畜牧兽医学报 ›› 2020, Vol. 51 ›› Issue (11): 2622-2632.doi: 10.11843/j.issn.0366-6964.2020.11.002
李显, 张富东, 张中旺, 张永光*, 潘丽*
收稿日期:
2019-11-27
出版日期:
2020-11-25
发布日期:
2020-11-20
通讯作者:
张永光,主要从事预防兽医学研究,E-mail:zhangyongguang@caas.cn;潘丽,主要从事动物疫苗与分子免疫学研究,E-mail:panli@caas.cn
作者简介:
李显(1995-),男,河南周口人,硕士生,主要从事动物疫苗与分子免疫学研究,E-mail:lixian0209@163.com
基金资助:
LI Xian, ZHANG Fudong, ZHANG Zhongwang, ZHANG Yongguang*, PAN Li*
Received:
2019-11-27
Online:
2020-11-25
Published:
2020-11-20
摘要: 口蹄疫(foot-and-mouth disease,FMD)是由口蹄疫病毒(foot-and-mouth disease virus,FMDV)感染偶蹄兽所引起的一种急性、热性、高度接触性传染病,FMDV有7个血清型,加之病毒传播迅速,严重影响畜牧业的发展。FMDV为小RNA病毒科、口蹄疫病毒属的唯一成员,其基因组编码4种结构蛋白和10种非结构蛋白。FMDV感染宿主后利用自身蛋白通过多种途径和方式来影响宿主天然免疫应答,从而有利于FMDV复制的微环境。这些策略包括FMDV参与细胞自噬、内质网应激和应激颗粒形成的细胞过程,破坏多种宿主蛋白的功能,如劫持、裂解宿主蛋白或干扰宿主蛋白的表达、去除宿主蛋白的泛素化以及抑制宿主蛋白的磷酸化。这些逃避天然免疫的策略也是目前研究的热点。基于现有的研究结果,作者总结了近几年FMDV蛋白在抑制宿主天然免疫方面的研究进展,以期为FMDV的研究与防控提供参考。
中图分类号:
李显, 张富东, 张中旺, 张永光, 潘丽. 口蹄疫病毒利用自身蛋白逃逸宿主天然免疫应答的研究进展[J]. 畜牧兽医学报, 2020, 51(11): 2622-2632.
LI Xian, ZHANG Fudong, ZHANG Zhongwang, ZHANG Yongguang, PAN Li. Recent Advance on Foot-and-Mouth Disease Virus Utilizes Self-proteins to Evade Innate Immunity Response of Host[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(11): 2622-2632.
[1] | LI D, ZHANG J, YANG W P, et al. Poly (rC) binding protein 2 interacts with VP0 and increases the replication of the foot-and-mouth disease virus[J]. Cell Death Dis, 2019, 10(7):516. |
[2] | KNOWLES N J, SAMUEL A R. Molecular epidemiology of foot-and-mouth disease virus[J]. Virus Res, 2003, 91(1):65-80. |
[3] | MEDINA G N, SEGUNDO F D S, STENFELDT C, et al. The different tactics of foot-and-mouth disease virus to evade innate immunity[J]. Front Microbiol, 2018, 9:2644. |
[4] | KAWAI T, AKIRA S. The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors[J]. Nat Immunol, 2010, 11(5):373-384. |
[5] | KUMAR H, KAWAI T, AKIRA S. Pathogen recognition by the innate immune system[J]. Int Rev Immunol, 2011, 30(1):16-34. |
[6] | PODRALSKA M, CIESIELSKA S, KLUIVER J, et al. Non-coding RNAs in cancer radiosensitivity:MicroRNAs and lncRNAs as regulators of radiation-induced signaling pathways[J]. Cancers, 2020, 12(6):1662. |
[7] | SCHMEISSER H, BEKISZ J, ZOON K C. New function of type I IFN:induction of autophagy[J]. J Interf Cytok Res, 2014, 34(2):71-78. |
[8] | SHI C S, KEHRL J H. MyD88 and trif target beclin 1 to trigger autophagy in macrophages[J]. J Biol Chem, 2008, 283(48):33175-33182. |
[9] | JONES S A, MILLS K H G, HARRIS J. Autophagy and inflammatory diseases[J]. Immunol Cell Biol, 2013, 91(3):250-258. |
[10] | GOVINDARAJAN S, VERHEUGEN E, VENKEN K, et al. ER stress in antigen-resenting cells promotes NKT cell activation through endogenous neutral lipids[J]. EMBO Rep, 2020, 21(6):e48927. |
[11] | HAN S C, MAO L J, LIAO Y, et al. Sec62 suppresses foot-and-mouth disease virus proliferation by promotion of IRE1α-RIG-I antiviral signaling[J]. J Immunol, 2019, 203(2):429-440. |
[12] | RANJITHA H B, AMMANATHAN V, GULERIA N, et al. Foot-and-mouth disease virus induces PERK-mediated autophagy to suppress the antiviral interferon response[J]. J Cell Sci, 2021, 134(5):jcs240622. |
[13] | SUN P, ZHANG S M, QIN X D, et al. Foot-and-mouth disease virus capsid protein VP2 activates the cellular EIF2S1-ATF4 pathway and induces autophagy via HSPB1[J]. Autophagy, 2018, 14(2):336-346. |
[14] | YANG W P, LI D, RU Y, et al. Foot-and-mouth disease virus 3A protein causes upregulation of autophagy-related protein LRRC25 to inhibit the G3BP1-mediated RIG-like Helicase-signaling pathway[J]. J Virol, 2020, 94(8):e02086-19. |
[15] | VISSER L J, MEDINA G N, RABOUW H H, et al. Foot-and-mouth disease virus leader protease cleaves G3BP1 and G3BP2 and inhibits stress granule formation[J]. J Virol, 2019, 93(2):e00922-18. |
[16] | YE X, PAN T, WANG D, et al. Foot-and-mouth disease virus counteracts on internal ribosome entry site suppression by G3BP1 and inhibits G3BP1-mediated stress granule assembly via post-translational mechanisms[J]. Front Immunol, 2018, 9:1142. |
[17] | DUBUISSON J, COSSET F L. Virology and cell biology of the hepatitis C virus life cycle-an update[J]. J Hepatol, 2014, 61(1S):S3-S13. |
[18] | LINDENBACH B D. Virion assembly and release[J]. Curr Top Microbiol Immunol, 2013, 369:199-218. |
[19] | BARTENSCHLAGER R, PENIN F, LOHMANN V, et al. Assembly of infectious hepatitis C virus particles[J]. Trends Microbiol, 2011, 19(2):95-103. |
[20] | WALTER P, RON D. The unfolded protein response:from stress pathway to homeostatic regulation[J]. Science, 2011, 334(6059):1081-1086. |
[21] | DICKS N, GUTIERREZ K, MICHALAK M, et al. Endoplasmic reticulum stress, genome damage, and cancer[J]. Front Oncol, 2015, 5:11. |
[22] | RON D, WALTER P. Signal integration in the endoplasmic reticulum unfolded protein response[J]. Nat Rev Mol Cell Biol, 2007, 8(7):519-529. |
[23] | DASH S, AYDIN Y, WU T. Integrated stress response in hepatitis C promotes Nrf2-related chaperone-mediated autophagy:a novel mechanism for host-microbe survival and HCC development in liver cirrhosis[J]. Semin Cell Dev Biol, 2020, 101:20-35. |
[24] | MEYER H A, GRAU H, KRAFT R, et al. Mammalian Sec61 is associated with Sec62 and Sec63[J]. J Biol Chem, 2000, 275(19):14550-14557. |
[25] | TYEDMERS J, LERNER M, WIEDMANN M, et al. Polypeptide-binding proteins mediate completion of co-translational protein translocation into the mammalian endoplasmic reticulum[J]. EMBO Rep, 2003, 4(5):505-510. |
[26] | LINXWEILER M, SCHICK B, ZIMMERMANN R. Let's talk about Secs:Sec61, Sec62 and Sec63 in signal transduction, oncology and personalized medicine[J]. Signal Transd Target Ther, 2017, 2(2):17002. |
[27] | BIRGISDOTTIR Å B, LAMARK T, JOHANSEN T. The LIR motif-crucial for selective autophagy[J]. J Cell Sci, 2013, 126(15):3237-3247. |
[28] | FUMAGALLI F, NOACK J, BERGMANN T J, et al. Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery[J]. Nat Cell Biol, 2016, 18(11):1173-1184. |
[29] | GUO H C, JIN Y, HAN S C, et al. Quantitative proteomic analysis of BHK-21 cells infected with Foot-and-Mouth Disease Virus serotype Asia 1[J]. PLoS One, 2015, 10(7):e0132384. |
[30] | KHAN T, RELITTI N, BRINDISI M, et al. Autophagy modulators for the treatment of oral and esophageal squamous cell carcinomas[J]. Med Res Rev, 2020, 40(3):1002-1060. |
[31] | KAUR J, DEBNATH J. Autophagy at the crossroads of catabolism and anabolism[J]. Nat Rev Mol Cell Biol, 2015, 16(8):461-472. |
[32] | LEE H K, LUND J M, RAMANATHAN B, et al. Autophagy-dependent viral recognition by plasmacytoid dendritic cells[J]. Science, 2007, 315(5817):1398-1401. |
[33] | CHIRAMEL A I, BRADY N R, BARTENSCHLAGER R. Divergent roles of autophagy in virus infection[J]. Cells, 2013, 2(1):83-104. |
[34] | SCHLEGEL A, GIDDINGS T H Jr, LADINSKY M S, et al. Cellular origin and ultrastructure of membranes induced during poliovirus infection[J]. J Virol, 1996, 70(10):6576-6588. |
[35] | MCCORMICK C, KHAPERSKYY D A. Translation inhibition and stress granules in the antiviral immune response[J]. Nat Rev Immunol, 2017, 17(10):647-660. |
[36] | KEDERSHA N, IVANOV P, ANDERSON P. Stress granules and cell signaling:more than just a passing phase?[J]. Trends Biochem Sci, 2013, 38(10):494-506. |
[37] | REINEKE L C, DOUGHERTY J D, PIERRE P, et al. Large G3BP-induced granules trigger eIF2α phosphorylation[J]. Mol Biol Cell, 2012, 23(18):3499-3510. |
[38] | ONOMOTO K, JOGI M, YOO J S, et al. Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity[J]. PLoS One, 2012, 7(8):e43031. |
[39] | LANGEREIS M A, FENG Q, VAN KUPPEVELD F J. MDA5 localizes to stress granules, but this localization is not required for the induction of type I interferon[J]. J Virol, 2013, 87(11):6314-6325. |
[40] | KIM W J, BACK S H, KIM V, et al. Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions[J]. Mol Cell Biol, 2005, 25(6):2450-2462. |
[41] | REINEKE L C, LLOYD R E. The stress granule protein G3BP1 recruits protein kinase R to promote multiple innate immune antiviral responses[J]. J Virol, 2015, 89(5):2575-2589. |
[42] | LI X Y, WANG J C, LIU J, et al. Engagement of soluble resistance-related calcium binding protein (sorcin) with foot-and-mouth disease virus (FMDV) VP1 inhibits type I interferon response in cells[J]. Vet Microbiol, 2013, 166(1-2):35-46. |
[43] | ZHANG W, YANG F, ZHU Z X, et al. Cellular DNAJA3, a novel VP1-interacting protein, inhibits foot-and-mouth disease virus replication by inducing lysosomal degradation of VP1 and attenuating its antagonistic role in the Beta interferon signaling pathway[J]. J Virol, 2019, 93(13):e00588-19. |
[44] | LI D, YANG W P, YANG F, et al. The VP3 structural protein of foot-and-mouth disease virus inhibits the IFN-β signaling pathway[J]. FASEB J, 2016, 30(5):1757-1766. |
[45] | LI D, WEI J, YANG F, et al. Foot-and-mouth disease virus structural protein VP3 degrades Janus kinase 1 to inhibit IFN-γ signal transduction pathways[J]. Cell Cycle, 2016, 15(6):850-860. |
[46] | RODRÍGUEZ PULIDO M, SÁNCHEZ-APARICIO M T, MARTÍNEZ-SALAS E, et al. Innate immune sensor LGP2 is cleaved by the Leader protease of foot-and-mouth disease virus[J]. PLoS Pathog, 2018, 14(6):e1007135. |
[47] | SWATEK K N, AUMAYR M, PRUNEDA J N, et al. Irreversible inactivation of ISG15 by a viral leader protease enables alternative infection detection strategies[J]. Proc Natl Acad Sci U S A, 2018, 115(10):2371-2376. |
[48] | LI D, LEI C Q, XU Z S, et al. Foot-and-mouth disease virus non-structural protein 3A inhibits the interferon-β signaling pathway[J]. Sci Rep, 2016, 6(1):21888. |
[49] | FU S Z, YANG W P, RU Y, et al. DDX56 cooperates with FMDV 3A to enhance FMDV replication by inhibiting the phosphorylation of IRF3[J]. Cell Signal, 2019, 64:109393. |
[50] | ZHU Z X, LI C T, DU X L, et al. Foot-and-mouth disease virus infection inhibits LGP2 protein expression to exaggerate inflammatory response and promote viral replication[J]. Cell Death Dis, 2017, 8(4):e2747. |
[51] | ZHU Z X, WANG G Q, YANG F, et al. Foot-and-Mouth Disease Virus viroporin 2B antagonizes RIG-I-mediated antiviral effects by inhibition of its protein expression[J]. J Virol, 2016, 90(24):11106-11121. |
[52] | LIU H S, XUE Q, CAO W J, et al. Foot-and-mouth disease virus nonstructural protein 2B interacts with cyclophilin A, modulating virus replication[J]. FASEB J, 2018, 32(12):6706-6723. |
[53] | LI C T, ZHU Z X, DU X L, et al. Foot-and-mouth disease virus induces lysosomal degradation of host protein kinase PKR by 3C proteinase to facilitate virus replication[J]. Virology, 2017, 509:222-231. |
[54] | FAN X X, HAN S C, YAN D, et al. Foot-and-mouth disease virus infection suppresses autophagy and NF-кB antiviral responses via degradation of ATG5-ATG12 by 3Cpro[J]. Cell Death Dis, 2017, 8(1):e2561. |
[55] | LIU H S, ZHU Z X, XUE Q, et al. Foot-and-mouth disease virus antagonizes NOD2-mediated antiviral effects by inhibiting NOD2 protein expression[J]. J Virol, 2019, 93(11):e00124-19. |
[56] | GRUBMAN M J, BAXT B. Foot-and-mouth disease[J]. Clin Microbiol Rev, 2004, 17(2):465-493. |
[57] | BERINSTEIN A, ROIVAINEN M, HOVI T, et al. Antibodies to the Vitronectin receptor (integrin alpha V beta 3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells[J]. J Virol, 1995, 69(4):2664-2666. |
[58] | NEFF S, SÁ-CARVALHO D, RIEDE E, et al. Foot-and-mouth disease virus virulent for cattle utilizes the integrin αvβ3 as its receptor[J]. J Virol, 1998, 72(5):3587-3594. |
[59] | SETH R B, SUN L J, EA C K, et al. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3[J]. Cell, 2005, 122(5):669-682. |
[60] | LIU S Q, CAI X, WU J X, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation[J]. Science, 2015, 347(6227):aaa2630. |
[61] | STEINBERGER J, SKERN T. The leader proteinase of foot-and-mouth disease virus:structure-function relationships in a proteolytic virulence factor[J]. Biol Chem, 2014, 395(10):1179-1185. |
[62] | FREIMANIS G L, DI NARDO A, BANKOWSKA K, et al. Genomics and outbreaks:foot and mouth disease[J]. Rev Sci Tech, 2016, 35(1):175-189. |
[63] | RODRÍGUEZ PULIDO M, SÁIZ M. Molecular mechanisms of foot-and-mouth disease virus targeting the host antiviral response[J]. Front Cell Infect Microbiol, 2017, 7:252. |
[64] | LIU Y Q, ZHU Z X, ZHNAG M T, et al. Multifunctional roles of leader protein of foot-and-mouth disease viruses in suppressing host antiviral responses[J]. Vet Res, 2015, 46(1):127. |
[65] | FALK M M, GRIGERA P R, BERGMANN I E, et al. Foot-and-mouth disease virus protease 3C induces specific Proteolytic cleavage of host cell histone H3[J]. J Virol, 1990, 64(2):748-756. |
[66] | BELSHAM G J, MCINERNEY G M, ROSS-SMITH N. Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells[J]. J Virol, 2000, 74(1):272-280. |
[67] | WANG D, FANG L R, LI K, et al. Foot-and-mouth disease virus 3C protease cleaves NEMO to impair innate immune signaling[J]. J Virol, 2012, 86(17):9311-9322. |
[68] | LAWRENCE P, SCHAFER E A, RIEDER E. The nuclear protein Sam68 is cleaved by the FMDV 3C protease redistributing Sam68 to the cytoplasm during FMDV infection of host cells[J]. Virology, 2012, 425(1):40-52. |
[69] | DU Y J, BI J S, LIU J Y, et al. 3Cpro of foot-and-mouth disease virus antagonizes the interferon signaling pathway by blocking STAT1/STAT2 nuclear translocation[J]. J Virol, 2014, 88(9):4908-4920. |
[70] | GLADUE D P, LARGO E, DE LA ARADA I, et al. Molecular characterization of the viroporin function of foot-and-mouth disease virus nonstructural protein 2B[J]. J Virol, 2018, 92(23):e01360-18. |
[71] | AO D, GUO H C, SUN S Q, et al. Viroporin activity of the foot-and-mouth disease virus non-structural 2B protein[J]. PLoS One, 2015, 10(5):e0125828. |
[72] | ISAACSON M K, PLOEGH H L. Ubiquitination, ubiquitin-like modifiers, and Deubiquitination in viral infection[J]. Cell Host Microbe, 2009, 5(6):559-570. |
[73] | HEATON S M, BORG N A, DIXIT V M. Ubiquitin in the activation and attenuation of innate antiviral immunity[J]. J Exp Med, 2016, 213(1):1-13. |
[74] | ZHAO C, COLLINS M N, HSIANG T Y, et al. Interferon-induced ISG15 pathway:an ongoing virus-host battle[J]. Trends Microbiol, 2013, 21(4):181-186. |
[75] | DURFEE L A, LYON N, SEO K, et al. The ISG15 conjugation system broadly targets newly synthesized proteins:implications for the antiviral function of ISG15[J]. Mol Cell, 2010, 38(5):722-732. |
[76] | SUNG Y Y, KIM H K. Illicium verum extract suppresses IFN-γ-induced ICAM-1 expression via blockade of JAK/STAT pathway in HaCaT human keratinocytes[J]. J Ethnopharmacol, 2013, 149(3):626-632. |
[77] | RAGHAVAN B, COOK C H, TRGOVCICH J. The Carboxy terminal region of the human cytomegalovirus Immediate Early 1(IE1) protein disrupts Type II Inteferon signaling[J]. Viruses, 2014, 6(4):1502-1524. |
[78] | GOODBOURN S, DIDCOCK L, RANDALL R E. Interferons:cell signalling, immune modulation, antiviral response and virus countermeasures[J]. J Gen Virol, 2000, 81(10):2341-2364. |
[1] | 王家丽, 杨帆, 邵文华, 黄梦瑶, 曹伟军, 蒲秀瑛, 张伟, 郑海学. Tollip敲除猪肾细胞系的构建[J]. 畜牧兽医学报, 2024, 55(4): 1810-1818. |
[2] | 龙琴琴, 魏敏, 王雨婷, 文明, 庞峰. 羊口疮病毒与宿主的博弈:免疫应答与病毒免疫逃逸机制[J]. 畜牧兽医学报, 2023, 54(5): 1845-1853. |
[3] | 周广青, 刘晓庆, 史喜绢, 杨大鹏, 袁莉刚, 常惠芸. 口蹄疫病毒抗体SA-ELISA快速检测方法的建立[J]. 畜牧兽医学报, 2023, 54(5): 2020-2029. |
[4] | 李硕, 张韵, 白满元, 赵瑞翀, 宋河涛, 穆素雨, 滕志东, 董虎, 马娥宁, 孙世琪, 郭慧琛, 尹双辉. 生物矿化的口蹄疫病毒样颗粒疫苗的免疫原性评价[J]. 畜牧兽医学报, 2023, 54(4): 1598-1607. |
[5] | 郭紫晶, 陈飞, 张志雄, 柏玲, 张志东, 李彦敏. 白细胞介素-10对口蹄疫病毒感染小鼠T细胞增殖及其表达TNF-α、IFN-γ和IL-2的影响[J]. 畜牧兽医学报, 2023, 54(2): 694-705. |
[6] | 陈文哲, 张向乐, 顾峰幸, 赵振翔, 李康丽, 薛钊宁, 郑海学, 张小丽, 朱紫祥. 猪GRK2蛋白抗口蹄疫病毒作用分析[J]. 畜牧兽医学报, 2023, 54(10): 4350-4361. |
[7] | 王洋, 崔帅, 鑫婷, 王西西, 于海男, 陈世钰, 蒋亚君, 高新桃, 庞忠宝, 姜一曈, 郭晓宇, 贾红, 朱鸿飞. 非洲猪瘟病毒MGF360-14L靶向MAVS抑制Ⅰ型干扰素的产生[J]. 畜牧兽医学报, 2022, 53(9): 3272-3278. |
[8] | 赵旭阳, 靳家鑫, 路闻龙, 张帅, 黄丽, 张改平, 孙爱军, 庄国庆. 非洲猪瘟病毒免疫逃逸分子机制研究进展[J]. 畜牧兽医学报, 2022, 53(7): 2074-2082. |
[9] | 韩伟建, 张俊娟, 张义明, 王家鑫, 李丽敏. 骨髓源肥大细胞通过甘露糖受体识别FMDV-VLPs的细胞因子应答[J]. 畜牧兽医学报, 2022, 53(11): 3917-3926. |
[10] | 张志东, Eoin Ryan, 李彦敏. 口蹄疫病毒受体整联蛋白在绵羊不同发育阶段组织中mRNA转录水平的分析[J]. 畜牧兽医学报, 2021, 52(9): 2626-2632. |
[11] | 张帆帆, 曾艳兵, 方绍培, 李海琴, 康昭风, 谭美芳, 谭佳, 杨群, 韦启鹏. 鸭坦布苏病毒病的研究进展[J]. 畜牧兽医学报, 2021, 52(6): 1489-1497. |
[12] | 李昕, 孙燕燕, 林密, 陈夏辉, 李峰松, 包艳芳, 杨光, 蒋韬. O、A、Asia 1型口蹄疫病毒胶体金定量检测免疫层析方法的建立[J]. 畜牧兽医学报, 2021, 52(4): 1042-1052. |
[13] | 李显, 张中旺, 张富东, 吕建亮, 李嘉豪, 潘丽. 甘露糖修饰的壳聚糖聚乳酸-羟基乙酸共聚物纳米微球作为口蹄疫病毒核酸疫苗递送载体的特性评价[J]. 畜牧兽医学报, 2021, 52(12): 3557-3568. |
[14] | 赵学亮, 刘海金, 萧飒, 王兴龙, 杨增岐. 长链非编码RNA——病毒与宿主相互作用中的新型调控因子[J]. 畜牧兽医学报, 2020, 51(9): 2059-2067. |
[15] | 李露露, 张敬, 李丹, 郑海学. 口蹄疫病毒3D蛋白促进TLR3介导的Ⅰ型干扰素产生[J]. 畜牧兽医学报, 2020, 51(8): 1923-1931. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||