姣, 朱芷葳, 王海东, 杨丽华, 范阔海. 枯草芽孢杆菌细菌素的分离、表达及稳定性分析[J]. 畜牧兽医学报, 2024, 55(1): 323-333. |
[10] | 米慧, 彭灿, 贺志雄, 谭支良. 基于流式细胞术分选绵羊分泌型IgA包裹的消化道细菌[J]. 畜牧兽医学报, 2023, 54(7): 2924-2931. |
[11] | 毛鹏, 王志浩, 李建基, 崔璐莹, 朱国强, 孟霞, 董俊升, 王亨. 铁死亡在细菌性感染中的研究进展[J]. 畜牧兽医学报, 2023, 54(6): 2280-2287. |
[12] | 洪勃, 孙琪, 李栋凡, 于学祥, 库旭钢, 何启盖. 基于16SrDNA高通量测序技术分析受水灾影响猪场水样的菌群特征[J]. 畜牧兽医学报, 2023, 54(5): 2092-2100. |
[13] | 孙瑜凡, 于盼元, 陈虹宇, 谭怡青, 陈夏冰, 张腾飞, 高婷, 周锐, 黎璐. 二甲酸钾预防沙门菌感染小鼠的效果评价及对肠道菌群的影响[J]. 畜牧兽医学报, 2023, 54(5): 2101-2113. |
[14] | 贺显晶, 刘娇, 王志慧, 武瑞, 郭东华. 牛源坏死梭杆菌43K外膜蛋白的黏附特性研究[J]. 畜牧兽医学报, 2023, 54(2): 726-735. |
[15] | 郝若晨, 唐敏嘉, 刘光亮, 张艳, Muhammad Shoaib, 尚若锋, 曹宗喜, 蒲万霞. 海南省奶源和养殖环境主要肠杆菌科细菌的分布及基因分型[J]. 畜牧兽医学报, 2023, 54(12): 5184-5197. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||