畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (2): 666-678.doi: 10.11843/j.issn.0366-6964.2025.02.018
王涛1(), 王麒2, 董娇娇1, 王德贺1, 李兰会1,*(
)
收稿日期:
2024-08-09
出版日期:
2025-02-23
发布日期:
2025-02-26
通讯作者:
李兰会
E-mail:1905580765@qq.com;lanhuili13@163.com
作者简介:
王涛(1999-),女,满族,河北承德人,硕士,主要从事家禽遗传育种研究,E-mail: 1905580765@qq.com
基金资助:
WANG Tao1(), WANG Qi2, DONG Jiaojiao1, WANG Dehe1, LI Lanhui1,*(
)
Received:
2024-08-09
Online:
2025-02-23
Published:
2025-02-26
Contact:
LI Lanhui
E-mail:1905580765@qq.com;lanhuili13@163.com
摘要:
旨在揭示鸡催乳素受体基因(PRLR)和精子鞭毛蛋白2基因(SPEF2)在鸡胚性腺的双向转录调控特征。采集4个胚龄(E12.5、E16.5、E18.5、E21.5)180只大午金凤鸡胚左右侧性腺,每3个样品混池组成1个重复,除E21.5母鸡右侧卵巢完全退化,其他同胚龄同性别同侧性腺共14分组,利用RT-qPCR检测PRLR和SPEF2的表达变化。利用cDNA末端快速扩增技术(5'RACE)和双荧光素酶报告基因系统(DLRA)分别鉴定PRLR和SPEF2的转录起始位点(TSS)及其核心启动子区,利用亚硫酸氢盐测序技术(BSP)检测启动子区甲基化水平。结果发现,PRLR在E12.5~E21.5睾丸中的表达显著高于卵巢(P<0.05),而SPEF2在E18.5~E21.5卵巢中的表达显著高于睾丸(P<0.05)。PRLR的10个TSS中5个具有启动子活性,SPEF2的3个TSS全部具有启动子活性。PRLR的PA1启动子和SPEF2的SC启动子活性最高(P<0.05),进一步检测发现二者的最高活性区域分别是长565 bp和478 bp的反向互补双向启动子区。478 bp的双向启动活性显著高于565 bp(P<0.05),且二者对PRLR的启动活性均显著高于SPEF2(P<0.05),这与E12.5~E21.5鸡胚性腺中PRLR的转录表达显著高于SPEF2(P<0.05)一致。E21.5卵巢双向启动子区443 bp的CpG岛甲基化水平显著高于睾丸(P<0.05),与睾丸PRLR表达显著高于卵巢一致;位于SPEF2第1内含子区159 bp的CpG岛甲基化水平睾丸显著高于卵巢(P<0.05),与睾丸SPEF2的表达显著低于卵巢一致。综上,478 bp的双向核心启动子区调控鸡胚性腺中PRLR和SPEF2的转录表达,并且启动PRLR的转录活性高于SPEF2,PRLR的转录表达水平高于SPEF2;甲基化参与双向启动子调控性腺PRLR的转录表达,E21.5卵巢甲基化水平高,PRLR在卵巢表达低于睾丸。这些研究结果为揭示PRLR和SPEF2在鸡胚性腺发育中的转录调控机制研究提供理论依据。
中图分类号:
王涛, 王麒, 董娇娇, 王德贺, 李兰会. 双向启动子调控鸡胚性腺PRLR和SPEF2的转录表达[J]. 畜牧兽医学报, 2025, 56(2): 666-678.
WANG Tao, WANG Qi, DONG Jiaojiao, WANG Dehe, LI Lanhui. Bidirectional Promoter Regulate Transcriptional Expression of PRLR and SPEF2 in Chicken Embryonic Gonads[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 666-678.
表 1
试验所用引物"
引物名称 Primer | 引物序列(5′→3′) Primer sequence | 用途 Usage |
PRLR-5′RACE-1 | gattaccgccaagcttCCAGGGTCTAACGTACAGCGGACCTGAA | RACE |
PRLR-5′RACE-2 | gattaccgccaagcttTTATCTTTGGTCCTGGAACTGGCGGTAG | |
SPEF2-5′RACE-1 | gattaccgccaagcttACAGCAATCCTCCGCTCCTGCTGAGA | RACE |
SPEF2-5′RACE-2 | gattaccgccaagcttCAGTTGGGCACCATTCCCCTGTCATA | |
pGL3-PA1 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$TGTGACATGAGTGTGTCAGT | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CTGGGGAACGATGTAGACCT | ||
pGL3-PA2 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$CACACATCAAATCGCACAACGG | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$AGTGCAGAACACAGACATCTTTC | ||
pGL3-PC1 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$CCAGTACTTCCTTGATTCGCCT | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$TGGTATTGAGAAGTATGTCGACCC | ||
pGL3-PB5 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$CCTTCCGTGTGTTTACCTGACT | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CAAGGTCCATGCCAAATGAGAG | ||
pGL3-PC2 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$GGTAGAGGGTTAAGCTGAGGC | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$TCAATCAGACCTTCAGGAACCC | ||
pGL3-PA10 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$GTAAGGGTTCCTGAAGGTCTGATT | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$GTGTTGTGGCTTCTCCTCTGTC | ||
pGL3-PA4 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$AAGCCCATCCTATGAGCAGC | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCAGCACATTTTACACAGAAACAC | ||
pGL3-PB2 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$ATGGAAGAACTCAGGCGTCA | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$ACCATTCTTGTTCAGGCAGTATCT | ||
pGL3-SDA | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$CTGGGGAACGATGTAGACCT | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$TGTGACATGAGTGTGTCAGT | ||
pGL3-SA | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$AGTGCAGAACACAGACATCTTTC | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CACACATCAAATCGCACAACGG | ||
pGL3-SB | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$ACACGAACGCCTTACACAAGA | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$GGAACCACTTCCCCATTCCA | ||
pGL3-SC | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$CCTAAGAGTCCCCTGCGGTG | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCCACGCTCCGGGAAAGTT | ||
PRLR-P1-865 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$CTGTGGAAAGTCGCTCACACG | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$ACAGCCACCTGTAGTGAGGA | ||
PRLR-P2-713 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$TACCAAGAGCGACGGAGCCT | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$ACAGCCACCTGTAGTGAGGA | ||
PRLR-P3-565 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$CTCAGACTCGCCGCATCCT | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$ACAGCCACCTGTAGTGAGGA | ||
PRLR-P4-345 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$GCATGCGCAAAGGAGAGGA | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$ACAGCCACCTGTAGTGAGGA | ||
SPEF2-P1-2178 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$AGTGCAGAACACAGACATCTTTC | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCCACGCTCCGGGAAAGTT | ||
SPEF2-P2-1852 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$TCAAGGTCAGAGGTTATACGGAA | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCCACGCTCCGGGAAAGTT | ||
SPEF2-P3-1684 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$ACACTCAGATGGCAGACACTC | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCCACGCTCCGGGAAAGTT | ||
SPEF2-P4-1428 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$GGCAACTCAATAACTCGCCC | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCCACGCTCCGGGAAAGTT | ||
SPEF2-P5-1142 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$CTGGGGAACGATGTAGACCT | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCCACGCTCCGGGAAAGTT | ||
SPEF2-P6-931 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$TTCTGGCACACGAACGCCTT | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCCACGCTCCGGGAAAGTT | ||
SPEF2-P7-703 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$CCTAAGAGTCCCCTGCGGTG | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCCACGCTCCGGGAAAGTT | ||
SPEF2-P8-478 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$ATGACAGCCACCTGTAGTGAGG | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCCACGCTCCGGGAAAGTT | ||
SPEF2-P9-205 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$CATGCGCGGCCCTCTC | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCCACGCTCCGGGAAAGTT | ||
PRLR | TGGTGGAAGATGAAGAAGAGCAT | RT-qPCR |
AGACCTGTTTTGTTTGACCTGTG | ||
SPEF2 | GCTGCCTGTGCTGTAGTTTC | RT-qPCR |
AAGAGAAGCGGAGGACACTT | ||
β-actin | CTGTGCCCATCTATGAAGGCTA | RT-qPCR |
ATTTCTCTCTCGGCTGTGGTG | ||
CpG-PRLR | TTTTGTTATGTGTTGTAGGTTTTTAAGT | BSP |
TCCAAAAATTAAAAAAATTTTAATAAATTT | ||
CpG-PRLR-1 | TGAGGAAAATTAATTTTATTTTTGAAAG | BSP |
AACAACCACCTATAATAAAAACCCC | ||
CpG-PRLR-2 | TTTTTGTTATTTTTTGAGGTAG | BSP |
CCACCTATAATAAAAACCCCC | ||
CpG-SPEF2 | GGTTTTTTAGTTTAAGAGTTTTTTG | BSP |
ACTTACTACTCCCTCTATCAACCTC |
1 |
YANG M Q , KOEHLY L M , ELNITSKI L L . Comprehensive annotation of bidirectional promoters identifies co-regulation among breast and ovarian cancer genes[J]. PLoS Comput Biol, 2007, 3 (4): e72.
doi: 10.1371/journal.pcbi.0030072 |
2 | 曹煜, 余心宇, 刘秀霞, 等. 双向启动子探针载体的构建及其在谷氨酸棒杆菌中的应用[J]. 农业生物技术学报, 2023, 31 (2): 425- 435. |
CAO Y , YU X Y , LIU X X , et al. Construction of bidirectional promoter probe vector and its application in Corynebacterium glutamicum[J]. Journal of Agricultural Biotechnology, 2023, 31 (2): 425- 435. | |
3 |
WARMAN E A , FORREST D , GUEST T , et al. Widespread divergent transcription from bacterial and archaeal promoters is a consequence of DNA-sequence symmetry[J]. Nat Microbiol, 2021, 6 (6): 746- 756.
doi: 10.1038/s41564-021-00898-9 |
4 | JODLBAUER J , RIEDER L , GLIEDER A , et al. Bidirectional promoter libraries enable the balanced co-expression of two target genes in E. coli[J]. Methods Mol Biol, 2023, 2617, 75- 86. |
5 |
POWERS E N , CHAN C , DORON-MANDEL E , et al. Bidirectional promoter activity from expression cassettes can drive off-target repression of neighboring gene translation[J]. eLife, 2022, 11, e81086.
doi: 10.7554/eLife.81086 |
6 |
WU X X , LI F Z , YANG R F , et al. Identification of a bidirectional promoter from Trichoderma reesei and its application in dual gene expression[J]. J Fungi (Basel), 2022, 8 (10): 1059.
doi: 10.3390/jof8101059 |
7 |
PERALTA-ALVAREZ C A , NÚÑEZ-MARTÍNEZ H N , CERECEDO-CASTILLO Á J , et al. A bidirectional non-coding RNA promoter mediates long-range gene expression regulation[J]. Genes (Basel), 2024, 15 (5): 549.
doi: 10.3390/genes15050549 |
8 |
BARGER C J , CHEE L , ALBAHRANI M , et al. Co-regulation and function of FOXM1/RHNO1 bidirectional genes in cancer[J]. eLife, 2021, 10, e55070.
doi: 10.7554/eLife.55070 |
9 |
KOVINA A P , PETROVA N V , KOMKOV D S , et al. Regulatory systems of chicken alpha-globin gene domain suppress bidirectional transcription[J]. Biochim Biophys Acta Gene Regul Mech, 2022, 1865 (5): 194850.
doi: 10.1016/j.bbagrm.2022.194850 |
10 |
CHAHAR N , DANGWAL M , DAS S . Complex origin, evolution, and diversification of non-canonically organized OVATE-OFP and OVATE-Like OFP gene pair across Embryophyta[J]. Gene, 2023, 883, 147685.
doi: 10.1016/j.gene.2023.147685 |
11 |
LIN S D , LUO W , JIANG M Y , et al. Chicken CCDC152 shares an NFYB-regulated bidirectional promoter with a growth hormone receptor antisense transcript and inhibits cells proliferation and migration[J]. Oncotarget, 2017, 8 (48): 84039- 84053.
doi: 10.18632/oncotarget.21091 |
12 |
BERNARD V , YOUNG J , BINART N . Prolactin- a pleiotropic factor in health and disease[J]. Nat Rev Endocrinol, 2019, 15 (6): 356- 365.
doi: 10.1038/s41574-019-0194-6 |
13 |
SWEETT H , FONSECA P A S , SUÁREZ-VEGA A , et al. Genome-wide association study to identify genomic regions and positional candidate genes associated with male fertility in beef cattle[J]. Sci Rep, 2020, 10 (1): 20102.
doi: 10.1038/s41598-020-75758-3 |
14 |
洪坤月, 汪峰, 虞德兵, 等. 太湖鸡PRL、PRLR和FSHβ基因多态与前期产蛋性状关系研究[J]. 西北农业学报, 2007, 16 (5): 11- 14.
doi: 10.3969/j.issn.1004-1389.2007.05.003 |
HONG K Y , WANG F , YU D B , et al. Polymorphisms in Taihu chicken of PRL, PRLR and FSHβ genes and association with prophase egg production[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2007, 16 (5): 11- 14.
doi: 10.3969/j.issn.1004-1389.2007.05.003 |
|
15 |
LÜ X Q , HAN J R , LIU X F , et al. The LTR of endogenous retrovirus EV21 retains promoter activity and exhibits tissue specific transcription in chicken[J]. Chin Sci Bull, 2009, 54 (24): 4664- 4670.
doi: 10.1007/s11434-009-0547-y |
16 |
LU W Q , LI Y , MENG L L , et al. Novel SPEF2 variants cause male infertility and likely primary ciliary dyskinesia[J]. J Assist Reprod Genet, 2024, 41 (6): 1485- 1498.
doi: 10.1007/s10815-024-03106-9 |
17 |
KAVARTHAPU R , ANBAZHAGAN R , DUFAU M L . Crosstalk between PRLR and EGFR/HER2 signaling pathways in breast cancer[J]. Cancers (Basel), 2021, 13 (18): 4685.
doi: 10.3390/cancers13184685 |
18 |
NIE H Z , HUANG P Q , JIANG S H , et al. The short isoform of PRLR suppresses the pentose phosphate pathway and nucleotide synthesis through the NEK9-Hippo axis in pancreatic cancer[J]. Theranostics, 2021, 11 (8): 3898- 3915.
doi: 10.7150/thno.51712 |
19 |
TELLERIA C M , PARMER T G , ZHONG L , et al. The different forms of the prolactin receptor in the rat corpus luteum: developmental expression and hormonal regulation in pregnancy[J]. Endocrinology, 1997, 138 (11): 4812- 4820.
doi: 10.1210/endo.138.11.5479 |
20 |
XUE H L , XU J H , WU M , et al. Identification and sequence analysis of prolactin receptor and its differential expression profile at various developmental stages in striped hamsters[J]. Braz J Med Biol Res, 2021, 54 (5): e10274.
doi: 10.1590/1414-431x202010274 |
21 |
FARRAR V S , HARRIS R M , AUSTIN S H , et al. Prolactin and prolactin receptor expression in the HPG axis and crop during parental care in both sexes of a biparental bird (Columba livia)[J]. Gen Comp Endocrinol, 2022, 315, 113940.
doi: 10.1016/j.ygcen.2021.113940 |
22 |
LA Y , MA F L , MA X M , et al. Different expression of LHR, PRLR, GH and IGF1 during testicular development of yak[J]. Reprod Domest Anim, 2022, 57 (2): 221- 227.
doi: 10.1111/rda.14044 |
23 |
SIRONEN A , FISCHER D , LAIHO A , et al. A recent L1 insertion within SPEF2 gene is associated with changes in PRLR expression in sow reproductive organs[J]. Anim Genet, 2014, 45 (4): 500- 507.
doi: 10.1111/age.12153 |
24 |
GUO F , YANG B , JU Z H , et al. Alternative splicing, promoter methylation, and functional SNPs of sperm flagella 2 gene in testis and mature spermatozoa of Holstein bulls[J]. Reproduction, 2014, 147 (2): 241- 252.
doi: 10.1530/REP-13-0343 |
25 |
ZHANG X A , LI J B , WANG X Q , et al. ATAC-seq and RNA-seq analysis unravel the mechanism of sex differentiation and infertility in sex reversal chicken[J]. Epigenetics Chromatin, 2023, 16 (1): 2.
doi: 10.1186/s13072-022-00476-1 |
26 |
PAPATHEODOROU I , FONSECA N A , KEAYS M , et al. Expression Atlas: gene and protein expression across multiple studies and organisms[J]. Nucleic Acids Res, 2018, 46 (D1): D246- D251.
doi: 10.1093/nar/gkx1158 |
27 |
SIRONEN A , UIMARI P , ISO-TOURU T , et al. L1 insertion within SPEF2 gene is associated with increased litter size in the Finnish Yorkshire population[J]. J Anim Breed Genet, 2012, 129 (2): 92- 97.
doi: 10.1111/j.1439-0388.2011.00977.x |
28 |
TAN J L , MAJOR A T , SMITH C A . Mini review: Asymmetric Müllerian duct development in the chicken embryo[J]. Front Cell Dev Biol, 2024, 12, 1347711.
doi: 10.3389/fcell.2024.1347711 |
29 | 白少川, 李楠, 王德贺, 等. 慢羽鸡PRLR和SPEF2基因连接方式和融合基因双向转录研究[J]. 河北农业大学学报, 2021, 44 (3): 85- 91. |
BAI S C , LI N , WANG D H , et al. Detection of PRLR and SPEF2 gene connection and bidirectional transcription of fusion gene in slow-feathering chicken[J]. Journal of Hebei Agricultural University, 2021, 44 (3): 85- 91. | |
30 |
DUDNYK K , CAI D H , SHI C L , et al. Sequence basis of transcription initiation in the human genome[J]. Science, 2024, 384 (6694): eadj0116.
doi: 10.1126/science.adj0116 |
31 |
LIU X Q , ZHOU X J , LI Y , et al. Identification and functional characterization of bidirectional gene pairs and their intergenic regions in maize[J]. BMC Genomics, 2014, 15 (1): 338.
doi: 10.1186/1471-2164-15-338 |
32 |
LIN S D , ZHANG L , LUO W , et al. Characteristics of antisense transcript promoters and the regulation of their activity[J]. Int J Mol Sci, 2015, 17 (1): 9.
doi: 10.3390/ijms17010009 |
33 |
KACZYNSKI J , COOK T , URRUTIA R . Sp1- and Krüppel-like transcription factors[J]. Genome Biol, 2003, 4 (2): 206.
doi: 10.1186/gb-2003-4-2-206 |
34 |
DOLFINI D , GNESUTTA N , MANTOVANI R . Expression and function of NF-Y subunits in cancer[J]. Biochim Biophys Acta Rev Cancer, 2024, 1879 (2): 189082.
doi: 10.1016/j.bbcan.2024.189082 |
35 |
VIDAL L , LEBRUN E , PARK Y K , et al. Bidirectional hybrid erythritol-inducible promoter for synthetic biology in Yarrowia lipolytica[J]. Microb Cell Fact, 2023, 22 (1): 7.
doi: 10.1186/s12934-023-02020-6 |
36 |
ARNAIZ A , MARTINEZ M , GONZALEZ-MELENDI P , et al. Plant defenses against pests driven by a bidirectional promoter[J]. Front Plant Sci, 2019, 10, 930.
doi: 10.3389/fpls.2019.00930 |
37 |
CHEN L G , CHENG Y , ZHANG G X , et al. WGBS of embryonic gonads revealed that long non-coding RNAs in the MHM region might be involved in cell autonomous sex identity and female gonadal development in chickens[J]. Epigenetics, 2024, 19 (1): 2283657.
doi: 10.1080/15592294.2023.2283657 |
38 |
BRENET F , MOH M , FUNK P , et al. DNA methylation of the first exon is tightly linked to transcriptional silencing[J]. PLoS One, 2011, 6 (1): e14524.
doi: 10.1371/journal.pone.0014524 |
39 |
BABBAR R , TIWARI L D , MISHRA R C , et al. Arabidopsis plants overexpressing additional copies of heat shock protein Hsp101 showed high heat tolerance and endo-gene silencing[J]. Plant Sci, 2023, 330, 111639.
doi: 10.1016/j.plantsci.2023.111639 |
[1] | 杨苗苗, 谢莉, 简宝怡, 罗超维, 谢卓君, 朱飘, 周天日, 李华, 向海. 利用机器学习构建和优化早期体尺性状对成年母鸡腹脂沉积的预测模型[J]. 畜牧兽医学报, 2025, 56(2): 548-558. |
[2] | 苏蒙, 刘莎, 宋丹丽, 高倩梅, 郑麦青, 文杰, 赵桂苹, 李庆贺. 基于转录组测序筛选肉鸡腹水综合征相关候选基因[J]. 畜牧兽医学报, 2025, 56(2): 559-570. |
[3] | 张喜闻, 尹月, 李响, 王敏, 王永芳, 靳舒宁, 冯鑫辉, 赵玉蓉. 熊果酸对肉鸡胸肌肉品质和木质化鸡胸肉的影响[J]. 畜牧兽医学报, 2025, 56(2): 711-721. |
[4] | 杭振宇, 汪子怡, 张林, 邢通, 赵良, 高峰. 不同来源玉米28日龄白羽肉鸡标准回肠氨基酸消化率评定和预测方程的建立[J]. 畜牧兽医学报, 2025, 56(2): 722-736. |
[5] | 卢建, 马猛, 郭军, 王星果, 窦套存, 胡玉萍, 王强, 李永峰, 邵丹, 童海兵, 郭杰, 曲亮. 育成期能量限饲及转换为自由采食调控开产时蛋鸡生殖器官发育的关键基因和信号通路研究[J]. 畜牧兽医学报, 2025, 56(2): 737-754. |
[6] | 赵静贤, 杨晓伟, 刘言言, 赵自亮, 赵光伟, 赵永聚. 基于DNA甲基化组学技术分析TET 1基因对小鼠uNK细胞DNA甲基化的影响[J]. 畜牧兽医学报, 2025, 56(2): 912-924. |
[7] | 李远方, 吴冉, 李帅浩, 魏千然, 王亚东, 王丹丹, 李智, 李国喜, 刘翘铭. G3BP1基因在鸡肌内前脂肪细胞增殖与分化中的作用及其分子标记鉴定[J]. 畜牧兽医学报, 2025, 56(1): 159-167. |
[8] | 尹琼, 高明超, 姚秀梅, 刘昆煜, 刘玮, 揭泓蔚, 李华, 叶菲. 沐川乌骨鸡胸肌黑色素含量与PMEL17基因的关联性分析[J]. 畜牧兽医学报, 2025, 56(1): 168-177. |
[9] | 吴双, 尹娜, 余莫涵, 平玉宇, 白皓, 陈世豪, 常国斌. TRIM39.2过表达对鸡巨噬细胞转录表达的影响[J]. 畜牧兽医学报, 2025, 56(1): 178-188. |
[10] | 王贝贝, 武书庚, 张海华, 张海军, 郝二英, 邱凯. 饲粮添加大豆异黄酮对产蛋后期蛋鸡生产的影响[J]. 畜牧兽医学报, 2025, 56(1): 295-306. |
[11] | 王艺, 侯露露, 方菲, 高林英, 谢淑敏, 王雨. 氟通过自噬和铁死亡途径诱发肉鸡小肠氧化损伤[J]. 畜牧兽医学报, 2025, 56(1): 442-454. |
[12] | 章琦, 郭江鹏, 倪爱心, 杜洪峰, 陈继兰, 孙研研. 蛋鸡啄羽行为的影响因素与遗传调控基础研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3745-3756. |
[13] | 陈南珠, 李俊良, 余大为, 周心仪, 王晶, 邹惠影, 杜卫华. 猪MKRN3基因的印记表达和DNA甲基化状态分析[J]. 畜牧兽医学报, 2024, 55(9): 3853-3863. |
[14] | 张纪桥, 蔡瑛婕, 李雨笑, 曹敞, 李涛, 鲍秀瑜, 张建勤. 不同饲养模式下略阳乌鸡生长性能、免疫、肠道结构及盲肠菌群的对比分析[J]. 畜牧兽医学报, 2024, 55(9): 4001-4011. |
[15] | 何塔娜, 胡馨匀, 米洁兰, 高立, 张艳萍, 祁小乐, 崔红玉, 杨桂连, 高玉龙. 基于16S rDNA分析饲喂唾液乳杆菌XP132对白羽肉种鸡肠道菌群的影响[J]. 畜牧兽医学报, 2024, 55(9): 4091-4099. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||