畜牧兽医学报 ›› 2021, Vol. 52 ›› Issue (10): 2740-2752.doi: 10.11843/j.issn.0366-6964.2021.010.005
李宇航1,2, 罗仍卓么1,2, 王兴平1,2*, 杨箭1,2, 马云1,2, 魏大为1,2
收稿日期:
2021-04-16
出版日期:
2021-10-23
发布日期:
2021-10-27
通讯作者:
王兴平,主要从事动物基因表达调控与分子育种研究,E-mail:wxp@nxu.edu.cn
作者简介:
李宇航(1997-),女,吉林延吉人,硕士生,主要从事动物分子遗传育种研究,E-mail:1429692080@qq.com
基金资助:
LI Yuhang1,2, LUORENG Zhuoma1,2, WANG Xingping1,2*, YANG Jian1,2, MA Yun1,2, WEI Dawei1,2
Received:
2021-04-16
Online:
2021-10-23
Published:
2021-10-27
摘要: 乳腺炎通常是由微生物感染引起的乳腺炎症反应,是奶牛最常见的疾病之一,可导致牛奶产量及品质下降,奶牛利用年限减少,严重地影响着牧场的经济效益。近年来,学者们在奶牛乳腺炎分子调节机制方面开展了大量研究,发现NF-κB及其信号通路可参与调控多个免疫相关基因的表达,在细胞炎症反应和免疫应答等过程起关键性作用,也是奶牛乳腺炎研究的热点。本文阐述了奶牛乳腺炎的病因和病理变化,以及NF-κB信号通路与机体免疫的关系,并重点综述了mRNA、非编码RNA(miRNA、lncRNA和circRNA)及生物活性物质通过NF-κB信号通路调控奶牛乳腺炎的最新研究进展,为奶牛乳腺炎的分子调控网络解析、抗乳腺炎分子育种与生物活性药物研发提供参考。
中图分类号:
李宇航, 罗仍卓么, 王兴平, 杨箭, 马云, 魏大为. NF-κB信号通路调控奶牛乳腺炎的分子作用机制[J]. 畜牧兽医学报, 2021, 52(10): 2740-2752.
LI Yuhang, LUORENG Zhuoma, WANG Xingping, YANG Jian, MA Yun, WEI Dawei. Molecular Regulatory Mechanism of NF-κB Signaling Pathway Regulating Mastitis in Dairy Cows[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(10): 2740-2752.
[1] | HOGEVEEN H,HUIJPS K,LAM T J G M.Economic aspects of mastitis:new developments[J].N Z Vet J,2011,59(1):16-23. |
[2] | GORJI A E,ROUDBARI Z,SADEGHI B,et al.Transcriptomic analysis on the promoter regions discover gene networks involving mastitis in cattle[J].Microb Pathog,2019,137:103801. |
[3] | WANG M Q,LIANG Y,IBEAGHA-AWEMU E M,et al.Genome-wide DNA methylation analysis of mammary gland tissues from Chinese Holstein cows with Staphylococcus aureus induced mastitis[J].Front Genet,2020,11:550515. |
[4] | LI L B,CHEN X L,CHEN Z S.Identification of key candidate genes in dairy cow in response to Escherichia coli mastitis by bioinformatical analysis[J].Front Genet,2019,10:1251. |
[5] | HOEKSTRA J,ZOMER A L,RUTTEN V P M G,et al.Genomic analysis of European bovine Staphylococcus aureus from clinical versus subclinical mastitis[J].Sci Rep,2020,10(1):18172. |
[6] | BOULANGER D,BUREAU F,MÉLOTTE D,et al.Increased nuclear factor κb activity in milk cells of mastitis-affected cows[J].J Dairy Sci,2003,86(4):1259-1267. |
[7] | AKHTAR M,GUO S,GUO Y F,et al.Upregulated-gene expression of pro-inflammatory cytokines (TNF-α,IL-1β and IL-6) via TLRs following NF-κB and MAPKs in bovine mastitis[J].Acta Trop,2020,207:105458. |
[8] | WU J,LI L,SUN Y,et al.Altered molecular expression of the TLR4/NF-κB signaling pathway in mammary tissue of Chinese Holstein cattle with mastitis[J].PLoS One,2015,10(2):e0118458. |
[9] | RUEGG P L.A 100-year review:mastitis detection,management,and prevention[J].J Dairy Sci,2017,100(12):10381-10397. |
[10] | YANG W,ZERBE H,PETZL W,et al.Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E.coli,but S.aureus fails to both activate NF-κB in mammary epithelial cells and to quickly induce TNFα and interleukin-8(CXCL8) expression in the udder[J].Mol Immunol,2008,45(5):1385-1397. |
[11] | BRAND B,HARTMANN A,REPSILBER D,et al.Comparative expression profiling of E.coli and S.aureus inoculated primary mammary gland cells sampled from cows with different genetic predispositions for somatic cell score[J].Genet Sel Evol,2011,43(1):24. |
[12] | WANG X G,HUANG J M,FENG M Y,et al.Regulatory mutations in the A2M gene are involved in the mastitis susceptibility in dairy cows[J].Anim Genet,2014,45(1):28-37. |
[13] | 储明星,石万海,邝霞,等.奶牛乳房炎的遗传学及遗传评定[J].中国奶牛,2003(3):42-44.CHU M X,SHI W H,KUANG X,et al.Genetics and genetic evaluation of dairy cattle mastitis[J].China Dairy Cattle,2003(3):42-44.(in Chinese) |
[14] | CONTRERAS G A,RODRÍGUEZ J M.Mastitis:comparative etiology and epidemiology[J].J Mammary Gland Biol Neoplasia,2011,16(4):339-356. |
[15] | GREEN M,BRADLEY A.The changing face of mastitis control[J].Vet Rec,2013,173(21):517-521. |
[16] | RYMAN V E,PACKIRISWAMY N,SORDILLO L M.Role of endothelial cells in bovine mammary gland health and disease[J].Anim Health Res Rev,2015,16(2):135-149. |
[17] | ZHAO X,LACASSE P.Mammary tissue damage during bovine mastitis:causes and control[J].J Anim Sci,2008,86(13 Suppl):57-65. |
[18] | 李勇,王永梅.乳房炎奶牛乳腺病理组织学观察[J].动物医学进展,2020,41(11):133-137.LI Y,WANG Y M.Histopathological observation on mammary gland of cows with mastitis[J].Progress in Veterinary Medicine,2020,41(11):133-137.(in Chinese) |
[19] | BIANCHI R M,SCHWERTZ C I,DE CECCO B S,et al.Pathological and microbiological characterization of mastitis in dairy cows[J].Trop Anim Health Prod,2019,51(7):2057-2066. |
[20] | DERAKHSHANI H,FEHR K B,SEPEHRI S,et al.Invited review:microbiota of the bovine udder:contributing factors and potential implications for udder health and mastitis susceptibility[J].J Dairy Sci,2018,101(12):10605-10625. |
[21] | HAYDEN M S,WEST A P,GHOSH S.NF-κB and the immune response[J].Oncogene,2006,25(51):6758-6780. |
[22] | MITCHELL J P,CARMODY R J.Chapter two-NF-κB and the transcriptional control of inflammation[J].Int Rev Cell Mol Biol,2018,335:41-84. |
[23] | HOESEL B,SCHMID J A.The complexity of NF-κB signaling in inflammation and cancer[J].Mol Cancer,2013,12(1):86. |
[24] | PIKARSKY E,PORAT R M,STEIN I,et al.NF-κB functions as a tumour promoter in inflammation-associated cancer[J].Nature (London),2004,431(7007):461-466. |
[25] | PARK M H,HONG J T.Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches[J].Cells,2016,5(2):15. |
[26] | MEDZHITOV R.Toll-like receptors and innate immunity[J].Nat Rev Immunol,2001,1(2):135-145. |
[27] | KAWAI T,AKIRA S.Signaling to NF-κB by Toll-like receptors[J].Trends Mol Med,2007,13(11):460-469. |
[28] | MITCHELL S,VARGAS J,HOFFMANN A.Signaling via the NFκB system[J].Wiley Interdiscip Rev Syst Biol Med,2016,8(3):227-241. |
[29] | MULERO M C,HUXFORD T,GHOSH G.NF-κB,IκB,and IKK:integral components of immune system signaling[J].Adv Exp Med Biol,2019,1172:207-226. |
[30] | SCHNAPPAUF O,AKSENTIJEVICH I.Mendelian diseases of dysregulated canonical NF-κB signaling:from immunodeficiency to inflammation[J].J Leukoc Biol,2020,108(2):573-589. |
[31] | GILMORE T D,WOLENSKI F S.NF-κB:where did it come from and why?[J].Immunol Rev,2012,246(1):14-35. |
[32] | SUN S C.The non-canonical NF-κB pathway in immunity and inflammation[J].Nat Rev Immunol,2017,17(9):545-558. |
[33] | OECKINGHAUS A,HAYDEN M S,GHOSH S.Crosstalk in NF-κB signaling pathways[J].Nat Immunol,2011,12(8):695-708. |
[34] | PHILPOTT D J,YAMAOKA S,ISRAEL A,et al.Invasive Shigella flexneri activates NF-κB through a lipopolysaccharide-dependent innate intracellular response and leads to IL-8 expression in epithelial cells[J].J Immunol,2000,165(2):903-914. |
[35] | FITZGERALD D C,MEADE K G,MCEVOY A N,et al.Tumour necrosis factor-α (TNF-α) increases nuclear factor κB (NFκB) activity in and interleukin-8(IL-8) release from bovine mammary epithelial cells[J].Vet Immunol Immunopathol,2007,116(1-2):59-68. |
[36] | VIDYA M K,KUMAR V G,SEJIAN V,et al.Toll-like receptors:Significance,ligands,signaling pathways,and functions in mammals[J].Int Rev Immunol,2018,37(1):20-36. |
[37] | 林宝山,兰道亮,陈亚冰,等.麦洼牦牛TLR1~10基因克隆及分子生物学特征分析[J].畜牧兽医学报,2015,46(5):728-737.LIN B S,LAN D L,CHEN Y B,et al.Molecular cloning and biological characterization analysis of toll-like receptors 1-10 in Maiwa yak[J].Acta Veterinaria et Zootechnica Sinica,2015,46(5):728-737.(in Chinese) |
[38] | FU Y H,ZHOU E S,LIU Z C,et al.Staphylococcus aureus and Escherichia coli elicit different innate immune responses from bovine mammary epithelial cells[J].Vet Immunol Immunopathol,2013,155(4):245-252. |
[39] | LI C M,LI L,CHEN K L,et al.UFL1 alleviates lipopolysaccharide-induced cell damage and inflammation via regulation of the TLR4/NF-κB pathway in bovine mammary epithelial cells[J].Oxid Med Cell Longev,2019,2019:6505373. |
[40] | LI L,SHI L,YANG S D,et al.SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability[J].Nat Commun,2016,7(1):12235. |
[41] | CHEN K L,LI L,LI C M,et al.SIRT7 regulates lipopolysaccharide-induced inflammatory injury by suppressing the NF-κB signaling pathway[J].Oxid Med Cell Longev,2019,2019:3187972. |
[42] | ZHANG W Y,WANG H,QI S P,et al.CYP1A1 relieves lipopolysaccharide-induced inflammatory responses in bovine mammary epithelial cells[J].Mediators Inflamm,2018,2018:4093285. |
[43] | 张敏.FABP3对LPS诱导的奶牛乳腺上皮细胞炎症反应的调控及机制研究[D].武汉:华中农业大学,2018.ZHANG M.Effects and mechanism of FABP3 gene on LPS-induced inflammation response in bovine mammary epithelial cells[D].Wuhan:Huazhong Agricultural University,2018.(in Chinese) |
[44] | SZPERKA M E,CONNOR E E,PAAPE M J,et al.Sequencing,chromosomal mapping,and functional characterization of bovine FLICE-like inhibitory protein (FLIP)[J].Cytogenet Genome Res,2006,112(1-2):90-97. |
[45] | 冯文,董易春,王晓,等.TRAPPC9基因对奶牛金葡菌乳房炎抗性性状的遗传效应[J].畜牧兽医学报,2016,47(2):276-283.FENG W,DONG Y C,WANG X,et al.The genetic effect of TRAPPC9 on mastitis resistance to S.aureus in dairy cows[J].Acta Veterinaria et Zootechnica Sinica,2016,47(2):276-283.(in Chinese) |
[46] | AMERES S L,ZAMORE P D.Diversifying microRNA sequence and function[J].Nat Rev Mol Cell Biol,2013,14(8):475-488. |
[47] | BARTEL D P.MicroRNAs:Genomics,biogenesis,mechanism,and function[J].Cell,2004,116(2):281-297. |
[48] | LI T,MORGAN M J,CHOKSI S,et al.MicroRNAs modulate the noncanonical transcription factor NF-κB pathway by regulating expression of the kinase IKKα during macrophage differentiation[J].Nat Immunol,2010,11(9):799-805. |
[49] | CHEN Q Y,WANG H,LIU Y,et al.Inducible microRNA-223 down-regulation promotes TLR-triggered IL-6 and IL-1β production in macrophages by targeting STAT3[J].PLoS One,2012,7(8):e42971. |
[50] | LI R M,SHEN Q W,WU N,et al.MiR-145 improves macrophage-mediated inflammation through targeting Arf6[J].Endocrine,2018,60(1):73-82. |
[51] | CHEN L,LIU X L,LI Z X,et al.Expression differences of miRNAs and genes on NF-κB pathway between the healthy and the mastitis Chinese Holstein cows[J].Gene,2014,545(1):117-125. |
[52] | WANG X P,LUORENG Z M,ZAN L S,et al.Bovine miR-146a regulates inflammatory cytokines of bovine mammary epithelial cells via targeting the TRAF6 gene[J].J Dairy Sci,2017,100(9):7648-7658. |
[53] | SONG N,WANG X P,GUI L S,et al.MicroRNA-214 regulates immunity-related genes in bovine mammary epithelial cells by targeting NFATc3 and TRAF3[J].Mol Cell Probes,2017,35:27-33. |
[54] | ZHANG Z B,GUO Y F,LI C Y,et al.Selenium influences mmu-miR-155 to inhibit inflammation in Staphylococcus aureus-induced mastitis in mice[J].Food Funct,2019,10(10):6543-6555. |
[55] | ENGREITZ J M,OLLIKAINEN N,GUTTMAN M.Long non-coding RNAs:spatial amplifiers that control nuclear structure and gene expression[J].Nat Rev Mol Cell Biol,2016,17(12):756-770. |
[56] | CARPENTER S,FITZGERALD K A.Transcription of inflammatory genes:long noncoding RNA and beyond[J].J Interferon Cytokine Res,2015,35(2):79-88. |
[57] | IYER M K,NIKNAFS Y S,MALIK R,et al.The landscape of long noncoding RNAs in the human transcriptome[J].Nat Genet,2015,47(3):199-208. |
[58] | CHEW C L,CONOS S A,UNAL B,et al.Noncoding RNAs:master regulators of inflammatory signaling[J].Trends Mol Med,2018,24(1):66-84. |
[59] | ÖZDEMIR S,ALTUN S.Genome-wide analysis of mRNAs and lncRNAs in Mycoplasma bovis infected and non-infected bovine mammary gland tissues[J].Mol Cell Probes,2020,50:101512. |
[60] | MA M R,PEI Y F,WANG X X,et al.LncRNA XIST mediates bovine mammary epithelial cell inflammatory response via NF-κB/NLRP3 inflammasome pathway[J].Cell Prolif,2019,52(1):e12525. |
[61] | WANG X X,WANG H,ZHANG R Q,et al.LRRC75A antisense lncRNA1 knockout attenuates inflammatory responses of bovine mammary epithelial cells[J].Int J Biol Sci,2020,16(2):251-263. |
[62] | LI X Z,WANG H,ZHANG Y F,et al.Overexpression of lncRNA H19 changes basic characteristics and affects immune response of bovine mammary epithelial cells[J].PeerJ,2019,7:e6715. |
[63] | PATOP I L,WVST S,KADENER S.Past,present,and future of circRNAs[J].EMBO J,2019,38(16):e100836. |
[64] | HANSEN T B,JENSEN T I,CLAUSEN B H,et al.Natural RNA circles function as efficient microRNA sponges[J].Nature (London),2013,495(7441):384-388. |
[65] | YU T,WANG Y F,FAN Y,et al.CircRNAs in cancer metabolism:a review[J].J Hematol Oncol,2019,12(1):90. |
[66] | 王兵兵.环状RNA circLPP在奶牛乳腺炎组织中的表达及其作为潜在治疗靶点的应用分析[D].杨凌:西北农林科技大学,2019.WANG B B.Expression of circular RNA circLPP in bovine mastitic tissues and its application as a potential therapeutic target[D].Yangling:Northwest A&F University,2019.(in Chinese) |
[67] | 张彭媛.环状RNA CircKIAA在奶牛乳腺炎组织中的表达及其在乳腺上皮细胞中的作用[D].杨凌:西北农林科技大学,2019.ZHANG P Y.Expression of circular RNA circKIAA in bovine mastitis tissue and its role in bovine mammary epithelial cells[D].Yangling:Northwest A&F University,2019.(in Chinese) |
[68] | LU X Y,LIU Y R,XUAN W T,et al.Circ_1639 induces cells inflammation responses by sponging miR-122 and regulating TNFRSF13C expression in alcoholic liver disease[J].Toxicol Lett,2019,314:89-97. |
[69] | YANG J H,CHENG M,GU B J,et al.CircRNA_09505 aggravates inflammation and joint damage in collagen-induced arthritis mice via miR-6089/AKT1/NF-κB axis[J].Cell Death Dis,2020,11(10):833. |
[70] | HUANG H S,HUANG X Y,YU H Z,et al.Circular RNA circ-RELL1 regulates inflammatory response by miR-6873-3p/MyD88/NF-κB axis in endothelial cells[J].Biochem Biophys Res Commun,2020,525(2):512-519. |
[71] | YANG C L,YANG W K,HE Z H,et al.Quietness of circular RNA circ_0054633 alleviates the inflammation and proliferation in lipopolysaccharides-induced acute lung injury model through NF-κB signaling pathway[J].Gene,2021,766:145153. |
[72] | 孔鹏.circ-Sirt1抑制NF-κB核转位的机制及在血管炎症中的意义[D].石家庄:河北医科大学,2018.KONG P.The mechanism of circ-Sirt1 inhibiting nuclear translocation of NF-κB and its significance in vascular inflammation[D].Shijiazhuang:Hebei Medical University,2018.(in Chinese) |
[73] | WANG Q H,KUANG H X,SU Y,et al.Naturally derived anti-inflammatory compounds from Chinese medicinal plants[J].J Ethnopharmacol,2013,146(1):9-39. |
[74] | 阿琪玛,敖日格乐,王纯洁,等.16种中草药对牛源致病性大肠杆菌的体外抑菌效果[J].中国农业大学学报,2017,22(8):37-42.A Q M,AORI G L,WANG C J,et al.Antibacterial effects of Chinese herbal medicines on bovine pathogenic Escherichia coli in vitro[J].Journal of China Agricultural University,2017,22(8):37-42.(in Chinese) |
[75] | 摆倩文,张邵博,陈士恩,等.三种中草药提取物对大肠杆菌的抑制作用[J].西北民族大学学报:自然科学版,2020,41(3):73-78.BAI Q W,ZHANG S B,CHEN S E,et al.Inhibitory effect of Chinese herbal medicine extracts on Escherichia coli[J].Journal of Northwest University for Nationalities:Natural Science,2020,41(3):73-78.(in Chinese) |
[76] | 林树乾,李晓柳,宋敏训,等.五味子、百部提取物消除耐环丙沙星大肠杆菌耐药性的研究[J].山东农业科学,2016,48(8):134-136.LIN S Q,LI X L,SONG M X,et al.Eliminating effects of Chinese Magnolcavine Fruit and Stemonae Radix extracts on tolerance of Escherichia coli to ciprofloxacin[J].Shandong Agricultural Sciences,2016,48(8):134-136.(in Chinese) |
[77] | 田猛.发酵复方中草药添加剂防治奶牛隐性乳腺炎的初步研究[D].长春:吉林大学,2020.TIAN M.A preliminary study on prevention and treatment of recessive mastitis by fermented Chinese herbal medicines[D].Changchun:Jilin University,2020.(in Chinese) |
[78] | WANG Y N,ZHANG X,WEI Z K,et al.Platycodin D suppressed LPS-induced inflammatory response by activating LXRα in LPS-stimulated primary bovine mammary epithelial cells[J].Eur J Pharmacol,2017,814:138-143. |
[79] | GAO R F,YANG H D,JING S F,et al.Protective effect of chlorogenic acid on lipopolysaccharide-induced inflammatory response in dairy mammary epithelial cells[J].Microb Pathog,2018,124:178-182. |
[80] | WANG W Q,HU X Y,SHEN P,et al.Sodium houttuyfonate inhibits LPS-induced inflammatory response via suppressing TLR4/NF-κB signaling pathway in bovine mammary epithelial cells[J].Microb Pathog,2017,107:12-16. |
[81] | KANG S,LEE J S,LEE H C,et al.Phytoncide extracted from pinecone decreases LPS-induced inflammatory responses in bovine mammary epithelial cells[J].J Microbiol Biotechnol,2016,26(3):579-587. |
[82] | JEONG C H,CHENG W N,BAE H,et al.Bee venom decreases LPS-induced inflammatory responses in bovine mammary epithelial cells[J].J Microbiol Biotechnol,2017,27(10):1827-1836. |
[83] | 任婷婷,张东君,朱丽萍,等.葛根素对奶牛乳腺上皮细胞炎症模型中NF-κB信号通路的影响[J].农业生物技术学报,2016,24(1):44-51.REN T T,ZHANG D J,ZHU L P,et al.Effect of Puerarin on NF-κB signaling pathway in inflammation model of bovine (Bos taurus) mammary epithelial cells[J].Journal of Agricultural Biotechnology,2016,24(1):44-51.(in Chinese) |
[84] | ZHANG J L,ZHANG Y,HUANG H L,et al.Forsythoside A inhibited S.aureus stimulated inflammatory response in primary bovine mammary epithelial cells[J].Microb Pathog,2018,116:158-163. |
[85] | WEI Z K,SU K,JIANG P,et al.Geniposide reduces Staphylococcus aureus internalization into bovine mammary epithelial cells by inhibiting NF-κB activation[J].Microb Pathog,2018,125:443-447. |
[86] | WEI Z K,ZHOU E S,GUO C M,et al.Thymol inhibits Staphylococcus aureus internalization into bovine mammary epithelial cells by inhibiting NF-κB activation[J].Microb Pathog,2014,71-72:15-19. |
[87] | 梁德洁.百里香酚对LPS诱发的乳腺炎小鼠的保护作用及机制研究[D].长春:吉林大学,2014.LIANG D J.The protective effect and mechanisms of thymol on LPS-induced mouse mastitis[D].Changchun:Jilin University,2014.(in Chinese) |
[88] | CHEN X X,ZHENG X T,ZHANG M,et al.Nuciferine alleviates LPS-induced mastitis in mice via suppressing the TLR4-NF-κB signaling pathway[J].Inflamm Res,2018,67(11-12):903-911. |
[89] | LAI J,LIU Y,LIU C,et al.Indirubin inhibits LPS-induced inflammation via TLR4 abrogation mediated by the NF-κB and MAPK signaling pathways[J].Inflammation,2017,40(1):1-12. |
[90] | GUO W J,LIU B R,YIN Y H,et al.Licochalcone A protects the blood-milk barrier integrity and relieves the inflammatory response in LPS-induced mastitis[J].Front Immunol,2019,10:287. |
[91] | ZHAO C J,JIANG P,HE Z Q,et al.Dimethyl itaconate protects against lippolysacchride-induced mastitis in mice by activating MAPKs and Nrf2 and inhibiting NF-κB signaling pathways[J].Microb Pathog,2019,133:103541. |
[92] | YANG C,LIU P,WANG S,et al.Shikonin exerts anti-inflammatory effects in LPS-induced mastitis by inhibiting NF-κB signaling pathway[J].Biochem Biophys Res Commun,2018,505(1):1-6. |
[93] | GONG Q,LI Y W,MA H,et al.Peiminine protects against lipopolysaccharide-induced mastitis by inhibiting the AKT/NF-κB,ERK1/2 and p38 signaling pathways[J].Int J Mol Sci,2018,19(9):2637. |
[94] | SU S Y,LI X Y,LI S T,et al.Rutin protects against lipopolysaccharide-induced mastitis by inhibiting the activation of the NF-κB signaling pathway and attenuating endoplasmic reticulum stress[J].Inflammopharmacology,2019,27(1):77-88. |
[95] | LI Y W,GONG Q,GUO W J,et al.Farrerol relieve lipopolysaccharide (LPS)-induced mastitis by inhibiting AKT/NF-κB p65,ERK1/2 and P38 signaling pathway[J].Int J Mol Sci,2018,19(6):1770. |
[96] | SONG X J,WANG T C,ZHANG Z C,et al.Leonurine exerts anti-Inflammatory effect by regulating inflammatory signaling pathways and cytokines in LPS-induced mouse mastitis[J].Inflammation,2015,38(1):79-88. |
[97] | YANG Z T,ZHOU E S,WEI D,et al.Emodin inhibits LPS-induced inflammatory response by activating PPAR-γ in mouse mammary epithelial cells[J].Int Immunopharmacol,2014,21(2):354-360. |
[98] | YANG Z T,YIN R L,CONG Y F,et al.Oxymatrine lightened the inflammatory response of LPS-induced mastitis in mice through affecting NF-κB and MAPKs signaling pathways[J].Inflammation,2014,37(6):2047-2055. |
[99] | JIANG A M,ZHANG Y,ZHANG X,et al.Morin alleviates LPS-induced mastitis by inhibiting the PI3K/AKT,MAPK,NF-κB and NLRP3 signaling pathway and protecting the integrity of blood-milk barrier[J].Int Immunopharmacol,2020,78:105972. |
[100] | 张旭.白藜芦醇对LPS诱导小鼠乳腺炎的作用及机制研究[D].长春:吉林大学,2019.ZHANG X.Effect and mechanism of resveratrol on LPS induced mastitis in mice[D].Changchun:Jilin University,2019.(in Chinese) |
[1] | 张为, 潘志豪, 方富贵. 表观遗传学调控雌性动物初情期启动的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1875-1882. |
[2] | 费国庆, 宁致远, 赵泽芳, 刘艳秋, 刘腾飞, 李贤, 丛日华, 陈鸿, 陈树林. 妊娠期奶牛黄体细胞的分离鉴定及培养特性[J]. 畜牧兽医学报, 2024, 55(5): 2214-2225. |
[3] | 向辉, 桂林森, 杨迪, 魏士昊, 宫艳斌, 史远刚, 马云, 淡新刚. 奶牛同期发情-定时输精技术研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1412-1422. |
[4] | 刘伟烨, 黄雪伟. 非编码RNA在传染性法氏囊病病毒感染中的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1488-1498. |
[5] | 张艳敏, 赵东旭, 王文龙. 捻转血矛线虫对伊维菌素的耐药机制[J]. 畜牧兽医学报, 2024, 55(4): 1511-1520. |
[6] | 戴帆, 刘占有, 张旭阳, 李武. 乌头酸脱羧酶1对BCG诱导巨噬细胞炎症反应的调控作用研究[J]. 畜牧兽医学报, 2024, 55(4): 1696-1706. |
[7] | 卢劲晔, 高亚兵, 韩心茹, 刘钰臻, 赵家玉. 乳房链球菌感染对乳腺上皮细胞中氨基酸代谢的影响[J]. 畜牧兽医学报, 2024, 55(4): 1766-1776. |
[8] | 沈文娟, 杨卓, 张馨蕊, 付予, 陶金忠. 奶牛生殖道微生物与繁殖及相关疾病的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 924-932. |
[9] | 康方圆, 刘镇滔, 吴奎显, 倪晗, 钟凯, 李和平, 杨国宇, 韩立强. 脂噬对奶牛乳腺上皮细胞脂滴大小的调控研究[J]. 畜牧兽医学报, 2024, 55(3): 1095-1101. |
[10] | 张馨蕊, 付予, 杨卓, 沈文娟, 陶金忠. 奶牛早期妊娠诊断蛋白的研究[J]. 畜牧兽医学报, 2024, 55(2): 451-460. |
[11] | 张志飞, 唐雪颖, 闵力, 童雄, 陈卫东, 巨向红, 李大刚. 荷斯坦奶牛肝脏组织中与泌乳时期及繁殖力相关的基因共表达网络构建[J]. 畜牧兽医学报, 2024, 55(2): 528-539. |
[12] | 庄翠翠, 韩博. 大肠杆菌感染奶牛乳腺上皮细胞和小鼠乳腺组织致其线粒体损伤的机制研究[J]. 畜牧兽医学报, 2024, 55(2): 822-833. |
[13] | 曹建华, 杨柏高, 张培培, 冯肖艺, 张航, 余洲, 牛一凡, 郝海生, 杜卫华, 朱化彬, 杨凌, 赵学明. 能量负平衡影响奶牛卵泡发育的机制[J]. 畜牧兽医学报, 2024, 55(1): 22-30. |
[14] | 孟璐, 胡海燕, 董蕾, 郑楠, 王加启. 基于SourceTracker分析牧场环境对乳房炎乳菌群的影响[J]. 畜牧兽医学报, 2023, 54(9): 3872-3883. |
[15] | 张航, 杨柏高, 徐茜, 冯肖艺, 杜卫华, 郝海生, 朱化彬, 张培培, 赵学明. 热应激影响奶牛胚胎发育作用机制的研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2692-2700. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||