畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (7): 2786-2794.doi: 10.11843/j.issn.0366-6964.2024.07.002
范悦1,2(), 韩博1,2, 李艳华3, 刘林3, 麻柱3, 孙东晓1,2,4,*(
)
收稿日期:
2024-01-18
出版日期:
2024-07-23
发布日期:
2024-07-24
通讯作者:
孙东晓
E-mail:1607747014@qq.com;sundx@cau.edu.cn
作者简介:
范悦(2002-),女,安徽阜阳人,硕士生,主要从事奶牛分子遗传育种研究,E-mail:1607747014@qq.com
基金资助:
Yue FAN1,2(), Bo HAN1,2, Yanhua LI3, Lin LIU3, Zhu MA3, Dongxiao SUN1,2,4,*(
)
Received:
2024-01-18
Online:
2024-07-23
Published:
2024-07-24
Contact:
Dongxiao SUN
E-mail:1607747014@qq.com;sundx@cau.edu.cn
摘要:
饲料效率是评价畜牧生产效率高低的一项重要指标,它是畜禽育种研究的重要性状之一。在过去几十年里,肉蛋奶产量等畜禽生产性状已经取得显著遗传进展。随着饲料成本的逐年提高,近几年饲料效率性状逐渐受到育种工作者的高度关注。欧美国家已陆续将饲料效率作为育种目标纳入综合选择指数,我国也开始相关研究并取得了研究进展。本文介绍了饲料效率的概念、常用衡量指标、遗传参数估计,并综述了国内外常见畜禽饲料效率性状的研究进展,为进一步解析畜禽饲料效率性状遗传机制和优化育种方案提供参考。
中图分类号:
范悦, 韩博, 李艳华, 刘林, 麻柱, 孙东晓. 畜禽饲料效率性状遗传研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2786-2794.
Yue FAN, Bo HAN, Yanhua LI, Lin LIU, Zhu MA, Dongxiao SUN. Progress in Genetic Studies of Feed Efficiency Traits in Livestock and Poultry[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2786-2794.
表 2
牛饲料效率相关性状部分候选基因列表"
基因缩写Gene abbreviation | 基因全称Full name of gene | 参考文献Reference |
CARD11 | Caspase Recruitment Domain Family Member 11 | [ |
EIF3B | Eukaryotic Translation Initiation Factor 3 Subunit B | [ |
UBAC2 | UBA Domain Containing 2 | [ |
MRPL13 | Mitochondrial Ribosomal Protein L13 | [ |
DNM2 | Dynamin 2 | [ |
NR1H3 | Nuclear Receptor Subfamily 1 Group H Member 3 | [ |
1 | 郑爱荣, 牛岩, 张晓霞, 等. 豆粕减量替代的意义、研究进展与对策建议[J]. 饲料工业, 2023, 44 (14): 93- 98. |
ZHENG A R , NIU Y , ZHANG X X , et al. Significance, research progress and countermeasure on reduction and substitution of soybean meal[J]. Feed Industry, 2023, 44 (14): 93- 98. | |
2 | 曹兵海, 张越杰, 李俊雅, 等. 2022年肉牛牦牛产业发展趋势与政策建议[J]. 中国畜牧杂志, 2022, 58 (3): 251- 257. |
CAO B H , ZHANG Y J , LI J Y , et al. Development trends and policy recommendations of beef yak industry in 2022[J]. Chinese Journal of Animal Science, 2022, 58 (3): 251- 257. | |
3 |
REKAYA R , SAPP R L , WING T , et al. Genetic evaluation for growth, body composition, feed efficiency, and leg soundness[J]. Poult Sci, 2013, 92 (4): 923- 929.
doi: 10.3382/ps.2012-02649 |
4 |
WANAPAT M , CHERDTHONG A , PHESATCHA K , et al. Dietary sources and their effects on animal production and environmental sustainability[J]. Anim Nutr, 2015, 1 (3): 96- 103.
doi: 10.1016/j.aninu.2015.07.004 |
5 | 张海亮, 常瑶, 娄文琦, 等. 奶牛育种中关注的新性状[J]. 畜牧兽医学报, 2021, 52 (10): 2687- 2697. |
ZHANG H L , CHANG Y , LOU W Q , et al. A review on novel traits in dairy cattle breeding[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (10): 2687- 2697. | |
6 |
CONNOR E E , HUTCHISON J L , OLSON K M , et al. TRIENNIAL LACTATION SYMPOSIUM: opportunities for improving milk production efficiency in dairy cattle[J]. J Anim Sci, 2012, 90 (5): 1687- 1694.
doi: 10.2527/jas.2011-4528 |
7 | 杨宁, 孙从佼. 蛋鸡种业的昨天、今天和明天[J]. 中国畜牧业, 2021, (16): 22- 24. |
YANG N , SUN C J . Past, now and future of layer breeding industry[J]. China Animal Industry, 2021, (16): 22- 24. | |
8 | 张胜利, 孙东晓. 奶牛种业的昨天、今天和明天[J]. 中国畜牧业, 2021, (15): 22- 26. |
ZHANG S L , SUN D X . Past, now and future of dairy breeding industry[J]. China Animal Industry, 2021, (15): 22- 26. | |
9 | 张铁柱, 丽丽, 孙伟, 等. 饲料转化率性状在奶牛育种中的应用探究[J]. 中国奶牛, 2023, (5): 30- 32. |
ZHANG T Z , LI L , SUN W , et al. Application of feed conversion rate traits in dairy cow breeding[J]. China Dairy Cattle, 2023, (5): 30- 32. | |
10 |
SHAH T M , PATEL N V , PATEL A B , et al. A genome-wide approach to screen for genetic variants in broilers (Gallus gallus) with divergent feed conversion ratio[J]. Mol Genet Genomics, 2016, 291 (4): 1715- 1725.
doi: 10.1007/s00438-016-1213-0 |
11 |
HESS C W , BYERLY T C , JULL M A . The efficiency of feed utilization by barred Plymouth rock and crossbred broilers[J]. Poult Sci, 1941, 20 (3): 210- 216.
doi: 10.3382/ps.0200210 |
12 |
CRAMPTON E W , BELL J M . The effect of fineness of grinding on the utilization of oats by market hogs[J]. J Anim Sci, 1946, 5 (2): 200- 210.
doi: 10.2527/jas1946.52200x |
13 | SENIOR B J , SHEEHY E J , O'NEILL J , et al. Effect of fineness of grinding on the feeding value of oats for pigs[J]. J Dep Agric, 1950, 47 (1): 54- 70. |
14 |
AGGREY S E , REKAYA R . Dissection of Koch's residual feed intake: implications for selection[J]. Poult Sci, 2013, 92 (10): 2600- 2605.
doi: 10.3382/ps.2013-03302 |
15 | 宋颖超. 高低饲料效率黄羽肉鸡盲肠和粪便微生物宏基因组分析[D]. 北京: 中国农业大学, 2019. |
SONG Y C. Metagenomics analysis of cecum and fecal microorganism of yellow feather broiler with high and low feed efficiency[D]. Beijing: China Agricultural University, 2019. (in Chinese) | |
16 |
KOCH R M , SWIGER L A , CHAMBERS D , et al. Efficiency of feed use in beef cattle[J]. J Anim Sci, 1963, 22 (2): 486- 494.
doi: 10.2527/jas1963.222486x |
17 |
ARCHER J A , RICHARDSON E C , HERD R M , et al. Potential for selection to improve efficiency of feed use in beef cattle: a review[J]. Aust J Agric Res, 1999, 50 (2): 147- 161.
doi: 10.1071/A98075 |
18 |
LUITING P , SCHRAMA J W , VAN DER HEL W , et al. Metabolic differences between White Leghorns selected for high and low residual food consumption[J]. Br Poult Sci, 1991, 32 (4): 763- 782.
doi: 10.1080/00071669108417402 |
19 |
HOQUE M A , SUZUKI K , KADOWAKI H , et al. Genetic parameters for feed efficiency traits and their relationships with growth and carcass traits in Duroc pigs[J]. J Anim Breed Genet, 2007, 124 (3): 108- 116.
doi: 10.1111/j.1439-0388.2007.00650.x |
20 |
PRYCE J E , GONZALEZ-RECIO O , NIEUWHOF G , et al. Hot topic: definition and implementation of a breeding value for feed efficiency in dairy cows[J]. J Dairy Sci, 2015, 98 (10): 7340- 7350.
doi: 10.3168/jds.2015-9621 |
21 | 梁秋曼, 南良康, 陈明新, 等. 利用中红外光谱MIR预测奶牛饲料效率的研究进展[J]. 中国奶牛, 2018, (10): 5- 8. |
LIANG Q M , NAN L K , CHEN M X , et al. Research progress on feed efficiency of dairy cows from mid-infrared(MIR) spectra of milk[J]. China Dairy Cattle, 2018, 10 (1): 5- 8. | |
22 |
AGGREY S E , KARNUAH A B , SEBASTIAN B , et al. Genetic properties of feed efficiency parameters in meat-type chickens[J]. Genet Sel Evol, 2010, 42 (1): 25.
doi: 10.1186/1297-9686-42-25 |
23 |
YUAN J W , DOU T C , MA M , et al. Genetic parameters of feed efficiency traits in laying period of chickens[J]. Poult Sci, 2015, 94 (7): 1470- 1475.
doi: 10.3382/ps/pev122 |
24 |
XU Z Q , JI C L , ZHANG Y , et al. Combination analysis of genome-wide association and transcriptome sequencing of residual feed intake in quality chickens[J]. BMC Genom, 2016, 17 (1): 594.
doi: 10.1186/s12864-016-2861-5 |
25 |
HOMMA C , HIROSE K , ITO T , et al. Estimation of genetic parameter for feed efficiency and resilience traits in three pig breeds[J]. Animal, 2021, 15 (11): 100384.
doi: 10.1016/j.animal.2021.100384 |
26 |
ROLFE K M , SNELLING W M , NIELSEN M K , et al. Genetic and phenotypic parameter estimates for feed intake and other traits in growing beef cattle, and opportunities for selection[J]. J Anim Sci, 2011, 89 (11): 3452- 3459.
doi: 10.2527/jas.2011-3961 |
27 |
BENFICA L F , SAKAMOTO L S , MAGALHÃES A F B , et al. Genetic association among feeding behavior, feed efficiency, and growth traits in growing indicine cattle[J]. J Anim Sci, 2020, 98 (11): skaa350.
doi: 10.1093/jas/skaa350 |
28 |
MRODE R A , KENNEDY B W . Genetic variation in measures of food efficiency in pigs and their genetic relationships with growth rate and backfat[J]. Anim Sci, 1993, 56 (2): 225- 232.
doi: 10.1017/S0003356100021309 |
29 | 蔡飞翔. 提高军牧1号白猪饲料效率的测定与选择[D]. 长春: 吉林大学, 2014. |
CAI F X. Test and selection for improving feed efficiency of Junmu No. 1 white pig[D]. Changchun: Jilin University. (in Chinese) | |
30 |
WILLEMS O W , MILLER S P , WOOD B J . Assessment of residual body weight gain and residual intake and body weight gain as feed efficiency traits in the turkey (Meleagris gallopavo)[J]. Genet Sel Evol, 2013, 45 (1): 26.
doi: 10.1186/1297-9686-45-26 |
31 | 罗生浩. 猪饲料效率相关性状的遗传参数估计及全基因组关联分析[D]. 北京: 中国农业大学, 2022. |
LUO S H. Genetic parameter estimation and genome-wide association study of feed efficiency related traits in pigs[D]. Beijing: China Agricultural University, 2022. (in Chinese) | |
32 |
LIU T F , LUO C L , WANG J , et al. Assessment of the genomic prediction accuracy for feed efficiency traits in meat-type chickens[J]. PLoS One, 2017, 12 (3): e0173620.
doi: 10.1371/journal.pone.0173620 |
33 |
YUAN J W , CHEN S R , SHI F Y , et al. Genome-wide association study reveals putative role of gga-miR-15a in controlling feed conversion ratio in layer chickens[J]. BMC Genom, 2017, 18 (1): 699.
doi: 10.1186/s12864-017-4092-9 |
34 |
MAUCH E D , YOUNG J M , SERÃO N V L , et al. Effect of lower-energy, higher-fiber diets on pigs divergently selected for residual feed intake when fed higher-energy, lower-fiber diets[J]. J Anim Sci, 2018, 96 (4): 1221- 1236.
doi: 10.1093/jas/sky065 |
35 |
SAINTILAN R , SELLIER P , BILLON Y , et al. Genetic correlations between males, females and castrates for residual feed intake, feed conversion ratio, growth rate and carcass composition traits in Large White growing pigs[J]. J Anim Breed Genet, 2012, 129 (2): 103- 106.
doi: 10.1111/j.1439-0388.2011.00972.x |
36 |
MUJIBI F D N , NKRUMAH J D , DURUNNA O N , et al. Accuracy of genomic breeding values for residual feed intake in crossbred beef cattle[J]. J Anim Sci, 2011, 89 (11): 3353- 3361.
doi: 10.2527/jas.2010-3361 |
37 |
MANAFIAZAR G , GOONEWARDENE L , MIGLIOR F , et al. Genetic and phenotypic correlations among feed efficiency, production and selected conformation traits in dairy cows[J]. Animal, 2016, 10 (3): 381- 389.
doi: 10.1017/S1751731115002281 |
38 |
TORTEREAU F , MARIE-ETANCELIN C , WEISBECKER J L , et al. Genetic parameters for feed efficiency in Romane rams and responses to single-generation selection[J]. Animal, 2020, 14 (4): 681- 687.
doi: 10.1017/S1751731119002544 |
39 | 张燕, 张细权, 季从亮, 等. 优质鸡饲料报酬性状的遗传参数估计[J]. 中国畜牧杂志, 2013, 49 (7): 29-30, 87. |
ZHANG Y , ZHANG X Q , JI C L , et al. Molecular mechanisms of iron absorption, translocation, and regulation in animal intestine[J]. Chinese Journal of Animal Science, 2013, 49 (7): 29-30, 87. | |
40 |
GILBERT H , BIDANEL J P , GRUAND J , et al. Genetic parameters for residual feed intake in growing pigs, with emphasis on genetic relationships with carcass and meat quality traits[J]. J Anim Sci, 2007, 85 (12): 3182- 3188.
doi: 10.2527/jas.2006-590 |
41 | 赵云翔, 邝伟键, 高宁, 等. 杜洛克公猪背膘厚度、日增重、日采食量和饲料效率相关性状的遗传参数估计[J]. 家畜生态学报, 2019, 40 (11): 18- 21. |
ZHAO Y X , KUANG W J , GAO N , et al. Estimation of genetic parameters of growth and feed efficiency related traits in YX China-Line Duroc specialized strain[J]. Journal of Domestic Animal Ecology, 2019, 40 (11): 18- 21. | |
42 |
WEN C L , YAN W , ZHENG J X , et al. Feed efficiency measures and their relationships with production and meat quality traits in slower growing broilers[J]. Poult Sci, 2018, 97 (7): 2356- 2364.
doi: 10.3382/ps/pey062 |
43 | BASARAB J A , BEAUCHEMIN K A , BARON V S , et al. Reducing GHG emissions through genetic improvement for feed efficiency: effects on economically important traits and enteric methane production[J]. Animal, 2013, 7 (S2): 303- 315. |
44 |
BERRY D P , CROWLEY J J . CELL BIOLOGY SYMPOSIUM: genetics of feed efficiency in dairy and beef cattle[J]. J Anim Sci, 2013, 91 (4): 1594- 1613.
doi: 10.2527/jas.2012-5862 |
45 |
YANG F , MAO C Y , GUO L L , et al. Structural basis of GPBAR activation and bile acid recognition[J]. Nature, 2020, 587 (7834): 499- 504.
doi: 10.1038/s41586-020-2569-1 |
46 |
WU P X , WANG K , ZHOU J , et al. A combined GWAS approach reveals key loci for socially-affected traits in Yorkshire pigs[J]. Commun Biol, 2021, 4 (1): 891.
doi: 10.1038/s42003-021-02416-3 |
47 |
SILVA É F , LOPES M S , LOPES P S , et al. A genome-wide association study for feed efficiency-related traits in a crossbred pig population[J]. Animal, 2019, 13 (11): 2447- 2456.
doi: 10.1017/S1751731119000910 |
48 |
LKHAGVADORJ S , QU L , CAI W G , et al. Gene expression profiling of the short-term adaptive response to acute caloric restriction in liver and adipose tissues of pigs differing in feed efficiency[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 298 (2): R494- R507.
doi: 10.1152/ajpregu.00632.2009 |
49 |
WANG H , XIONG K , SUN W , et al. Two completely linked polymorphisms in the PPARG transcriptional regulatory region significantly affect gene expression and intramuscular fat deposition in the longissimus dorsi muscle of Erhualian pigs[J]. Anim Genet, 2013, 44 (4): 458- 462.
doi: 10.1111/age.12025 |
50 |
DO D N , OSTERSEN T , STRATHE A B , et al. Genome-wide association and systems genetic analyses of residual feed intake, daily feed consumption, backfat and weight gain in pigs[J]. BMC Genet, 2014, 15 (1): 27.
doi: 10.1186/1471-2156-15-27 |
51 |
DEVAILLY G , FÈVE K , SACI S , et al. Divergent selection for feed efficiency in pigs altered the duodenum transcriptomic response to feed intake and its DNA methylation profiles[J]. Physiol Genomics, 2024, 56 (5): 397- 408.
doi: 10.1152/physiolgenomics.00123.2023 |
52 |
LI B , FANG L , NULL D J , et al. High-density genome-wide association study for residual feed intake in Holstein dairy cattle[J]. J Dairy Sci, 2019, 102 (12): 11067- 11080.
doi: 10.3168/jds.2019-16645 |
53 |
SALLEH M S , MAZZONI G , HÖGLUND J K , et al. RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle[J]. BMC Genom, 2017, 18 (1): 258.
doi: 10.1186/s12864-017-3622-9 |
54 |
SILVA D B S , FONSECA L F S , PINHEIRO D G , et al. Spliced genes in muscle from Nelore Cattle and their association with carcass and meat quality[J]. Sci Rep, 2020, 10 (1): 14701.
doi: 10.1038/s41598-020-71783-4 |
55 |
BENFICA L F , BRITO L F , DO BEM R D , et al. Genome-wide association study between copy number variation and feeding behavior, feed efficiency, and growth traits in Nellore cattle[J]. BMC Genom, 2024, 25 (1): 54.
doi: 10.1186/s12864-024-09976-8 |
56 |
KONG R S G , LIANG G X , CHEN Y H , et al. Transcriptome profiling of the rumen epithelium of beef cattle differing in residual feed intake[J]. BMC Genom, 2016, 17 (1): 592.
doi: 10.1186/s12864-016-2935-4 |
57 |
KEOGH K , KENNY D A , ALEXANDRE P A , et al. An across breed, diet and tissue analysis reveals the transcription factor NR1H3 as a key mediator of residual feed intake in beef cattle[J]. BMC Genom, 2024, 25 (1): 234.
doi: 10.1186/s12864-024-10151-2 |
58 |
CARMICHAEL M N , DYCUS M M , LOURENCO J M , et al. Ruminal Microbiome differences in Angus steers with differing feed efficiencies during the feedlot finishing phase[J]. Microorganisms, 2024, 12 (3): 536.
doi: 10.3390/microorganisms12030536 |
59 | 黄帅. 新产奶牛胃肠道菌群与采食量的关联性及其调控采食量的机制研究[D]. 北京: 中国农业大学, 2021. |
HUANG S. The relationship between gastrointestinal microbiota and feed intake of fresh cows and it's regulation mechanism[D]. Beijing: China Agricultural University, 2021. (in Chinese) | |
60 |
YUAN J W , WANG K H , YI G Q , et al. Genome-wide association studies for feed intake and efficiency in two laying periods of chickens[J]. Genet Sel Evol, 2015, 47 (1): 82.
doi: 10.1186/s12711-015-0161-1 |
61 |
SUN L L , JIANG B G , LI W T , et al. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression[J]. Diabetes Res Clin Pract, 2011, 91 (1): 94- 100.
doi: 10.1016/j.diabres.2010.11.006 |
62 |
LI W , ZHENG M Q , ZHAO G P , et al. Identification of QTL regions and candidate genes for growth and feed efficiency in broilers[J]. Genet Sel Evol, 2021, 53 (1): 13.
doi: 10.1186/s12711-021-00608-3 |
63 |
KANG Y L , STROUD D A , BAKER M J , et al. Sengers syndrome-associated mitochondrial acylglycerol kinase is a subunit of the human TIM22 protein import complex[J]. Mol Cell, 2017, 67 (3): 457- 470.e5.
doi: 10.1016/j.molcel.2017.06.014 |
64 |
YI G Q , YUAN J W , BI H J , et al. In-Depth duodenal transcriptome survey in chickens with divergent feed efficiency using RNA-Seq[J]. PLoS One, 2015, 10 (9): e0136765.
doi: 10.1371/journal.pone.0136765 |
65 |
JAYASOORIYA A P , MATHAI M L , WALKER L L , et al. Mice lacking angiotensin-converting enzyme have increased energy expenditure, with reduced fat mass and improved glucose clearance[J]. Proc Natl Acad Sci USA, 2008, 105 (18): 6531- 6536.
doi: 10.1073/pnas.0802690105 |
66 |
BERNARD M , LECOEUR A , COVILLE J L , et al. Relationship between feed efficiency and gut microbiota in laying chickens under contrasting feeding conditions[J]. Sci Rep, 2024, 14 (1): 8210.
doi: 10.1038/s41598-024-58374-3 |
67 |
ZHOU Q Q , LAN F R , GU S , et al. Genetic and microbiome analysis of feed efficiency in laying hens[J]. Poult Sci, 2023, 102 (4): 102393.
doi: 10.1016/j.psj.2022.102393 |
68 |
HE Z X , LIU R R , WANG M J , et al. Combined effect of microbially derived cecal SCFA and host genetics on feed efficiency in broiler chickens[J]. Microbiome, 2023, 11 (1): 198.
doi: 10.1186/s40168-023-01627-6 |
[1] | 闫田田, 武建亮, 王朝军, 徐利, 孟庆利, 苏美玉, 李涵乔, 黄国英, 王超, 林佳琪. 法系大白猪繁殖性状遗传参数估计及遗传进展分析[J]. 畜牧兽医学报, 2024, 55(6): 2388-2396. |
[2] | 康佳威, 黄宣凯, 王志鹏, 张爱珍, 孟芳荣, 盖鹏, 包军付, 孙可心, 宋少康, 孙攀, 陈一川, 张蕾, 高圣玥, 常铭航. 大白猪生长、繁殖和体尺性状遗传参数估计[J]. 畜牧兽医学报, 2024, 55(5): 1936-1944. |
[3] | 张帅, 陈奎蓉, 许迪, 江山, 王梦影, 张坤, 徐玉培, 雷国凤, 张志程, 郭猛, 赵云翔, 兰干球, 梁晶. 基于16S rRNA测序分析高低饲料转化率猪粪便微生物的组成差异[J]. 畜牧兽医学报, 2024, 55(4): 1605-1614. |
[4] | 李柯安宁, 杜丽丽, 安炳星, 邓天宇, 梁忙, 曹晟, 杜悦莹, 徐凌洋, 高雪, 张路培, 李俊雅, 高会江. 华西牛胴体及原始分割肉块重量性状遗传参数估计与全基因组关联分析[J]. 畜牧兽医学报, 2023, 54(9): 3664-3676. |
[5] | 胥磊, 张梦华, 张涛, 耿娟, 范守民, 杨光维, 郭杨, 邓强, 李金芝, 刘江卫, 黄锡霞, 王雅春. 基于主成分分析和因子分析估计新疆褐牛体型性状的遗传参数[J]. 畜牧兽医学报, 2023, 54(9): 3677-3688. |
[6] | 周辅臣, 叶健, 郭才金, 曾海玉, 吴珍芳, 董林松, 蔡更元. 杜洛克猪瘦肉率性状的窝效应分析及遗传参数估计[J]. 畜牧兽医学报, 2023, 54(6): 2288-2296. |
[7] | 王政, 郭文婕, 程瑾, 原一桐, 罗榕, 薛毅, 张利环, 朱芷葳, 李慧锋. 营养转运相关基因调控区多态性与黄羽肉鸡饲料转化率关联分析[J]. 畜牧兽医学报, 2023, 54(6): 2343-2352. |
[8] | 呙明鹏, 孟源, 王宏浩, 王元, 车雷杰, 申莉, 王曦. 晋南牛不同生长阶段体重和体尺性状遗传参数估计[J]. 畜牧兽医学报, 2023, 54(4): 1452-1464. |
[9] | 丁纪强, 李庆贺, 张高猛, 李森, 郑麦青, 文杰, 赵桂苹. 比较机器学习等算法对肉鸡产蛋性状育种值估计的准确性[J]. 畜牧兽医学报, 2022, 53(5): 1364-1372. |
[10] | 宋月通, 张汝美, 李彦芹, 李荣岭, 高运东, 仲跻峰, 薛光辉, 王玉东, 李建斌, 孙东晓. 山东省荷斯坦奶牛体型性状遗传参数估计及系谱世代数的影响[J]. 畜牧兽医学报, 2022, 53(5): 1384-1395. |
[11] | 常瑶, 苏国生, 李艳华, 李想, 麻柱, 王雅春. 基于系谱和基因组信息估计荷斯坦青年母牛体重性状遗传参数[J]. 畜牧兽医学报, 2022, 53(11): 3759-3768. |
[12] | 杨欣婷, 郑麦青, 谭晓冬, 赵桂苹, 黄超, 李森, 李韦, 文杰, 刘冉冉. 快大型黄羽肉鸡肉品质性状的遗传参数估计和关键基因挖掘[J]. 畜牧兽医学报, 2021, 52(9): 2416-2428. |
[13] | 贺婕妤, 王斌虎, 廖柱, 谢红涛, 易国强, 刘毓文, 敖红, 唐中林. 长白和大白猪主要生长性状的遗传参数估计[J]. 畜牧兽医学报, 2021, 52(8): 2115-2123. |
[14] | 陈紫薇, 师睿, 罗汉鹏, 田佳, 魏趁, 张伟新, 李委奇, 温万, 王雅晶, 王雅春. 宁夏地区荷斯坦牛青年牛繁殖性状遗传参数估计[J]. 畜牧兽医学报, 2021, 52(2): 344-351. |
[15] | 张海亮, 常瑶, 穆柏宇, 王凯, 杨明路, 王磊, 马龙刚, 宁景扬, 郭刚, 王雅春. 荷斯坦牛皮肤褶皱厚度及体况评分性状遗传分析[J]. 畜牧兽医学报, 2021, 52(11): 3089-3098. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||