畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (9): 4279-4293.doi: 10.11843/j.issn.0366-6964.2025.09.013
杨鑫1, 王绍宇1, 童畅1, 彭志弢1, 蔡圣煌1, 黄俊雄1, 胥娇娇1, 温馨1, 吴银宝1,2,3,4*
收稿日期:
2024-10-18
发布日期:
2025-09-30
通讯作者:
吴银宝,主要从事家畜生态学研究,E-mail:wuyinbao@scau.edu.cn
作者简介:
杨鑫(2002-),女,安徽蚌埠人,本科生,主要从事动物健康养殖与安全生产研究,E-mail:3258636660@qq.com
基金资助:
YANG Xin1, WANG Shaoyu1, TONG Chang1, PENG Zhitao1, CAI Shenghuang1, HUANG Junxiong1, XU Jiaojiao1, WEN Xin1, WU Yinbao1,2,3,4*
Received:
2024-10-18
Published:
2025-09-30
摘要: 畜牧业中兽用抗生素使用量占比超过全球抗生素使用量的50%,抗生素的滥用会使畜禽肠道中产生大量的抗生素耐药菌群,并会作为抗生素抗性基因(antibiotic resistance genes,ARGs)的宿主随粪尿排出体外,由此ARGs成为环境中抗生素抗性的重要来源。畜禽源ARGs主要以粪污形式进入环境,通过水平基因转移(horizontal gene transfer,HGT)加剧其对环境生物的威胁。本文系统地介绍了有关畜禽粪污源ARGs水平转移的研究进展,首先阐述了畜禽粪污是环境中抗生素和ARGs重要来源,其次总结了由转化、转导、接合转移和外膜囊泡运输(outer membrane vesicles,OMVs)几种主要的HGT方式所导致的ARGs在环境中的传播;探讨了抗生素、重金属、有机污染物及微/纳塑料等环境中影响ARGs水平转移的因素;指出目前常用的研究水平基因转移的技术手段。本文总结了畜禽粪污源中的新型环境污染物ARGs在畜禽相关环境中的传播现状,可为畜禽粪污源ARGs的污染防治研究提供扎实的理论依据。
中图分类号:
杨鑫, 王绍宇, 童畅, 彭志弢, 蔡圣煌, 黄俊雄, 胥娇娇, 温馨, 吴银宝. 畜禽粪污源抗生素抗性基因的水平转移研究进展[J]. 畜牧兽医学报, 2025, 56(9): 4279-4293.
YANG Xin, WANG Shaoyu, TONG Chang, PENG Zhitao, CAI Shenghuang, HUANG Junxiong, XU Jiaojiao, WEN Xin, WU Yinbao. Research Progress on the Horizontal Gene Transfer of Antibiotic Resistance Genes from Livestock and Poultry Manure[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4279-4293.
[1] DEWULF J, JOOSTEN P, CHANTZIARAS I, et al. Antibiotic use in European pig production: Less is more[J]. Antibiotics (Basel),2022,11(11). [2] LIAO H, ZHAO Q, CUI P, et al. Efficient reduction of antibiotic residues and associated resistance genes in tylosin antibiotic fermentation waste using hyperthermophilic composting[J].Environ Int,2019,133(Pt B):105203. [3] 刘艺云,邓利敏,岳慧颖,等.质粒接合转移及其抑制剂的研究进展[J].生物技术通报,2022,38(9):35-46. LIU Y Y, DENG L M, YUE H Y, et al. Research progress in plasmid conjugation and its inhibitors[J]. Biotechnology Bulletin, 2022, 38(9): 35-46.(in Chinese) [4] KRAKER M E A D, STEWARDSON A J, HARBARTH S. Will 10 million people die a year due to antimicrobial resistance by 2050?[J]. PLoS Med, 2016, 13(11): e100 2184. [5] 细菌耐药性监测工作高度布局 禁抗在提速——《全国遏制动物源细菌耐药行动计划(2017-2020年)》全文及解读[J].饲料与畜牧, 2018(01): 7-11. High layout of bacterial drug resistance monitoring Speeding up the prohibition of antibiotics ——《The full text and interpretation of the National Action Plan to curb drug resistance of bacteria from animals (2017-2020)》[J]. Feed and animal husbandry, 2018(01): 7-11.(in Chinese) [6] 农业农村部关于印发《全国兽用抗菌药使用减量化行动方案(2021—2025年)》的通知[J].中华人民共和国农业农村部公报, 2021(11): 55-58. Notice of the Ministry of Agriculture and Rural Affairs on printing and distributing the《National action plan for reducing the use of veterinary antibacterials (2021-2025)》[J]. Bulletin of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2021(11): 55-58.(in Chinese) [7] 王亚飞,李梦婵,邱慧珍,等. 不同畜禽粪便堆肥的微生物数量和养分含量的变化[J].甘肃农业大学学报, 2017,52(3): 37-45. WANG Y F,LI M C,QIU H Z, et al. Changes of microbial quantity and nutrient content in different composting of livestock manure[J]. Journal of Gansu Agricultural University, 2017, 52(3): 37-45. (in Chinese) [8] HE T, WANG R, LIU D, et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans[J]. Nat Microbiol, 2019, 4(9): 1. [9] 张 昊. 抗生素及其耐药性在畜禽粪便-土壤-蔬菜中的传播和转移[D]. 新乡:河南师范大学, 2018. ZHANG H. Spread and transfer of antibiotics and antibiotic resistance in the livestock manure-soil-vegetable endophytic system[D]. Xinxiang: Henan Normal University, 2018.(in Chinese) [10] WANG F, QIAO M, LU Z, et al. Impact of reclaimed water irrigation on antibiotic resistance in public parks, Beijing, China[J]. Environ Pollut. (1987), 2014, 184:247-253. [11] AHMED W, ZHANG Q, LOBOS A, et al. Precipitation influences pathogenic bacteriaand antibiotic resistance gene abundance in storm drain outfalls in coastal sub-tropical waters[J]. Environ Int, 2018, 116: 308-318. [12] GURON G, ARANGO-ARGOTY G, ZHANG L, et al. Effects of dairy manure-based amendments and soil texture on lettuce- and radish-associated microbiota and resistomes[J]. mSphere, 2019, 4(3). [13] BLAU K, JACQUIOD S, SØRENSEN S J, et al. Manure and doxycycline affect the bacterial community and its resistome in lettuce rhizosphere and bulk soil[J]. Front Microbiol, 2019, 10: 725. [14] 周 洁. 施用畜禽粪便堆肥的土壤-蔬菜系统中抗生素及其抗性基因的扩散特征研究[D].苏州:苏州科技大学,2021. ZHOU J. Antibiotics in the soil vegetable system composted with livestock manure study on the spread characteristics of antibiotics and antibiotic resistance genes[D]. Suzhou: Suzhou University of Science and Technology, 2021.(in Chinese) [15] 宋 炜,张敬轩,马晓斐,等. 农村养殖场及其周边土壤中抗生素残留与风险评估[J]. 河北省科学院学报, 2022, 39(6): 42-49. SONG W, Zhang J X, MA X F, et al. Determination and risk assessment of antibiotics in rural farms and surrounding soils[J]. Journal of the Hebei Academy of Sciences, 2022,39(6):42-49.(in Chinese) [16] 温 红. 河西走廊规模化养殖场及周边环境中典型兽药抗生素的暴露及人体健康风险评估[D].兰州:兰州交通大学,2021. WEN H. Exposure and human health risk assessment of typical veterinary antibiotics in feedlots and surrounding environment in Hexi Corridor[D].Lanzhou:Lanzhou Jiaotong University,2021.(in Chinese) [17] 杨永青,许继飞,董泰音,等.水体和土壤环境中抗生素抗性基因(ARGs)的污染特征和消除[J]. 北方农业学报, 2018,46(3): 76-82. YANG Y Q, XU J F, DONG T Y, et al. Pollution property and reduction of antibiotic resistance genes(ARGs) in aquatic and soil environment[J]. Journal of Northern Agriculture,2018,46(3): 76-82.(in Chinese) [18] 第二次全国污染源普查公报[J].环境保护,2020,48(18): 8-10. Bulletin of the Second National Pollution Source Survey[J]. Environmental Protection, 2020, 48(18): 8-10.(in Chinese) [19] 刘志林.畜禽粪污处理利用现状及对策[J].山东畜牧兽医, 2022,43(7): 47-49. LIU Z L. Present situation and countermeasures of livestock manure treatment and utilization[J]. Shandong Journal of Animal Science and Veterinary Medicine, 2022, 43(7): 47-49.(in Chinese) [20] 薛智勇,汤江武.畜禽废弃物的无害化处理与资源化利用技术进展(下)[J].浙江农业科学,2002(2):51-52. XUE Z Y, TANG J W. Technical progress of harmless treatment and resource utilization of livestock and poultry wastes (Ⅱ)[J]. Journal of Zhejiang Agricultural Sciences, 2002(2):51-52.(in Chinese) [21] 焦璐琛,迟荪琳,徐卫红,等. 施用猪粪对蔬菜生长及土壤抗生素、重金属含量的影响[J]. 中国农学通报, 2019, 35(14): 94-100. JIAO L C,CHI S L,XU H W, et al. Application of pig manure Affects growth of vegetable, residues of antibiotics and heavy metals in soil[J].Chinese Agricultural Science Bulletin, 2019, 35(14): 94-100.(in Chinese) [22] KUPPUSAMY S, VENKATESWARLU K, MEGHARAJ M, et al. Contamination of long-term manure-fertilized Indian paddy soils with veterinary antibiotics: Impact on bacterial communities and antibiotics resistance genes[J]. Appl Soil Ecolt, 2023, 192: 105106. [23] 赵 祥. 施用粪肥的设施菜地土壤中抗生素及抗性基因多样性及丰度的研究[D].泰安:山东农业大学, 2017. ZHAO X. Diversity and abundance of antibiotics and ARGs in vegetable soil with manure application[D]. Taian: Shandong Agricultural University, 2017.(in Chinese) [24] ZHOU Y, FU H, YANG H, et al. Extensive metagenomic analysis of the porcine gut resistome to identify indicators reflecting antimicrobial resistance[J]. Microbiome, 2022, 10(1): 39. [25] GÓMEZ-GÓMEZ C, BLANCO-PICAZO P, BROWN-JAQUE M, et al. Infectious phage particles packaging antibiotic resistance genes found in meat products and chicken feces[J]. Sci Rep, 2019, 9(1): 13211-13281. [26] QIAN X, GU J, SUN W, et al. Diversity, abundance and persistence of antibiotic resistance genes in various types of animal manure following industrial composting[J].J Hazard Mater, 2018, 344: 716-722. [27] HE Y, YUAN Q B, MATHIEU J, et al. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment[J]. npj Clean Water, 2020, 3(1). [28] DUAN M, GU J, WANG X, et al. Factors that affect the occurrence and distributionof antibiotic resistance genes in soils from livestock and poultry farms[J].Ecotoxicol Environ Saf, 2019, 180: 114-122. [29] ZHANG N, JUNEAU P, HUANG R, et al. Coexistence between antibiotic resistance genes and metal resistance genes in manure-fertilized soils[J]. Geoderma, 2021, 382: 114760. [30] 武 轶,张 珣,王宝玉,等.四环素类抗性基因在黑土农田和蔬菜中的分布特征[J].生态学杂志,2024,43(3):758-765. WU Y, ZHANG X, WANG B Y, et al. Distribution characteristics of tetracycline resistance genes in black soil farmland and vegetables.[J]. Chinese Journal of Ecology, 2024,43(3):758-765. (in Chinese) [31] ZHANG Y J, HU H W, CHEN Q L, et al. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes[J]. Environ Int, 2019, 130: 104912. [32] 侯 晓,吴 润,蒲万霞. 超级细菌及新药研发方向[J]. 动物医学进展, 2018, 39(10): 102-106. HOU X,WU R,PU W X. Research direction of new drugs for superbacteria[J]. Progress in Veterinary Medicine, 2018, 39(10): 102-106.(in Chinese) [33] 文汉卿,史 俊,寻 昊,等. 抗生素抗性基因在水环境中的分布、传播扩散与去除研究进展[J]. 应用生态学报, 2015, 26(2): 625-635. WEN H Y, SHI J, XUN H, et al. Distribution, dissemination and removal of antibiotic resistant genes (ARGs) in the aquatic environment[J]. Journal of applied ecology,2015, 26(2): 625-635.(in Chinese) [34] TANG Z,HUANG C,LI W. Horizontal transfer of intracellular and extracellular ARGs in sludge compost under sulfamethoxazole stress[J]. Chem EngJ, 2023. [35] YUAN Q B, HUANG Y M, WU W B, et al. Redistribution of intracellular and extracellular free & adsorbed antibiotic resistance genes through a wastewater treatment plant by an enhanced extracellular DNA extraction method with magnetic beads[J]. Environ Int, 2019, 131: 104986. [36] LIU F,LUO Y,XU T,et al.Current examining methods and mathematical models of horizontal transfer of antibiotic resistance genes in the environment[J].Front Microbiol, 2024, 15(000):10. [37] DAVISON J. Genetic exchange between bacteria in the environment.[J].Plasmid, 1999, 42(2):73-91. [38] CHE Y, YANG Y, XU X, et al. Conjugative plasmids interact with insertion sequence s to shape the horizontal transfer of antimicrobial resistance genes[J]. Proc Natl Acad Sci USA, 2021, 118(6). [39] WANG Y, LU J, ENGELSTÄDTER J, et al. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation[J]. ISME J, 2020, 14(8): 2179-2196. [40] 黄福义,周曙仡聃,潘 婷,等.基于高通量定量PCR与高通量测序技术研究城市湿地公园抗生素抗性基因污染特征[J]. 环境科学, 2024,45(1): 576-583. HUANG F Y, ZHOU S Y D, PAN T, et al. High-throughput qPCR and amplicon sequencing as complementary methods for profiling antibiotic resistance genes in Urban Wetland Parks[J]. Environmental Science, 2024, 45(1): 576-583.(in Chinese) [41] VON WINTERSDORFF C J, PENDERS J, VAN NIEKERK J M, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer[J]. Front Microbiol, 2016, 7: 173. [42] REDONDO-SALVO S, FERNANDEZ-LOPEZ R, RUIZ R, et al. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids[J]. Nat Commun, 2020, 11(1): 3602. [43] ALEKSHUN M N, LEVY S B. Molecular mechanisms of antibacterial multidrug resistance[J]. Cell, 2007, 128(6): 1037-1050. [44] GUGLIELMINI J, QUINTAIS L, GARCILLAN-BARCIA M P, et al. The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation[J]. PLoS Genet, 2011, 7(8): e1002222. [45] ZHANG Y, GU A Z, HE M, et al. Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera[J]. Environ Sci Technol, 2017, 51(1): 570-580. [46] ZHANG H, LIU J, WANG L, et al. Glyphosate escalates horizontal transfer of conjugative plasmid harboring antibiotic resistance genes[J]. Bioengineered, 2021, 12(1): 63-69. [47] LU J, WANG Y, JIN M, et al. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes[J]. Water Res, 2020, 169: 115229. [48] GUO Y, GAO J, CUI Y, et al. Chloroxylenol at environmental concentrations can promote conjugative transfer of antibiotic resistance genes by multiple mechanisms[J]. Sci Total Environ, 2022, 816: 151599. [49] 杨雨桐. 双酚类物质促进粪肠球菌中信息素调控质粒介导的耐药基因接合转移规律和机制[D]. 北京: 军事科学院, 2022. YANG Y T. The effect and mechanisms of pheromone-responsive plasmid-mediated conjugative transfer of antibiotic resistance genes in Enterococcus faecalis promoted by bisphenols[D]. Beijing: Academy of Military Sciences, 2022.(in Chinese) [50] JOHNSTON C, MARTIN B, FICHANT G, et al. Bacterial transformation: distribution, shared mechanisms and divergent control[J]. Nat Rev Microbiol, 2014, 12(3): 181-196. [51] LIU Y B, WANG Y P, WALSH T R P, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study[J]. Lancet Infect Dis, 2016, 16(2): 161-168. [52] BLOKESCH M. Natural competence for transformation[J]. Curr Biol,2016. [53] BRAUS S A G, SHORT F L, HOLZ S, et al. The molecular basis of FimT-mediatedDNA uptake during bacterial natural transformation[J]. Nat Commun, 2022, 13(1): 1065. [54] CHIANG Y N, PENADES J R, CHEN J. Genetic transduction by phages and chromosomal islands: The new and noncanonical[J]. PLoS Pathog, 2019, 15(8): e1007878. [55] CHEN J, QUILES-PUCHALT N, CHIANG Y N, et al. Genome hypermobility by lateral transduction[J]. Science,2018, 362(6411): 207-212. [56] WESGATE R, RAUWEL G, CRIQUELION J, et al. Impact of standard test protocols on sporicidal efficacy[J]. J Hosp Infect, 2016, 93(3): 256-262. [57] 徐亚珂,龙金照,段广才,等. CTX-M-15型大肠埃希菌的分子分布特征及质粒传播规律研究[J]. 中国病原生物学杂志, 2017, 12(11): 1048-1051. XU Y K, LONG J Z, DUAN G C, et al. The molecular distribution characteristics of and plasmid horizontal transfer in CTX M 15 positive Esch-erichia coli[J]. Journal of Pathogen Biology, 2017, 12(11): 1048-1051.(in Chinese) [58] HALL R J, WHELAN F J, Mcinerney J O, et al. Horizontal gene transfer as a source of conflict and cooperation in prokaryotes[J]. Front Microbiol, 2020, 11: 1569. [59] 高远集,刘 畅,陈 淼,等. 细菌外膜囊泡结构、分泌特性及致病机制[J]. 畜牧兽医学报, 2024, 55(3): 971-983. GAO J Y, LIU C, CHEN M, et al. Structure, secretory characteristics and pathogenic mechanism of bacterial outer membrane vesicles[J].Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 971-983.(in Chinese) [60] SCHWECHHEIMER C, KUEHN M J. Outer-membrane vesicles from gram-negative bacteria: biogenesis and functions[J]. Nat Rev Microbiol, 2015, 13(10): 605-619. [61] DELL’ANNUNZIATA F, DELL’AVERSANA C, DOTI N, et al. Outer membrane vesicles derived from Klebsiella pneumoniae are a driving force for horizontal gene transfer[J]. Int J Mol Sci, 2021, 22(16). [62] 蓝惠华,张 玲,王厚照. 水平基因转移介导抗菌素耐药性传播机制的研究进展[J]. 微生物学杂志, 2017, 37(4): 93-97. LAN H H, ZHANG L, WANG H Z. Dissemination of antimicrobial resistance through horizontal gene transfer[J]. Journal of Microbiology, 2017, 37(4): 93-97.(in Chinese) [63] 吴小碟,沈秀芬,马 润,等.肺炎克雷伯菌外膜囊泡研究进展[J].微生物学通报,2024,51(9):3317-3326. WU X D, SHEN X F, MA R, et al. Progress in outer membrane vesicles derived from Klebsiella pneumoniae[J].Microbiology China. 2024,51(9):3317-3326.(in Chinese) [64] GAUDIN M, GAULIARD E, SCHOUTEN S, et al. Hyperthermophilic archaea producemembrane vesicles that can transfer DNA[J]. Environ Microbiol Rep, 2013, 5(1): 109-116. [65] GILL S, CATCHPOLE R, FORTERRE P. Extracellular membrane vesicles in the three domains of life and beyond[J]. FEMS Microbiol Rev, 2019, 43(3): 273-303. [66] ARNOLD B J, HUANG I T, HANAGE W P.Horizontal gene transfer and adaptive evolution in bacteria[J]. Nat Rev Microbiol, 2022(4):20. [67] LANG A S, ZHAXYBAYEVA O, BEATTY J T. Gene transfer agents: phage-like elements of genetic exchange[J]. Nat Rev Microbiol, 2012, 10(7): 472-482. [68] 朱作言,许克圣,谢岳峰,等.转基因鱼模型的建立[J].中国科学(B辑 化学 生命科学 地学),1989(2): 147-155. ZHU Z Y, XU K S, XIE Y F, et al. Establishment of transgenic fish model[J]. Scientia Sinica(Chimica). 1989(2): 147-155.(in Chinese) [69] LI C, WEN R, MU R, et al. Outer membrane vesicles of avian pathogenic escherichia coli mediate the horizontal transmission of blaCTX-M-55[J]. Pathogens, 2022,11(4):481. [70] TAMARIT D, NEUVONEN M, ENGEL P, et al. Origin and evolution of the bartonella gene transfer agent[J]. Mol Biol Evol, 2018, 35(2): 451-464. [71] JIAN Z, ZENG L, XU T, et al. Antibiotic resistance genes in bacteria: Occurrence, spread, and control[J]. J Basic Microbiol, 2021, 61(12): 1049-1070. [72] DUBEY G P, BEN-YEHUDA S. Intercellular nanotubes mediate bacterial communication[J]. Cell, 2011, 144(4): 590-600. [73] DRISCOLL J, GONDALIYA P, PATEL T. Tunneling nanotube-mediated communication: A mechanism of intercellular nucleic acid transfer[J].Int J Mol Sci, 2022, 23(10): 5487. [74] FENG G, HUANG H, CHEN Y. Effects of emerging pollutants on the occurrence and transfer of antibiotic resistance genes: A review[J]. J Hazard Mater, 2021, 420: 126602. [75] 刘含雨. 水环境中典型污染物促进抗生素抗性基因水平转移机理研究[D].邯郸:河北工程大学, 2019. LIU H Y. The mechanism of promoting antibiotic resistance gene horizontal transfer by typical pollutants in water environment[D]. Handan: Hebei University of Engineering, 2019.(in Chinese) [76] YUE Z, Zhang J, Zhou Z, et al. Antibiotic degradation dominates the removal ofantibiotic resistance genes during composting[J]. Bioresour Technol, 2022(Pt.B): 344. [77] 宋春磊,方淑霞,周 虹,等. 抗生素单一及联合暴露对RP4质粒介导的抗性基因水平转移的hormesis效应研究[J]. 生态毒理学报, 2017,12(1): 148-154. SONG C L,FANG S X,ZHOU H, et al. Hormesis effect of single and combined exposure of antibiotics on antibiotic resistance gene transfer mediated by RP4 plasmid[J]. Asian Journal of Ecotoxicology,2017, 12(1): 148-154.(in Chinese) [78] 苗 荪, 陈 磊, 左剑恶. 环境中抗生素抗性基因丰度与抗生素和重金属含量的相关性分析:基于Web of Science数据库检索[J].环境科学, 2021,42(10):4925-4932. MIAO S, CHEN L, ZUO J E. Correlation Analysis of abundance of antibiotic resistance genes and contents of antibiotics and heavy metals in environment:based on Web of Science database retrieval[J].Environmental Science,2021,42(10):4925-4932.(in Chinese) [79] KIM S, YUN Z, HA U H, et al. Transfer of antibiotic resistance plasmids in pure andactivated sludge cultures in the presence of environmentally representative micro-cont aminant concentrations[J]. Sci Total Environ, 2014, 468: 813-820. [80] LIU B, ZHANG X, DING X, et al. Regulatory mechanisms of sub-inhibitory levels antibiotics agent in bacterial virulence[J]. Appl Microbiol Biotechnol, 2021, 105(9): 3495-3505. [81] 丁曼琳,陈文碧,张菲阳. 亚抑制浓度抗生素对细菌水平基因转移的研究进展[J]. 西南医科大学学报, 2022, 45(5): 447-450. DING M L, CHEN W B, ZHANG F Y. Research progress of horizontal gene transfer induced by sub-inhibitory concentration of antibiotics in bacteria[J]. Journal of Southwest Medical University, 2022, 45(5): 447-450.(in Chinese) [82] 郭若楠,殷建成,刘佳慧,等.畜禽粪污无害化及资源化利用研究进展[J].特产研究,2025,47(2):180-185. GUO R N, YIN J C, LIU J H, et al. Research progress on harmless and resource utilization of livestock manure[J].Special Wild Economic Animal and Plant Research,2025,47(2):180-185..(in Chinese) [83] 穆虹宇,庄 重,李彦明,等.我国畜禽粪便重金属含量特征及土壤累积风险分析[J]. 环境科学, 2020, 41(2): 986-996. MU H Y, ZHUANG Z, LI Y M, et al. Heavy metal Contents in animal manure in China and the related soil accumulation risks[J]. Environmental Science, 2020, 41(2): 986-996.(in Chinese) [84] 赵家奕,张 园,汤欣悦,等.农田土壤中重金属对抗生素抗性基因及细菌群落的影响[J].化学通报(印刷版), 2023, 86(9): 1069-1077. ZHAO J Y, ZHANG Y, Tang X Y, et al. Effects of heavy metals in farmland soil on antibiotic resistance genes and bacterial communities[J]. Chemistry, 2023, 86(9): 1069-1077.(in Chinese) [85] 邱文婕. 铁元素对RP4质粒接合水平转移过程的影响研究[D].上海:东华大学, 2021. QIU W J. Study on the effect of iron on the conjugative horizontal transfer process of RP4 plasmid[D].Shanghai: Donghua University, 2021.(in Chinese) [86] 赵 婉. 土壤典型污染物对抗生素抗性基因接合转移的影响及作用机制[D]. 湘潭: 湘潭大学, 2020. ZHAO W. Effects and mechanisms of typical pollutants in soil on conjugative transfer of antibiotic resistance genes[D]. Xiangtan: Xiangtan University, 2020.(in Chinese) [87] 张倩珂. 代森锰锌对抗生素耐药质粒接合转移的影响及其调控机制[D]. 杭州: 浙江大学, 2021. ZHANG Q K. Effect of mancozeb on the conjugative transfer of the antibiotic resistance plasmid and its regulatory mechanism[D]. Hangzhou: Zhejiang University, 2021.(in Chinese) [88] LI Y, YUAN Y, TAN W, et al. Antibiotic resistance genes and heavy metals in landfill: A review[J]. J Hazard Mater, 2024, 464: 132395. [89] 胡小婕,秦 超,高彦征.有机污染物对抗生素抗性基因水平转移的影响及机制[J].科学通报, 2022, 67(35): 4224-4235. HU X J, QIN C, GAO Y Z. Organic contaminants influence the horizontal transfer of antibiotic resistance genes[J]. Chinese Science Bulletin, 2022, 67(35): 4224-4235.(in Chinese) [90] 麻雪妍. 污水中酚类化合物对耐药基因水平转移的影响及潜在机理研究[D]. 南京: 南京大学, 2021. MA X Y. A Study on the effect of phenolic compounds in wastewater on horizontal transfer of antibiotic resistance genes and potential mechanism[D]. Nanjing: Nanjing University, 2021.(in Chinese) [91] WANG Y, LU J, ENGELSTADTER J, et al. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation[J].ISME J, 2022(2):16. [92] KIDA M, ZIEMBOWICZ S, KOSZELNIK P. Decomposition of microplastics: Emission of harmful substances and greenhouse gases in the environment[J]. J Environ Chem Eng, 2023, 11(1): 109047. [93] BLASING M, AMELUNG W. Plastics in soil: Analytical methods and possible sources[J]. Sci Total Environ, 2018, 612: 422-435. [94] FENG Y, SUN J W, SHI W W, et al. Microplastics exhibit accumulation and horizontal transfer of antibiotic resistance genes[J]. J Environ Manage, 2023, 336: 117632. [95] SUN M, YE M, JIAO W, et al.Changes in tetracycline partitioning and bacteria/phage-comediated ARGs in microplastic-contaminated greenhouse soil facilitated by sophorolipid[J]. J Hazard Mater,2018,345:131-139. [96] LUO G, LIANG B, CUI H, et al. Determining the contribution of micro/nanoplastics to antimicrobial resistance: challenges and perspectives[J]. Environ Sci Technol, 2023,57(33):12137-12152. [97] 张厚朴. 农用杀菌剂胁迫下质粒RP4介导的抗生素抗性基因接合转移及其机制[D].杭州:浙江大学, 2021. ZHANG H P. Conjugative transfer and its mechanism of antibiotic resistance genes mediated by plasmid RP4 under agricultural fungicide stress[D]. Hangzhou: Zhejiang University, 2021.(in Chinese) [98] 邱志刚. 纳米材料促进质粒介导的细菌耐药基因接合转移及机制研究[D].北京:解放军军事医学科学院; 中国人民解放军军事医学科学院, 2012. QIU Z G.The effect and mechanisms of nano-materials onconjugative transfer of bacterial resistance genes mediated by plasmid[D].Beijing: Academy of Military Medical Sciences, 2012.(in Chinese) [99] 韩 雪. 纳米TiO2促进噬菌体介导的抗生素抗性基因水平转移机制研究[D]. 镇江:江苏大学, 2019. HAN X. Study on the mechanism of nano-TiO2 promoting phage-mediated horizontal transfer of antibiotic resistance genes[D]. Zhenjiang: Jiangsu University, 2019.(in Chinese) [100] 方 芳. 二维黑磷纳米材料的细菌耐药性及其对抗性基因水平转移的影响[D]. 合肥: 合肥工业大学, 2021. FANG F. Bacterial resistance of two-dimensional black phosphorus nanomaterials and the effect of horizontal transfer of resistant genes[D]. Hefei: Hefei University of Technology, 2021.(in Chinese) [101] 魏 闪. 环境纳米污染物对质粒介导的抗生素抗性基因水平转移的影响及机理研究[D].新乡: 河南师范大学, 2021. WEI S. Study on the effectsband mechanisms of enviromental nano-pollutants on the horizontal transfer of antibiotic resistantance genes[D]. Xinxiang: Henan Normal University, 2021.(in Chinese) [102] 胡 平,关文怡,雷莉辉,等. 宏基因组测序分析奶牛运动场土壤抗生素抗性基因[J]. 养殖与饲料, 2022, 21(8): 5-11. HU P, GUAN W Y, LEI L H, et al. Analysis of antibiotic resistance genes in dairy farm cow yard soil by metagenomic sequencing[J]. Animals Breeding and Feed, 2022, 21(8): 5-11.(in Chinese) [103] 傅松哲. 宏基因组测序技术在入海排污口污水监测中的研究进展[J]. 大连海洋大学学报, 2022, 37(6): 903-912. FU S Z. Research progress of metagenomic sequencing technology in monitoring of marine sewage outfalls:a review[J]. Journal of Dalian Fisheries University, 2022, 37(6): 903-912.(in Chinese) [104] LEI L, CHEN N, CHEN Z, et al. Dissemination of antibiotic resistance genes from aboveground sources to groundwater in livestock farms[J]. Water Res, 2024, 256: 121584. [105] SCHOLZ M, WARD D V, PASOLLI E, et al. Strain-level microbial epidemiology and population genomics from shotgun metagenomics[J]. Nat Methods, 2016, 13(5): 435-438. [106] HULTMAN J, TAMMINEN M, PÄRNÄNEN K, et al. Host range of antibiotic resistance genes in wastewater treatment plant influent and effluent[J]. FEMS Microbiol Ecol, 2018, 94(4): fiy038. [107] ROMAN V L, MERLIN C, VIRTA M P J, et al. EpicPCR 2.0: technical and methodological improvement of a cutting-edge single-cell genomic approach[J]. Microorganisms, 2021, 9(8): 1649. [108] SPENCER S J, TAMMINEN M V, PREHEIM S P, et al. Massively parallel sequencing of singlecells by epicPCR links functional genes with phylogenetic markers[J]. ISME J. 2016, 10(2): 427-436. [109] DAI S T, HE Q, HAN Z M, et al. Uncovering the diverse hosts of tigecycline resistance gene tet(X4) in anaerobic digestion systems treating swine manure by epicPCR[J]. Water Res X, 2023, 19: 100174. [110] WEI Z Y, FENG K, WANG Z, et al. High-Throughput Single-Cell Technology Reveals the Contribution of Horizontal Gene Transfer to Typical Antibiotic Resistance Gene Dissemination in Wastewater Treatment Plants[J].Environ Sci Technol, 2021, 55(17): 11824-11834. [111] WANG X, ZHANG H, YU S, et al. Inter-plasmid transfer of antibiotic resistance genes accelerates antibiotic resistance in bacterial pathogens[J]. ISME J, 2024, 18(1). [112] DELANEY S, MURPHY R, WALSH F. A comparison of methods for the extraction of plasmids capable of conferring antibiotic resistance in a human pathogen from complex broiler cecal samples[J]. Front Microbiol, 2018,9:1731. [113] WANG M, LIU P, ZHOU Q, et al. Estimating the contribution of bacteriophage to the dissemination of antibiotic resistance genes in pig feces[J].Environ Pollut, 2018, 238: 291-298. [114] DEVOTO A E, SANTINI J M, OLM M R, et al. Megaphages infect prevotella and variants are widespread in gut microbiomes[J]. Nat Microbiol, 2019,4(4):693-700. [115] COUTURIER A, VIROLLE C, GOLDLUST K, et al. Real-time visualisation of the intracellular dynamics of conjugative plasmid transfer[J]. Nat Commun, 2023, 14(1): 294. [116] GOLDLUST K, COUTURIER A, TERRADOT L, et al. Live-cell visualization of DNA transfer and pilus dynamics during bacterial conjugation[J]. Methods Mol Biol, 2022,2476: 63-74. [117] YUAN B, ZHANG Y, SUN M Y. Fluorescent tag reveals the potential mechanism of how indigenous soil bacteria affect the transfer of the wild fecal antibiotic resistance plasmid pKANJ7 in different habitat soils[J].J Hazard Mater,2023, 455(Aug.5):131659.1-131659. [118] MACEDO G, OLESEN A K, MACCARIO L, et al. Horizontal gene transfer of an IncP1 plasmid to soil bacterial community introduced by Escherichia coli through manure amendment in soil microcosms[J]. Environ Sci Technol, 2022, 56(16): 11398-11408. |
[1] | 章琦, 郭江鹏, 倪爱心, 杜洪峰, 陈继兰, 孙研研. 蛋鸡啄羽行为的影响因素与遗传调控基础研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3745-3756. |
[2] | 杨亚新, 刘慧敏, 孟璐, 叶巧燕, 佀博学, 王加启, 郑楠. 生乳酸度分析及影响因素研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2836-2845. |
[3] | 段益欣, 张林云, 赵永聚. SNP遗传力估计方法、影响因素及其在畜禽育种中的应用[J]. 畜牧兽医学报, 2024, 55(5): 1854-1865. |
[4] | 任钰为, 陈星, 林燕宁, 黄潇仙, 洪玲玲, 王峰, 孙瑞萍, 张艳, 刘海隆, 郑心力, 晁哲. 基于全基因组重测序研究文昌鸡产蛋性能的影响因素[J]. 畜牧兽医学报, 2024, 55(2): 502-514. |
[5] | 茹盟, 曾文惠, 彭剑玲, 曾庆节, 殷超, 崔勇, 魏庆, 梁海平, 谢贤华, 黄建珍. 蛋鸡卵泡发育及其表观遗传调控机制研究进展[J]. 畜牧兽医学报, 2023, 54(9): 3613-3622. |
[6] | 王静宇, 樊姝琪, 黎成, 尹宁, 庄彬贤, 刘慧铭, 温永仙. 我国猪丹毒疫情的时空特征及其影响因素[J]. 畜牧兽医学报, 2023, 54(6): 2528-2542. |
[7] | 安宗麒, 占思远, 李利, 张红平. circRNA作为ceRNA调控畜禽重要经济性状的研究进展[J]. 畜牧兽医学报, 2023, 54(6): 2215-2222. |
[8] | 张弥, 涂闻君, 张奇, 江莎. 影响鸡脂肪肝出血综合征的因素及“多重打击”学说[J]. 畜牧兽医学报, 2022, 53(8): 2453-2469. |
[9] | 万涛, 王澳, 张海亮, 胡丽蓉, 赵善江, 张翰霖, 王炎, 郭刚, 俞英, 王雅春. 荷斯坦牛血浆抗缪勒氏管激素浓度的影响因素分析及遗传参数估计[J]. 畜牧兽医学报, 2022, 53(1): 161-168. |
[10] | 赵佳琦, 文勇立, 安雅静, 李子谦, 齐沛森, 李强, 候定超. 牦牛瘤胃微生物抗生素抗性基因对3种外源性刺激因子的响应[J]. 畜牧兽医学报, 2020, 51(5): 1126-1137. |
[11] | 姚天雄, 陈冬, 吴珍芳, 肖石军, 张志燕, 杨明. 大白和长白猪大样本群体的繁殖性状遗传参数估计及影响因素分析[J]. 畜牧兽医学报, 2019, 50(11): 2195-2207. |
[12] | 施辉毕,王立刚,梁晶,杨厚德,廖玲玲,陈钊,刘欣,赵克斌,张龙超,颜华,王立贤. 仔猪均匀度遗传参数估计及影响因素分析[J]. 畜牧兽医学报, 2015, 46(12): 2146-2152. |
[13] | 崔莉莎,赵学明,郝海生,杜卫华,朱化彬. 牛胚胎干细胞研究进展[J]. 畜牧兽医学报, 2014, 45(11): 1739-1745. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||