1 |
AVERILL-BATES D A . The antioxidant glutathione[J]. Vitam Horm, 2023, 121, 109- 141.
|
2 |
GAO J , CHEN B W , LIN H J , et al. Identification and characterization of the glutathione S-Transferase (GST) family in radish reveals a likely role in anthocyanin biosynthesis and heavy metal stress tolerance[J]. Gene, 2020, 743, 144484.
doi: 10.1016/j.gene.2020.144484
|
3 |
王小巍, 张红艳, 刘锐, 等. 谷胱甘肽的研究进展[J]. 中国药剂学杂志: 网络版, 2019, 17 (4): 141- 148.
|
|
WANG X W , ZHANG H Y , LIU R , et al. Progress in research of glutathione[J]. Chinese Journal of Pharmaceutics: Online Edition, 2019, 17 (4): 141- 148.
|
4 |
陈玉娟, 邱泽钞, 沈铭, 等. 谷胱甘肽的生物学功能及其在养猪生产中的应用研究进展[J]. 中国畜牧杂志, 2022, 58 (12): 60- 65.
|
|
CHEN Y J , QIU Z C , SHEN M , et al. Advance in biological function of glutathione and its application in pig production[J]. Chinese Journal of Animal Science, 2022, 58 (12): 60- 65.
|
5 |
CHARKIEWICZ A E, OMELJANIUK W J, NOWAK K, et al. Cadmium toxicity and health effects—a brief summary[M]. Molecules, 2023, 28(18): 6620.
|
6 |
王乐乐, 刘江正, 刘萌萌, 等. 镉暴露致大鼠肾损伤的量效关系及其机制[J]. 癌变·畸变·突变, 2016, 28 (6): 446- 452.
doi: 10.3969/j.issn.1004-616x.2016.06.007
|
|
WANG L L , LIU J Z , LIU M M , et al. Dose-dependent induction ofrenal injury by cadmium in rats[J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2016, 28 (6): 446- 452.
doi: 10.3969/j.issn.1004-616x.2016.06.007
|
7 |
贺盛发, 黄光明, 张宏亮, 等. 还原型谷胱甘肽治疗急性肾损伤临床效果的系统评价[J]. 中国药物经济学, 2023, 18 (1): 51- 58.
|
|
HE S F , HUANG G M , ZHANG H L , et al. Systematic evaluation of clinical efficacy of reduced glutathione in the treatment of acute kidney injury[J]. China Journal of Pharmaceutical Economics, 2023, 18 (1): 51- 58.
|
8 |
ZHOU Y J , ZHANG S P , LIU C W , et al. The protection of selenium on ROS mediated-apoptosis by mitochondria dysfunction in cadmium-induced LLC-PK1 cells[J]. Toxicol Vitro, 2009, 23 (2): 288- 294.
doi: 10.1016/j.tiv.2008.12.009
|
9 |
董峰, 杨佳, 李向阳, 等. 镉通过引发氧化应激和线粒体损伤诱导PK-15细胞凋亡[J]. 中国生物化学与分子生物学报, 2018, 34 (11): 1185- 1193.
|
|
DONG F , YANG J , LI X Y , et al. Cadmium induces apoptosis in PK-15 cells through oxidative stress and mitochondrial damage[J]. Chinese Journal of Biochemistry and Molecular Biology, 2018, 34 (11): 1185- 1193.
|
10 |
BLAJSZCZAK C , BONINI M G . Mitochondria targeting by environmental stressors: implications for redox cellular signaling[J]. Toxicology, 2017, 391, 84- 89.
doi: 10.1016/j.tox.2017.07.013
|
11 |
DE SANCTIS J B . Analysis of mitochondria function by flow cytometry[J]. Lab Tech Cell Mol Med, 2021, 215.
|
12 |
SHANG N , BANK T , DING X Z , et al. Caspase-3 suppresses diethylnitrosamine-induced hepatocyte death, compensatory proliferation and hepatocarcinogenesis through inhibiting p38 activation[J]. Cell Death Dis, 2018, 9 (5): 558.
doi: 10.1038/s41419-018-0617-7
|
13 |
李敏, 殷述亭, 迟晓丹. 谷胱甘肽生产及在水产养殖中的应用[J]. 饲料工业, 2024, 45 (4): 51- 55.
|
|
LI M , YIN S T , CHI X D . Production of glutathione and its application in aquaculture[J]. Feed Industry, 2024, 45 (4): 51- 55.
|
14 |
LARSON C . China gets serious about its pollutant-laden soil[J]. Science, 2014, 343 (6178): 1415- 1416.
doi: 10.1126/science.343.6178.1415
|
15 |
LEE W K , PROBST S , SCHARNER B , et al. Distinct concentration-dependent oxidative stress profiles by cadmium in a rat kidney proximal tubule cell line[J]. Arch Toxicol, 2024, 98 (4): 1043- 1059.
doi: 10.1007/s00204-023-03677-z
|
16 |
杨佳. 镉诱导猪肾PK-15细胞氧化损伤及N-乙酰基半胱氨酸的保护作用研究[D]. 太原: 山西大学, 2018.
|
|
YANG J. Cadmium induced oxidative damage of porcine kidney cells (PK-15) and protective effect of N-acetylcysteine[D]. Taiyuan: Shanxi University, 2018. (in Chinese)
|
17 |
PHATAK V M , MULLER P A J . Metal toxicity and the p53 protein: an intimate relationship[J]. Toxicol Res, 2015, 4 (3): 576- 591.
doi: 10.1039/C4TX00117F
|
18 |
MARCHI S , GIORGI C , SUSKI J M , et al. Mitochondria-ros crosstalk in the control of cell death and aging[J]. J Signal Transduct, 2012, 2012, 329635.
|
19 |
DENG P , LI J D , LU Y H , et al. Chronic cadmium exposure triggered ferroptosis by perturbing the STEAP3-mediated glutathione redox balance linked to altered metabolomic signatures in humans[J]. Sci Total Environ, 2023, 905, 167039.
|
20 |
DAVALLI P , MARVERTI G , LAURIOLA A , et al. Targeting oxidatively induced DNA damage response in cancer: opportunities for novel cancer therapies[J]. Oxid Med Cell Longev, 2018, 2018, 2389523.
|
21 |
ZHOU C Y , ZHANG X , CHEN Y X , et al. Glutathione alleviates the cadmium exposure-caused porcine oocyte meiotic defects via eliminating the excessive ROS[J]. Environ Pollut, 2019, 255 (Pt 1): 113194.
|
22 |
BONNER W M , REDON C E , DICKEY J S , et al. γH2AX and cancer[J]. Nat Rev Cancer, 2008, 8 (12): 957- 967.
|
23 |
ZHOU B B S , ELLEDGE S J . The DNA damage response: putting checkpoints in perspective[J]. Nature, 2000, 408 (6811): 433- 439.
|
24 |
DONG X Q , CHU L K , CAO X , et al. Glutathione metabolism rewiring protects renal tubule cells against cisplatin-induced apoptosis and ferroptosis[J]. Redox Rep, 2023, 28 (1): 2152607.
|