[1] |
WHO. Global tuberculosis report 2019[R]. Geneva:World Health Organization, 2019.
|
[2] |
YAN M Y, LI S S, DING X Y, et al. A CRISPR-assisted nonhomologous end-joining strategy for efficient genome editing in Mycobacterium tuberculosis[J]. mBio, 2020, 11(1):e02364-19.
|
[3] |
YANG C G, LUO T, SHEN X, et al. Transmission of multidrug-resistant Mycobacterium tuberculosis in Shanghai, China:a retrospective observational study using whole-genome sequencing and epidemiological investigation[J]. Lancet Infect Dis, 2017, 17(3):275-284.
|
[4] |
WEI J W, LU N, LI Z Y, et al. The Mycobacterium tuberculosis CRISPR-associated cas1 involves persistence and tolerance to anti-tubercular drugs[J]. Biomed Res Int, 2019, 2019:7861695.
|
[5] |
SINGH A K, CARETTE X, POTLURI L P, et al. Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system[J]. Nucleic Acids Res, 2016, 44(18):e143.
|
[6] |
ROCK J. Tuberculosis drug discovery in the CRISPR era[J]. PLoS Pathog, 2019, 15(9):e1007975.
|
[7] |
ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. J Bacteriol, 1987, 169(12):5429-5433.
|
[8] |
BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819):1709-1712.
|
[9] |
JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821.
|
[10] |
KIM Y G, CHA J, CHANDRASEGARAN S. Hybrid restriction enzymes:zinc finger fusions to Fok I cleavage domain[J]. Proc Natl Acad Sci U S A, 1996, 93(3):1156-1160.
|
[11] |
MOSCOU M J, BOGDANOVE A J. A simple cipher governs DNA recognition by TAL effectors[J]. Science, 2009, 326(5959):1501.
|
[12] |
COX D B T, PLATT R J, ZHANG F. Therapeutic genome editing:prospects and challenges[J]. Nat Med, 2015, 21(2):121-131.
|
[13] |
SELLE K, BARRANGOU R. Harnessing CRISPR-Cas systems for bacterial genome editing[J]. Trends Microbiol, 2015, 23(4):225-232.
|
[14] |
KOMOR A C, BADRAN A H, LIU D R. CRISPR-based technologies for the manipulation of eukaryotic genomes[J]. Cell, 2017, 168(1-2):20-36.
|
[15] |
NAYAK D D, METCALF W W. Cas9-mediated genome editing in the methanogenic archaeon Methanosarcina acetivorans[J]. Proc Natl Acad Sci U S A, 2017, 114(11):2976-2981.
|
[16] |
HILLE F, RICHTER H, WONG S P, et al. The biology of CRISPR-cas:backward and forward[J]. Cell, 2018, 172(6):1239-1259.
|
[17] |
PLAGENS A, RICHTER H, CHARPENTIER E, et al. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes[J]. FEMS Microbiol Rev, 2015, 39(3):442-463.
|
[18] |
BHAYA D, DAVISON M, BARRANGOU R. CRISPR-Cas systems in bacteria and archaea:versatile small RNAs for adaptive defense and regulation[J]. Annu Rev Genet, 2011, 45:273-297.
|
[19] |
MAKAROVA K S, WOLF Y I, ALKHNBASHI O S, et al. An updated evolutionary classification of CRISPR-Cas systems[J]. Nat Rev Microbiol, 2015, 13(11):722-736.
|
[20] |
MOHANRAJU P, MAKAROVA K S, ZETSCHE B, et al. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems[J]. Science, 2016, 353(6299):aad5147.
|
[21] |
SINKUNAS T, GASIUNAS G, FREMAUX C, et al. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system[J]. Embo J, 2011, 30(7):1335-1342.
|
[22] |
MAKAROVA K S, HAFT D H, BARRANGOU R, et al. Evolution and classification of the CRISPR-Cas systems[J]. Nat Rev Microbiol, 2011, 9(6):467-477.
|
[23] |
SAMAI P, PYENSON N, JIANG W Y, et al. Co-transcriptional DNA and RNA cleavage during type III CRISPR-cas immunity[J]. Cell, 2015, 161(5):1164-1174.
|
[24] |
TAMULAITIS G, KAZLAUSKIENE M, MANA-KOVA E, et al. Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus[J]. Mol Cell, 2014, 56(4):506-17.
|
[25] |
ÖZCAN A, PAUSCH P, LINDEN A, et al. Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum[J]. Nat Microbiol, 2019, 4(1):89-96.
|
[26] |
ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299):aaf5573.
|
[27] |
DONG D, REN K, QIU X L, et al. The crystal structure of Cpf1 in complex with CRISPR RNA[J]. Nature, 2016, 532(7600):522-526.
|
[28] |
NAJAH S, SAULNIER C, PERNODET J L, et al. Design of a generic CRISPR-Cas9 approach using the same sgRNA to perform gene editing at distinct loci[J]. BMC Biotechnol, 2019, 19(1):18.
|
[29] |
KOONIN E V, MAKAROVA K S, ZHANG F. Diversity, classification and evolution of CRISPR-Cas systems[J]. Curr Opin Microbiol, 2017, 37:67-78.
|
[30] |
HE L M, FAN X Y, XIE J P. Comparative genomic structures of Mycobacterium CRISPR-Cas[J]. J Cell Biochem, 2012, 113(7):2464-2473.
|
[31] |
WEI W J, ZHANG S, FLEMING J, et al. Mycobacterium tuberculosis type Ⅲ-A CRISPR/Cas system crRNA and its maturation have atypical features[J]. FASEB J, 2019, 33(1):1496-1509.
|
[32] |
NORMAN E, DELLAGOSTIN O A, MCFADDEN J, et al. Gene replacement by homologous recombination in Mycobacterium bovis BCG[J]. Mol Microbiol, 1995, 16(4):755-60.
|
[33] |
MALAGA W, PEREZ E, GUILHOT C. Production of unmarked mutations in mycobacteria using site-specific recombination[J]. FEMS Microbiol Lett, 2003, 219(2):261-268.
|
[34] |
SONG H H, NIEDERWEIS M. Functional expression of the Flp recombinase in Mycobacterium bovis BCG[J]. Gene, 2007, 399(2):112-119.
|
[35] |
JACOBS W R, TUCKMAN M, BLOOM B R. Introduction of foreign DNA into mycobacteria using a shuttle phasmid[J]. Nature, 1987, 327(6122):532-535.
|
[36] |
BARDAROV S, KRIAKOV J, CARRIERE C, et al. Conditionally replicating mycobacteriophages:a system for transposon delivery to Mycobacterium tuberculosis[J]. Proc Natl Acad Sci U S A, 1997, 94(20):10961-10966.
|
[37] |
MURPHY K C, NELSON S J, NAMBI S, et al. ORBIT:a new paradigm for genetic engineering of mycobacterial chromosomes[J]. mBio, 2018, 9(6):e01467-18.
|
[38] |
YAN M Y, YAN H Q, REN G X, et al. CRISPR-Cas12a-Assisted recombineering in bacteria[J]. Appl Environ Microbiol, 2017, 83(17), doi:10.1128/aem. 00947-17.
|
[39] |
SUN B, YANG J, YANG S, et al. A CRISPR-Cpf1-assisted non-homologous end joining genome editing system of Mycobacterium smegmatis[J]. Biotechnol J, 2018, 13(9):1700588.
|
[40] |
SHUMAN S, GLICKMAN M S. Bacterial DNA repair by non-homologous end joining[J]. Nat Rev Microbiol, 2007, 5(11):852-861.
|
[41] |
MOREB E A, HOOVER B, YASEEN A, et al. Managing the SOS response for enhanced CRISPR-Cas-based recombineering in E. coli through transient inhibition of host RecA activity[J]. ACS Synth Biol, 2017, 6(12):2209-2218.
|
[42] |
QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5):1173-1183.
|
[43] |
CHOUDHARY E, THAKUR P, PAREEK M, et al. Gene silencing by CRISPR interference in mycobacteria[J]. Nat Commun, 2015, 6(1):6267.
|
[44] |
ROCK J M, HOPKINS F F, CHAVEZ A, et al. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform[J]. Nat Microbiol, 2017, 2(4):16274.
|
[45] |
MCNEIL M B, COOK G M. Utilization of CRISPR interference to validate MmpL3 as a drug target in Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother, 2019, 63(8):e00629-19.
|
[46] |
CHOUDHARY E, SHARMA R, KUMAR Y, et al. Conditional silencing by CRISPRi reveals the role of DNA Gyrase in formation of drug-tolerant persister population in Mycobacterium tuberculosis[J]. Front Cell Infect Microbiol, 2019, 9:70.
|
[47] |
CHEN J S, MA E B, HARRINGTON L B, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387):436-439.
|
[48] |
AI J W, ZHOU X, XU T, et al. CRISPR-based rapid and ultra-sensitive diagnostic test for Mycobacterium tuberculosis[J]. Emerg Microbes Infect, 2019, 8(1):1361-1369.
|
[49] |
COMAS I, GAGNEUX S. The past and future of tuberculosis research[J]. PLoS Pathog, 2009, 5(10):e1000600.
|
[50] |
BOTELHO A, CANTO A, LEÃO C, et al. Clustered regularly interspaced short palindromic repeats (CRISPRs) analysis of members of the Mycobacterium tuberculosis complex[M]//CUNHA M V, INÁCIO J. Veterinary infection biology:Molecular diagnostics and high-throughput strategies. New York:Humana Press, 2015:373-389.
|
[51] |
KAMERBEEK J, SCHOULS L, KOLK A, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology[J]. J Clin Microbiol, 1997, 35(4):907-914.
|
[52] |
SONG E J, JEONG H J, LEE S M, et al. A DNA chip-based spoligotyping method for the strain identification of Mycobacterium tuberculosis isolates[J]. J Microbiol Methods, 2007, 68(2):430-433.
|
[53] |
TAFAJ S, ZHANG J, HAUCK Y, et al. First insight into genetic diversity of the Mycobacterium tuberculosis complex in albania obtained by multilocus variable-number tandem-repeat analysis and spoligotyping reveals the presence of beijing multidrug-resistant isolates[J]. J Clin Microbiol, 2009, 47(5):1581-1584.
|
[54] |
STREICHER E M, VICTOR T C, VAN DER SPUY G, et al. Spoligotype signatures in the Mycobacterium tuberculosis complex[J]. J Clin Microbiol, 2007, 45(1):237-240.
|
[55] |
COWAN L S, DIEM L, BRAKE M C, et al. Transfer of a Mycobacterium tuberculosis genotyping method, spoligotyping, from a reverse line-blot hybridization, membrane-based assay to the Luminex multianalyte profiling system[J]. J Clin Microbiol, 2004, 42(1):474-477.
|
[56] |
MOKROUSOV I, LIMESCHENKO E, VYAZOVAYA A, et al. Corynebacterium diphtheriae spoligotyping based on combined use of two CRISPR loci[J]. Biotechnol J, 2007, 2(7):901-906.
|
[57] |
DRISCOLL J R. Spoligotyping for molecular epidemiology of the Mycobacterium tuberculosis complex[M]//CAUGANT D A. Molecular Epidemiology of Microorganisms. Totowa:Humana Press, 2009:117-128.
|
[58] |
BRUDEY K, DRISCOLL J R, RIGOUTS L, et al. Mycobacterium tuberculosis complex genetic diversity:mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology[J]. BMC Microbiol, 2006, 6:23.
|