畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (2): 737-754.doi: 10.11843/j.issn.0366-6964.2025.02.024
卢建1(), 马猛1, 郭军1, 王星果1, 窦套存1, 胡玉萍1, 王强1, 李永峰1, 邵丹1, 童海兵1, 郭杰2,*(
), 曲亮1,*(
)
收稿日期:
2024-04-01
出版日期:
2025-02-23
发布日期:
2025-02-26
通讯作者:
郭杰,曲亮
E-mail:lujian1617@163.com;23382063@qq.com;liangquyz@126.com
作者简介:
卢建(1985-),男,研究员,博士,主要从事蛋鸡营养代谢与繁殖性能调控研究,E-mail: lujian1617@163.com
基金资助:
LU Jian1(), MA Meng1, GUO Jun1, WANG Xingguo1, DOU Taocun1, HU Yuping1, WANG Qiang1, LI Yongfeng1, SHAO Dan1, TONG Haibing1, GUO Jie2,*(
), QU Liang1,*(
)
Received:
2024-04-01
Online:
2025-02-23
Published:
2025-02-26
Contact:
GUO Jie, QU Liang
E-mail:lujian1617@163.com;23382063@qq.com;liangquyz@126.com
摘要:
本试验旨在基于转录组测序技术研究育成期(6~17周龄)能量限饲及转换为自由采食(18~20周龄)调控开产时(20周龄)蛋鸡生殖器官发育和激素水平的关键基因和信号通路。将720只6周龄海兰褐蛋鸡随机分为3组,每组6个重复,每个重复40只鸡。6~17周龄,试验鸡分别饲喂禽代谢能(ME)水平为12.34、11.11(90%)和9.87(80%)MJ·kg-1,其它营养素水平相同的试验饲粮,12.34 MJ·kg-1组试验鸡自由采食(对照组),其它试验组蛋鸡按照对照组蛋鸡采食量定量饲喂,18~20周龄,各组试验鸡均饲喂相同营养水平试验饲粮自由采食。试验期6~20周龄。20周龄末,选取生殖器官发育和血液孕酮水平差异显著的对照组和80% ME摄入组试验鸡各4只,采集卵巢基质部进行RNA-seq分析,对差异表达基因进行GO功能富集分析和KEGG信号通路分析,并对测序结果进行qRT-PCR验证。结果表明:1)随育成期能量限饲强度增加,各试验组蛋鸡20周龄体重和体重变异系数(CV)均显著线性减少(P < 0.001),6~20周龄平均日采食量(ADFI)和料重比(F/G)均显著线性增加(P < 0.001),平均日代谢能摄入量(ADMEI)和平均日增重(ADG)显著线性减少(P < 0.001)。2)随育成期能量限饲强度增加,20周龄蛋鸡血清尿素氮(UN)含量显著线性增加(P=0.007),血清甘油三酯(TG)和低密度脂蛋白(LDL)水平以及肝组织总胆固醇(TC)和游离脂肪酸(NEFA)含量均显著线性减小(P=0.045,P=0.029,P=0.024,P=0.003)。3)随育成期能量限饲强度增加,20周龄蛋鸡输卵管长度、长度体重比、重量和指数(P=0.012、0.016、0.042和0.045)、小黄卵泡的数量和指数(P=0.017和0.039)以及卵巢基质部重量和指数(P=0.046和0.047)均显著线性减少,血浆孕酮水平显著线性增加(P < 0.001)。4)对20周龄自由采食组(ALF20W)和80%能量限饲组(ERF20W)蛋鸡卵巢基质部进行RNA-Seq分析,纯净序列匹配到鸡参考基因组的比例均超过了93.77%,Q20和Q30的纯净序列含量分别高于97.03%和92.14%,两组共筛选出1 488个差异基因,ERF20W组600个下调,888个上调。GO功能分析发现细胞进程、发育和生殖等46个显著富集的GO条目,KEGG信号通路显著富集在28个显著富集的KEGG通路,其中类固醇激素生物合成通路、雌激素信号通路、卵巢类固醇生成通路和cAMP信号通路等是与能量代谢或生殖相关的通路,筛选到的cAMP反应元件结合蛋白(CREB)、类固醇生成急性调节蛋白(StAR)、细胞色素P450 1B1(CYP1B1)、胰岛素样生长因子I(IGF-I)、黑皮质素2受体(MC2R)、细胞骨架蛋白角蛋白18(KRT 18)和孕激素受体(PGR)等差异基因富集在以上信号通路,可能是育成期能量限饲及转换为自由采食调控开产时蛋鸡生殖器官发育和雌激素生成的潜在靶基因和通路。qRT-PCR结果显示10个差异表达基因的表达趋势与RNA-Seq结果一致。由此可见,育成期能量限饲及转换为自由采食显著影响了开产时(20周龄)蛋鸡脂质代谢、生殖器官发育和孕酮生成,随育成期能量限饲强度增加,开产时蛋鸡体重、体重CV、血清TG和LDL水平、肝TC和NEFA含量、输卵管长度、长度体重比、重量和指数、小黄卵泡的数量和指数以及卵巢基质部重量和指数均显著线性减少,而血浆孕酮水平显著线性增加。育成期能量限饲及转换为自由采食可能通过影响卵巢组织StAR、CREB1、CYP1B1、IGF-I、MC2R、KRT18和PGR等基因的表达,作用于类固醇激素生物合成通路、雌激素信号通路、卵巢类固醇生成通路和cAMP信号通路等通路,以调控开产时蛋鸡能量代谢、生殖器官发育和孕酮生成。
中图分类号:
卢建, 马猛, 郭军, 王星果, 窦套存, 胡玉萍, 王强, 李永峰, 邵丹, 童海兵, 郭杰, 曲亮. 育成期能量限饲及转换为自由采食调控开产时蛋鸡生殖器官发育的关键基因和信号通路研究[J]. 畜牧兽医学报, 2025, 56(2): 737-754.
LU Jian, MA Meng, GUO Jun, WANG Xingguo, DOU Taocun, HU Yuping, WANG Qiang, LI Yongfeng, SHAO Dan, TONG Haibing, GUO Jie, QU Liang. Studies on Key Genes and Signaling Pathways of Regulation of Energy Restriction during Rearing and Conversion to Ad libitum on the Reproductive Organ Development of Hens at the Initiation of Laying Period[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 737-754.
表 1
试验饲粮组成及营养水平"
项目 Item | 6~12周龄 6 to 12 weeks of age | 13~17周龄 13 to 17 weeks of age | 18~20周龄 18 to 20 weeks of age | |||||
代谢能水平/(MJ·kg-1) ME level | 代谢能水平/(MJ·kg-1) ME level | |||||||
12.34 | 11.11 | 9.87 | 12.34 | 11.11 | 9.87 | |||
原料Ingredient | ||||||||
玉米Corn | 71.11 | 61.00 | 50.20 | 75.20 | 64.80 | 54.30 | 68.00 | |
豆粕Soybean meal | 25.67 | 27.60 | 29.40 | 20.80 | 22.70 | 24.50 | 24.00 | |
石粉Limestone | 1.40 | 1.40 | 1.40 | 2.00 | 2.00 | 2.00 | 6.00 | |
沸石粉Zeolite powder | 0.00 | 8.23 | 17.26 | 0.20 | 8.75 | 17.49 | 0.23 | |
磷酸氢钙Dicalcium phosphate | 0.105 | 0.105 | 0.105 | 0.105 | 0.105 | 0.105 | 0.105 | |
磷酸二氢钙Monocalcium phosphate | 0.595 | 0.595 | 0.595 | 0.595 | 0.595 | 0.595 | 0.595 | |
食盐NaCl | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | |
50%胆碱50% Choline chloride | 0.12 | 0.12 | 0.12 | 0.10 | 0.10 | 0.10 | 0.12 | |
DL-蛋氨酸DL-methionine | 0.15 | 0.16 | 0.17 | 0.15 | 0.15 | 0.16 | 0.20 | |
赖氨酸Lysine | 0.10 | 0.04 | 0.00 | 0.10 | 0.05 | 0.00 | 0.00 | |
预混料Premix1) | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | |
营养水平(计算值) Nutrient levels (calculated) | ||||||||
代谢能/(MJ·kg-1) ME | 12.34 | 11.11 | 9.87 | 12.34 | 11.11 | 9.87 | 11.72 | |
粗蛋白质Crude protein | 17.50 | 17.50 | 17.50 | 15.50 | 15.50 | 15.50 | 16.50 | |
可消化氨基酸Digestible amino acid | ||||||||
赖氨酸Lysine | 0.94 | 0.94 | 0.94 | 0.82 | 0.82 | 0.82 | 0.84 | |
蛋氨酸Methionine | 0.45 | 0.45 | 0.45 | 0.41 | 0.41 | 0.41 | 0.47 | |
蛋氨酸+胱氨酸Met+Cys | 0.73 | 0.73 | 0.73 | 0.67 | 0.67 | 0.67 | 0.74 | |
色氨酸L-tryptophan | 0.20 | 0.21 | 0.22 | 0.18 | 0.18 | 0.18 | 0.19 | |
苏氨酸Threonine | 0.66 | 0.66 | 0.66 | 0.59 | 0.59 | 0.59 | 0.62 | |
钙Calcium | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 2.60 | |
总磷Total phosphorus | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | |
非植酸磷Nonphytate phosphorus | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | |
营养水平(实测值) Nutrient levels (measured) | ||||||||
粗蛋白质Crude protein | 17.75 | 17.59 | 17.63 | 15.61 | 15.58 | 15.58 | 16.59 | |
赖氨酸Lysine | 0.89 | 0.87 | 0.87 | 0.78 | 0.76 | 0.79 | 0.81 | |
蛋氨酸Methionine | 0.43 | 0.42 | 0.44 | 0.38 | 0.36 | 0.37 | 0.48 | |
钙Calcium | 0.84 | 0.86 | 0.79 | 0.87 | 0.88 | 0.83 | 2.68 | |
总磷Total phosphorus | 0.53 | 0.49 | 0.51 | 0.53 | 0.51 | 0.51 | 0.51 |
表 2
差异表达基因的qRT-PCR验证引物"
基因 Genes | 序列号 Accession number | 引物序列(5′→3′) Primer sequence(5′→3′) | 产物长度/bp Product length |
StAR | NM_204686 | F:GTCCCTCGCAGACCAAGT R:TCCCTACTGTTAGCCCTGA | 196 |
CREB1 | NM_204450.3 | F:GCACAGACCACAGATGGACA R:TTCAAGCACAGCCACTCGAT | 285 |
ACTA2 | NM_001031229.2 | F:CGGAACGTGGCTACTCCTTT R:CCAGGGCCACATAACACAGT | 84 |
CFTR | XM_015275972.3 | F:CAACGACTGGAACTGTCGGA R:AAGTTGCCAGCTCTCTGTCC | 103 |
COL3A1 | XM_025152154.2 | F:CCTTCGGAGAATGCTGTCCA R:CCCGGAAAGCCACTACCTC | 217 |
CYP1B1 | XM_040668785.1 | F:GTGCCTGTTACCATCCCACA R:CACGGTGTCCTTGGGAATGA | 75 |
ENTPD3 | NM_001321564.2 | F:TGTGATGTGAAAGGCCCTGG R:CAGGCACTCATCAAGGGGTT | 78 |
HSPG2 | XM_040688761.1 | F:CGGAGAGCAGCACCTACATC R:AGTGCATCTCTCCCCCATCT | 182 |
MC2R | NM_001031515.2 | F:CGTCGTGGGGACTTTGAGAA R:CTGCAATAGCGAGCAAGCTG | 97 |
NR4A3 | XM_040665827.1 | F:CACGTTTCTTGCTGAAGGGC R:GCTATACTGCGCTTGCACAC | 85 |
表 3
育成期能量限饲及转换为自由采食对20周龄蛋鸡体重、体重CV和体尺的影响"
项目 Item | 代谢能水平/(MJ·kg-1) ME level | SEM | P值P-value | ||||
12.34 | 11.11 | 9.87 | 代谢能 ME | 线性 Linear | 二次 Quadratic | ||
体重/g Body weight | 1 692.7a | 1 636.9b | 1 549.1c | 6.694 | < 0.001 | < 0.001 | 0.216 |
体重CV Body weight CV | 8.45a | 8.15a | 6.93b | 0.254 | 0.023 | 0.010 | 0.320 |
体斜长/cm Body slope length | 23.38 | 23.11 | 23.18 | 0.057 | 0.130 | 0.143 | 0.168 |
跖长/cm Shank length | 8.62b | 8.73a | 8.62b | 0.018 | 0.029 | 0.970 | 0.008 |
跖围/cm Shank circumference | 3.82 | 3.81 | 3.79 | 0.008 | 0.192 | 0.078 | 0.639 |
表 4
育成期能量限饲及转换为自由采食对6~20周龄蛋鸡生长性能的影响"
项目 Item | 代谢能水平/(MJ·kg-1) ME level | SEM | P值P-value | ||||
12.34 | 11.11 | 9.87 | 代谢能 ME | 线性 Linear | 二次 Quadratic | ||
平均日采食量/g ADFI | 71.0b | 71.5b | 72.9a | 0.255 | 0.001 | < 0.001 | 0.220 |
平均日代谢能摄入量/kJ ADMEI | 856.0a | 802.6b | 752.9c | 10.384 | < 0.001 | < 0.001 | 0.667 |
平均日增重/g ADG | 13.45a | 12.80b | 11.95c | 0.172 | < 0.001 | < 0.001 | 0.615 |
料重比/(g·g-1) F/G | 5.29c | 5.58b | 6.11a | 0.088 | < 0.001 | < 0.001 | 0.115 |
代谢能转化比/(kJ·g-1)MECR | 63.77 | 62.63 | 63.09 | 0.374 | 0.478 | 0.474 | 0.331 |
表 5
育成期能量限饲及转换为自由采食对20周龄蛋鸡血液生化指标的影响"
项目 Item | 代谢能水平/(MJ·kg-1) ME level | SEM | P值P-value | ||||
12.34 | 11.11 | 9.87 | 代谢能 ME | 线性 Linear | 二次 Quadratic | ||
葡萄糖GLU | 11.58 | 10.68 | 11.11 | 0.211 | 0.224 | 0.354 | 0.143 |
尿素氮UN | 1.00b | 1.18ab | 1.38a | 0.060 | 0.023 | 0.007 | 0.938 |
总胆固醇TC | 3.19 | 2.70 | 3.02 | 0.118 | 0.252 | 0.570 | 0.122 |
甘油三酯TG | 1.95a | 1.29b | 0.36c | 0.140 | 0.037 | 0.045 | 0.888 |
游离脂肪酸NEFA | 0.41 | 0.38 | 0.28 | 0.036 | 0.305 | 0.143 | 0.667 |
高密度脂蛋白胆固醇HDL-C | 1.74 | 1.94 | 2.27 | 0.105 | 0.111 | 0.041 | 0.744 |
低密度脂蛋白胆固醇LDL-C | 1.18a | 0.70ab | 0.60b | 0.111 | 0.026 | 0.029 | 0.368 |
表 6
育成期能量限饲及转换为自由采食对20周龄蛋鸡肝脂肪代谢相关生化指标的影响"
项目 Item | 代谢能水平/(MJ·kg-1) ME level | SEM | P值P-value | ||||
12.34 | 11.11 | 9.87 | 代谢能 ME | 线性 Linear | 二次 Quadratic | ||
总胆固醇TC | 1.64a | 1.57ab | 1.20b | 0.082 | 0.049 | 0.024 | 0.335 |
甘油三酯TG | 0.33 | 0.27 | 0.19 | 0.035 | 0.251 | 0.102 | 0.928 |
游离脂肪酸NEFA | 0.38a | 0.36a | 0.21b | 0.026 | 0.006 | 0.003 | 0.126 |
高密度脂蛋白胆固醇HDL-C | 1.66 | 1.71 | 1.69 | 0.116 | 0.989 | 0.935 | 0.904 |
低密度脂蛋白胆固醇LDL-C | 0.35 | 0.27 | 0.22 | 0.034 | 0.299 | 0.130 | 0.815 |
表 7
育成期能量限饲及转换为自由采食对20周龄蛋鸡生殖器官发育的影响"
项目 Item | 代谢能水平/(MJ·kg-1) ME level | SEM | P值P-value | ||||
12.34 | 11.11 | 9.87 | 代谢能 ME | 线性 Linear | 二次 Quadratic | ||
输卵管长度/cm Oviduct length | 27.30a | 17.45b | 9.47c | 2.979 | 0.038 | 0.012 | 0.865 |
排卵前卵泡数/个 Preovulatory follicle amount | 0.50 | 0.67 | 0.00 | 0.231 | 0.498 | 0.398 | 0.415 |
小黄卵泡数/个 Small yellow follicle amount | 6.83a | 3.33b | 0.33c | 1.133 | 0.035 | 0.017 | 0.907 |
大白卵泡数/个 Big white follicle amount | 6.00 | 3.50 | 5.67 | 0.898 | 0.495 | 0.883 | 0.247 |
输卵管重/g Oviduct weight | 12.35a | 6.92b | 1.25c | 2.205 | 0.017 | 0.042 | 0.979 |
排卵前卵泡重/g Preovulatory follicle weight | 0.48 | 1.64 | 0.00 | 0.549 | 0.482 | 0.731 | 0.253 |
小黄卵泡重/g Small yellow follicle weight | 0.56 | 0.37 | 0.02 | 0.119 | 0.170 | 0.067 | 0.755 |
大白卵泡重/g Big white follicle weight | 0.13 | 0.07 | 0.10 | 0.017 | 0.402 | 0.523 | 0.238 |
卵巢基质部重/g Ovary stroma weight | 0.83a | 0.80a | 0.58b | 0.069 | 0.037 | 0.046 | 0.550 |
输卵管长度体重比/(cm·kg-1) Oviduct length index | 16.92a | 11.07b | 6.36c | 1.829 | 0.041 | 0.016 | 0.869 |
输卵管指数/(g·kg-1) Oviduct index | 7.69a | 4.33b | 0.84c | 1.379 | 0.025 | 0.045 | 0.981 |
排卵前卵泡指数/(g·kg-1) Preovulatory follicle index | 0.30 | 1.02 | 0.00 | 0.342 | 0.482 | 0.731 | 0.254 |
小黄卵泡指数/(g·kg-1) Small yellow follicle index | 0.35a | 0.23b | 0.01c | 0.074 | 0.047 | 0.039 | 0.737 |
大白卵泡指数/(g·kg-1) Big white follicle index | 0.08 | 0.05 | 0.07 | 0.011 | 0.426 | 0.619 | 0.232 |
卵巢基质部指数/(g·kg-1) Ovary stroma index | 0.52a | 0.51a | 0.39b | 0.042 | 0.021 | 0.047 | 0.544 |
表 8
RNA-seq数据统计"
样本 Sample | 原始序列数/条 Raw reads number | 高质量序列数/条 Pure reads number | 原始碱基数/Gb Raw data | 高质量碱基数/Gb Pure data | Q20/% | Q30/% | GC/% | 核糖体序列/% rRNA reads |
ALF20W-1 | 63 859 332 | 63 636 472 | 9.58 | 9.51 | 97.63 | 93.44 | 48.11 | 0.19 |
ALF20W-2 | 92 460 618 | 92 101 230 | 13.87 | 13.75 | 97.30 | 92.71 | 48.71 | 0.37 |
ALF20W-3 | 37 802 582 | 37 651 168 | 5.67 | 5.62 | 97.03 | 92.14 | 49.17 | 0.19 |
ALF20W-4 | 42 243 418 | 42 090 532 | 6.34 | 6.28 | 97.37 | 92.81 | 48.60 | 0.28 |
ERF20W-1 | 60 891 036 | 60 673 650 | 9.13 | 9.05 | 97.35 | 92.83 | 48.43 | 0.16 |
ERF20W-2 | 46 317 658 | 46 153 394 | 6.95 | 6.89 | 97.43 | 92.96 | 48.67 | 0.15 |
ERF20W-3 | 46 672 378 | 46 502 908 | 7.00 | 6.94 | 97.47 | 93.11 | 48.63 | 0.18 |
ERF20W-4 | 64 495 606 | 64 242 094 | 9.67 | 9.59 | 97.29 | 92.69 | 48.20 | 0.37 |
表 9
基因组数据比对结果"
样本 Sample | 总序列 Total reads number | 未比对上序列 Unmapped reads | 唯一比对上序列 Unique mapped reads | 多基因组比对序列 Multiple mapped reads | 总比对上序列数 Mapped ratio |
ALF20W-1 | 63 517 830 | 3 361 967 (5.29%) | 58 990 763 (92.87%) | 1 165 100 (1.83%) | 60 155 863 (94.71%) |
ALF20W-2 | 91 759 636 | 5 136 652 (5.60%) | 84 820 999 (92.44%) | 1 801 985 (1.96%) | 86 622 984 (94.40%) |
ALF20W-3 | 37 578 262 | 2 340 504 (6.23%) | 34 524 204 (91.87%) | 713 554 (1.90%) | 35 237 758 (93.77%) |
ALF20W-4 | 41 974 054 | 2 278 319 (5.43%) | 38 878 496 (92.63%) | 817 239 (1.95%) | 39 695 735 (94.57%) |
ERF20W-1 | 60 578 952 | 3 123 001 (5.16%) | 56 348 235 (93.02%) | 1 107 716 (1.83%) | 57 455 951 (94.84%) |
ERF20W-2 | 46 082 288 | 2 389 789 (5.19%) | 42 839 541 (92.96%) | 852 958 (1.85%) | 43 692 499 (94.81%) |
ERF20W-3 | 46 419 322 | 2 640 960 (5.69%) | 42 933 637 (92.49%) | 844 725 (1.82%) | 43 778 362 (94.31%) |
ERF20W-4 | 64 007 116 | 3 674 188 (5.74%) | 59 187 477 (92.47%) | 1 145 451 (1.79%) | 60 332 928 (94.26%) |
表 10
与能量代谢、性成熟相关的信号通路及差异表达基因"
信号通路Signaling pathway | 基因Gene |
ECM受体相互作用 ECM-receptor interaction | THBS2、COL1A1、FN1、ITGA7、GP1BB、COL6A3、COL6A1、COL6A2、ITGA11、COL4A1、COL4A2、THBS1、LAMA4、LAMC1、TNC、LAMB1、ITGA8、HSPG2、COL1A2 |
松弛素信号通路 Relaxin signaling pathway | COL1A1、CREB3L1、RXFP1、COL4A1、COL4A2、NOS3、H-RAS、MMP2、ACTA2、COL1A2、COL3A1、tctex1d1-b |
脂肪细胞脂解的调节 Regulation of lipolysis in adipocyte | FABP4、PLIN1、MGLL、NPY1R、PTGS1、ABHD4 |
雌激素信号通路 Estrogen signaling pathway | KRT18、PGR、GRM1、CREB3L1、KRT40、KRT23、KRT13、KRT14、KRT1、NOS3、GNAQ、H-RAS、MMP2 |
催产素信号通路 Oxytocin signaling pathway | GUCY1A2、MYL6、CACNA1C、NOS3、PPP1R12A、MYL9、GNAQ、H-RAS、KCNJ4、CACNA2D1、CAMK2A、CACNB2、MYLK、CACNA1D |
GnRH信号通路 GnRH signaling pathway | EGR1、CACNA1C、GNAQ、H-RAS、MMP2、CAMK2A、CACNA1D |
类固醇激素生物合成 Steroid hormone biosynthesis | StAR、DHRS11、CYP3A4、HSD17B3、CYP1B1 |
醛固酮的合成和分泌 Aldosterone synthesis and secretion | ATP1B4、CREB3L1、CACNA1C、MC2R、GNAQ、CAMK2A、CACNA1D |
促性腺激素释放激素分泌 GnRH secretion | CACNA1C、GNAQ、H-RAS、TRPC4、CACNA1D |
卵巢类固醇生成 Ovarian steroidogenesis | StAR、IGF-I、CYP1B1 |
孕酮介导的卵母细胞成熟 Progesterone-mediated oocyte maturation | PGR、IGF-I、MOS、CCNA1、CCNB1 |
催乳素信号通路 Prolactin signaling pathway | JAK2、H-RAS、PRLR |
脂肪的消化和吸收 Fat digestion and absorption | DGAT |
卵母细胞减数分裂 Oocyte meiosis | CCNE1、PGR、IGF-I、MOS、CAMK2A、CCNB1 |
脂肪酸生物合成 Fatty acid biosynthesis | HTD2 |
脂肪酸代谢 Fatty acid metabolism | HTD2、SCD5、SCD |
脂肪细胞因子信号通路 Adipocytokine signaling pathway | JAK2、LEPR |
cAMP信号通路 cAMP signaling pathway | StAR、CREB1、MC2R等 |
1 | BESTMAN M , RUIS M A W , HEIJMANS J , et al. Poultry signals: a practical guide for bird focused poultry farming[M]. Zutphen: Roodbont Publishers, 2012: 42- 55. |
2 |
FRIKHA M , SAFAA H M , JIMÉNEZ-MORENO E , et al. Influence of energy concentration and feed form of the diet on growth performance and digestive traits of brown egg-laying pullets from 1 to 120 days of age[J]. Anim Feed Sci Technol, 2009, 153 (3-4): 292- 302.
doi: 10.1016/j.anifeedsci.2009.06.012 |
3 |
PAN Y E , LIU Z C , CHANG C J , et al. Feed restriction ameliorates metabolic dysregulation and improves reproductive performance of meat-type country chickens[J]. Anim Reprod Sci, 2014, 151 (3-4): 229- 236.
doi: 10.1016/j.anireprosci.2014.10.003 |
4 |
LU J , WANG Q , WANG K H , et al. Effects of energy restriction during growing phase on the productive performance of Hyline Brown laying hens aged 6 to 72 wk[J]. Poult Sci, 2023, 102 (10): 102942.
doi: 10.1016/j.psj.2023.102942 |
5 |
卢建, 王克华, 杨晓东, 等. 育成期饲粮代谢能水平对开产时如皋黄鸡生长发育的影响[J]. 畜牧兽医学报, 2022, 53 (7): 2215- 2227.
doi: 10.11843/j.issn.0366-6964.2022.07.018 |
LU J , WANG K H , YANG X D , et al. Effects of dietary metabolizable energy levels during rearing on growth and development of Rugao yellow chicken at the initiation of the laying period[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (7): 2215- 2227.
doi: 10.11843/j.issn.0366-6964.2022.07.018 |
|
6 |
HEIJMANS J , DUIJSTER M , GERRITS W J J , et al. Impact of growth curve and dietary energy-to-protein ratio on productive performance of broiler breeders[J]. Poult Sci, 2021, 100 (7): 101131.
doi: 10.1016/j.psj.2021.101131 |
7 |
ZUKIWSKY N M , AFROUZIYEH M , ROBINSON F E , et al. Feeding, feed-seeking behavior, and reproductive performance of broiler breeders under conditions of relaxed feed restriction[J]. Poult Sci, 2021, 100 (1): 119- 128.
doi: 10.1016/j.psj.2020.09.081 |
8 |
LU J , LI Y F , QU L , et al. Effects of energy-restricted feeding during rearing on sexual maturation and reproductive performance of Rugao layer breeders[J]. Poult Sci, 2021, 100 (8): 101225.
doi: 10.1016/j.psj.2021.101225 |
9 |
VAN DER KLEIN S A S , SILVA F A , KWAKKEL R P , et al. The effect of quantitative feed restriction on allometric growth in broilers[J]. Poult Sci, 2017, 96 (1): 118- 126.
doi: 10.3382/ps/pew187 |
10 |
BUTZEN F M , RIBEIRO A M L , VIEIRA M M , et al. Early feed restriction in broilers.I-Performance, body fraction weights, and meat quality[J]. J Appl Poult Res, 2013, 22 (2): 251- 259.
doi: 10.3382/japr.2012-00639 |
11 |
URDANETA-RINCON M , LEESON S . Quantitative and qualitative feed restriction on growth characteristics of male broiler chickens[J]. Poult Sci, 2002, 81 (5): 679- 688.
doi: 10.1093/ps/81.5.679 |
12 | NOVEL D J , NGAMBI J W , NORRIS D , et al. Effect of different feed restriction regimes during the starter stage on productivity and carcass characteristics of male and female Ross 308 broiler chickens[J]. J Poult Sci, 2009, 8 (1): 35- 39. |
13 |
张蒙, 李强, 刘平, 等. 0~4周龄大午粉1号商品代蛋雏鸡饲粮中适宜的代谢能和粗蛋白质水平[J]. 动物营养学报, 2019, 31 (2): 652- 661.
doi: 10.3969/j.issn.1006-267x.2019.02.021 |
ZHANG M , LI Q , LIU P , et al. Optimal dietary metabolizable energy and crude protein levels for Dawufen No.1 commercial layer chicks FROM 0 TO 4 weeks of age[J]. Chinese Journal of Animal Nutrition, 2019, 31 (2): 652- 661.
doi: 10.3969/j.issn.1006-267x.2019.02.021 |
|
14 | 王鹏飞, 宋明杰, 张倩雲, 等. 凌云乌鸡0~6周龄对代谢能、粗蛋白质和苯丙氨酸+酪氨酸适宜需要量的研究[J]. 饲料工业, 2019, 40 (23): 29- 35. |
WANG P F , SONG M J , ZHANG Q Y , et al. The study on appropriate requirements of ME, protein and Phe+Tyr of Lingyun chicken in the age of 0~6 weeks[J]. Feed Industry, 2019, 40 (23): 29- 35. | |
15 |
卢建, 王克华, 杨晓东, 等. 饲粮代谢能水平对3~8周龄如皋黄鸡生长发育和血清生化指标的影响[J]. 动物营养学报, 2022, 34 (4): 2301- 2313.
doi: 10.3969/j.issn.1006-267x.2022.04.026 |
LU J , WANG K H , YANG X D , et al. Effects of dietary metabolic energy level on growth and development and serum biochemical indexes of Rugao yellow chickens aged from 3 to 8 weeks[J]. Chinese Journal of Animal Nutrition, 2022, 34 (4): 2301- 2313.
doi: 10.3969/j.issn.1006-267x.2022.04.026 |
|
16 |
LU J , QU L , LI Y F , et al. Effects of energy-restricted feeding during rearing on the performance, uniformity, and development of Rugao layer breeders at the initiation of the laying period[J]. Animals, 2021, 11 (8): 2222.
doi: 10.3390/ani11082222 |
17 |
FULLER H L , CHANEY L W . Effect of delayed maturity of White Leghorn chickens on subsequent productivity[J]. Poult Sci, 1974, 53 (4): 1348- 1355.
doi: 10.3382/ps.0531348 |
18 |
BRUGGEMAN V , ONAGBESAN O , D'HONDT E , et al. Effects of timing and duration of feed restriction during rearing on reproductive characteristics in broiler breeder females[J]. Poult Sci, 1999, 78 (10): 1424- 1434.
doi: 10.1093/ps/78.10.1424 |
19 |
BÉDÉCARRATS G Y . Control of the reproductive axis: balancing act between stimulatory and inhibitory input[J]. Poult Sci, 2015, 94 (4): 810- 815.
doi: 10.3382/ps/peu042 |
20 |
RENEMA R A , ROBINSON F E , ZUIDHOF M J . Reproductive efficiency and metabolism of female broiler breeders as affected by genotype, feed allocation, and age at photostimulation.2. Sexual maturation[J]. Poult Sci, 2007, 86 (10): 2267- 2277.
doi: 10.1093/ps/86.10.2267 |
21 |
YUAN X H , YANG C R , WANG X N , et al. Progesterone maintains the status of granulosa cells and slows follicle development partly through PGRMC1[J]. J Cell Physiol, 2019, 234 (1): 709- 720.
doi: 10.1002/jcp.26869 |
22 | 李永峰. 育成期能量摄入量对苏禽绿壳蛋鸡母本早期蛋用性能的影响[D]. 北京: 中国农业科学院, 2017. |
LI Y F. The impact of energy intake during growing period on early laying performance of Suqin green eggshell layer female parent[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese) | |
23 |
LEE A K A , VOLENTINE B K K , BAHR A J M . Two steroidogenic pathways present in the chicken ovary: theca layer prefers△5 pathway and granulosa layer prefers△4 pathway[J]. Domest Anim Endocrinol, 1998, 15 (1): 1- 8.
doi: 10.1016/S0739-7240(97)00057-X |
24 |
KATO M , SHIMADA K , SAITO N , et al. Expression of P45017α-hydroxylase and P450aromatase genes in isolated granulosa, theca interna, and theca externa layers of chicken ovarian follicles during follicular growth[J]. Biol Reprod, 1995, 52 (2): 405- 410.
doi: 10.1095/biolreprod52.2.405 |
25 |
BASTOS N M , GOULART R S , BAMBIL D B , et al. High body energy reserve influences extracellular vesicles miRNA contents within the ovarian follicle[J]. PLoS One, 2023, 18 (1): e0280195.
doi: 10.1371/journal.pone.0280195 |
26 |
CHENG Y , ZHU H , REN J , et al. Follicle-stimulating hormone orchestrates glucose-stimulated insulin secretion of pancreatic islets[J]. Nat Commu, 2023, 14 (1): 6991.
doi: 10.1038/s41467-023-42801-6 |
27 |
CASARINI L , CRÉPIEUX P . Molecular mechanisms of action of FSH[J]. Front Endocrinol, 2019, 10, 305.
doi: 10.3389/fendo.2019.00305 |
28 |
KOO S H , FLECHNER L , QI L , et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism[J]. Nature, 2005, 437 (7062): 1109- 1114.
doi: 10.1038/nature03967 |
29 |
ALTAREJOS J Y , MONTMINY M . CREB and the CRTC co-activators: sensors for hormonal and metabolic signals[J]. Nat Rev Mol Cell Biol, 2011, 12 (3): 141- 151.
doi: 10.1038/nrm3072 |
30 |
WANG Y G , VERA L , FISCHER W H , et al. The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis[J]. Nature, 2009, 460 (7254): 534- 537.
doi: 10.1038/nature08111 |
31 |
WANG Y G , LI G , GOODE J , et al. Inositol-1, 4, 5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes[J]. Nature, 2012, 485 (7396): 128- 132.
doi: 10.1038/nature10988 |
32 |
HIORT O , HOLTERHUS P M , WERNER R , et al. Homozygous disruption of P450 side-chain cleavage (CYP11A1) is associated with prematurity, complete 46, XY sex reversal, and severe adrenal failure[J]. J Clin Endocrinol Metab, 2005, 90 (1): 538- 541.
doi: 10.1210/jc.2004-1059 |
33 |
HAN J B , LI E W , CHEN L Q , et al. The CREB coactivator CRTC2 controls hepatic lipid metabolism by regulating SREBP1[J]. Nature, 2015, 524 (7564): 243- 246.
doi: 10.1038/nature14557 |
34 |
KUMAR S , KANG H , PARK E , et al. The expression of CKLFSF2B is regulated by GATA1 and CREB in the Leydig cells, which modulates testicular steroidogenesis[J]. Biochim Biophys Acta Gene Regul Mech, 2018, 1861 (12): 1063- 1075.
doi: 10.1016/j.bbagrm.2018.10.002 |
35 |
CORMIER M , GHOUILI F , ROUMAUD P , et al. Influences of flavones on cell viability and cAMP-dependent steroidogenic gene regulation in MA-10 Leydig cells[J]. Cell Biol Toxicol, 2018, 34 (1): 23- 38.
doi: 10.1007/s10565-017-9395-8 |
36 |
CHAUBE R , RAWAT A , INBARAJ R M , et al. Cloning and characterization of estrogen hydroxylase (cyp1a1 and cyp1b1) genes in the stinging catfish Heteropneustes fossilis and induction of mRNA expression during final oocyte maturation[J]. Comp Biochem Physiol A Mol Integr Physiol, 2021, 253, 110863.
doi: 10.1016/j.cbpa.2020.110863 |
37 |
ZHU M Q , WANG D , ZOU K X , et al. Insulin-like growth factor-1 regulates follicle selection of hens by promoting proliferation and inhibiting apoptosis of granulosa cells in prehierarchical follicles in vitro[J]. Anim Reprod Sci, 2022, 247, 107091.
doi: 10.1016/j.anireprosci.2022.107091 |
38 |
ETCHEVERS L , BELOTTI E M , DÍAZ P U , et al. MC2R/MRAP2 activation could affect bovine ovarian steroidogenesis potential after ACTH treatment[J]. Theriogenology, 2021, 174, 102- 113.
doi: 10.1016/j.theriogenology.2021.08.020 |
39 |
BETZ M J , HATIBOGLU N , MAURACHER B , et al. Mc2 receptor knockdown modulates differentiation and lipid composition in adipocytes[J]. Horm Metab Res, 2012, 44 (9): 670- 675.
doi: 10.1055/s-0032-1314854 |
40 |
GOOSSENS K , TESFAYE D , RINGS F , et al. Suppression of keratin 18 gene expression in bovine blastocysts by RNA interference[J]. Reprod Fertil Dev, 2010, 22 (2): 395- 404.
doi: 10.1071/RD09080 |
41 |
CHERMUŁA B , HUTCHINGS G , KRANC W , et al. Expression profile of new gene markers and signaling pathways involved in immunological processes in human cumulus-oophorus cells[J]. Genes (Basel), 2021, 12 (9): 1369.
doi: 10.3390/genes12091369 |
42 | 王震, 马铁伟, 邓凯平, 等. 能量限饲和补偿对湖羊生长性能及相关激素和肉品质的影响[J]. 南京农业大学学报, 2018, 41 (4): 722- 729. |
WANG Z , MA T W , DENG K P , et al. Effects of energy restriction and compensation on growth performance, and related hormones and meat quality of Hu sheep[J]. Journal of Nanjing Agricultural University, 2018, 41 (4): 722- 729. | |
43 | 陶乐凯, 高何璇, 蔡永强, 等. 甘加型藏羊发情周期血浆孕酮动态变化及HPO轴PGR的表达[J]. 中国农业大学学报, 2023, 28 (9): 128- 135. |
TAO L K , GAO H X , CAI Y Q , et al. Dynamic changes of plasma progesterone and expression of HPO axis PGR in Ganjia Tibetan sheep during estrus cycle[J]. Journal of China Agricultural University, 2023, 28 (9): 128- 135. |
[1] | 何雨, 王翔宇, 狄冉, 储明星, 梁琛. BMP4/SMAD4通过下调GJA1基因表达影响绵羊卵巢颗粒间隙连接活性[J]. 畜牧兽医学报, 2025, 56(2): 679-688. |
[2] | 王磊, 白少成, 王森, 鲍志远, 蔡佳炜, 刘燕, 赵博昊, 吴信生, 陈阳. SRD5A2对兔颗粒细胞增殖、凋亡和类固醇激素合成相关基因表达的影响[J]. 畜牧兽医学报, 2025, 56(1): 259-268. |
[3] | 王贝贝, 武书庚, 张海华, 张海军, 郝二英, 邱凯. 饲粮添加大豆异黄酮对产蛋后期蛋鸡生产的影响[J]. 畜牧兽医学报, 2025, 56(1): 295-306. |
[4] | 章琦, 郭江鹏, 倪爱心, 杜洪峰, 陈继兰, 孙研研. 蛋鸡啄羽行为的影响因素与遗传调控基础研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3745-3756. |
[5] | 于秀菊, 胡燕姣, 刘佳悦, 王海东, 朱芷葳, 范阔海, 王蓉蓉, 段承昊, 石佳炜, 杨丽华. 一株鸡源唾液乳杆菌的分离鉴定及其对育雏早期蛋鸡肠道健康的影响[J]. 畜牧兽医学报, 2024, 55(9): 4161-4171. |
[6] | 孟亚轩, 刘彦, 王晶, 陈国顺, 冯涛. 氧化应激对母畜卵巢功能影响的研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2825-2835. |
[7] | 王晓旭, 陈艳青, 张家麒, 王野, 王蕊, 于翰林, 杨凯淇, 包军, 张润祥. 爪趾皮肤炎对富集笼养蛋鸡生产性能、蛋品质、行为和免疫的影响[J]. 畜牧兽医学报, 2024, 55(6): 2680-2691. |
[8] | 张琰, 吴梅金, 周家豪, 刁洪秀. 阿霉素处理后对犬乳腺肿瘤细胞系CHMp lncRNAs差异表达的影响[J]. 畜牧兽医学报, 2024, 55(6): 2716-2726. |
[9] | 李铁, 齐梦迪, 张克英, 王建萍, 白世平, 曾秋凤, 彭焕伟, 玄月, 吕莉, 丁雪梅. 育雏育成期饲粮添加益生菌对蛋鸡生长性能、血清指标、肠道健康及后续生产性能的影响[J]. 畜牧兽医学报, 2024, 55(3): 1062-1076. |
[10] | 片慧芳, 杜旭彬, 李妍, 张雨辰, 何惠, 虞德兵. 甜菜碱对产蛋后期蛋鸡生产性能、蛋品质和抗氧化能力的影响[J]. 畜牧兽医学报, 2024, 55(3): 1085-1094. |
[11] | 刘阳光, 章会斌, 文浩宇, 谢帆, 赵世明, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 猪卵泡液外泌体处理卵巢颗粒细胞的SNP/Indel筛选分析[J]. 畜牧兽医学报, 2024, 55(2): 576-586. |
[12] | 高娅薇, 彭弟, 孙朝阳, 晏子越, 崔凯, 马泽芳. 基于转录组数据挖掘外源褪黑激素影响水貂卵巢发育的分子机制[J]. 畜牧兽医学报, 2024, 55(2): 607-618. |
[13] | 蒋婷, 李文东, 李兴起, 黄雨, 王启贵, 王海威, 杨朝武, 刘凌斌. 转录组和蛋白组筛选就巢鸡卵巢发育候选基因及其调控网络构建[J]. 畜牧兽医学报, 2024, 55(11): 4950-4967. |
[14] | 张唯玉, 程景, 许家宝, 王静, 陶薪燕, 李博, 张亚伟, 张丹丹, 张宁, 郝振凯, 周琛帛, 张元庆. 晋南牛SREBP1基因调控前体脂肪细胞分化的研究[J]. 畜牧兽医学报, 2024, 55(11): 5003-5017. |
[15] | 卢建, 居小军, 王星果, 马猛, 王强, 李永峰, 窦套存, 胡玉萍, 郭军, 邵丹, 童海兵, 曲亮. 育成期代谢能摄入量对蛋鸡生殖器官发育、激素水平和卵巢基因表达的影响[J]. 畜牧兽医学报, 2024, 55(11): 5085-5100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||