畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (8): 4031-4041.doi: 10.11843/j.issn.0366-6964.2025.08.040
朱怡萱(), 谷鹏飞, 赵奇, 徐盼盼, 范迎赛, 包永占, 王霄*(
), 史万玉*(
)
收稿日期:
2024-10-23
出版日期:
2025-08-23
发布日期:
2025-08-28
通讯作者:
王霄,史万玉
E-mail:zyx1013583535@163.com;wxwangxiao418@163.com;shiwanyu2010@126.com
作者简介:
朱怡萱(1998-),女,宁夏银川人,博士生,主要从事新型中兽药研发,E-mail:zyx1013583535@163.com
基金资助:
ZHU Yixuan(), GU Pengfei, ZHAO Qi, XU Panpan, FAN Yingsai, BAO Yongzhan, WANG Xiao*(
), SHI Wanyu*(
)
Received:
2024-10-23
Online:
2025-08-23
Published:
2025-08-28
Contact:
WANG Xiao, SHI Wanyu
E-mail:zyx1013583535@163.com;wxwangxiao418@163.com;shiwanyu2010@126.com
摘要:
本研究利用PLGA包封了免疫刺激效果强和生物安全性良好的丹参多糖和Mn2+,评价了该体系作为灭活PCV2佐剂的免疫增强效果。首先我们利用复乳溶剂挥发法制备了共载丹参多糖和Mn2+的PLGA纳米佐剂递送系统(SM-PLGA),将SM-PLGA与PCV2抗原混合,对小鼠左右大腿皮下分别注射100 μL进行初免,同时设立空白对照组、PCV2组、Alhydrogel (Algel)-PCV2组、丹参多糖-PLGA组、SM组、丹参多糖组和PLGA组,免疫后的第14天对小鼠进行加强免疫。初免后的第5天通过流式细胞术评估腘淋巴结和腹股沟淋巴结中DCs的活化情况。在初免后的第21、28、35、42天收集小鼠血清,对PCV2特异性抗体IgG、IgG1、IgG2a进行动态监测,评价佐剂对PCV2特异性体液免疫反应的增强效果。在初免后的第21、28天采集小鼠脾脏淋巴细胞,分别对CD4+T细胞、CD8+T细胞、细胞毒性T细胞、记忆性T细胞和生发中心B细胞活化情况进行测定,并对第28天细胞上清中IFN-β、IFN-γ、IL-6进行测定。最后,在初免后的第35天采集小鼠淋巴结,测定生发中心B细胞的活化情况。通过上述不同时段的测定结果,评价SM-PLGA对机体免疫反应的增强效果。由结果可知SM-PLGA在初免后的第5天可以极显著促进淋巴结DCs的活化,在初免后第21~42天可以持续刺激PCV2特异性抗体IgG及其亚型的分泌。在初免后第21天SM-PLGA可显著促进脾脏CD4+T细胞、CD8+T细胞和CD8+T细胞中CTL应答,并在初免后第28和35天仍对记忆性T细胞和生发中心B细胞有较强的刺激作用,同时极显著促进相关细胞因子IFN-β、IFN-γ、IL-6的分泌。结果表明SM-PLGA作为灭活PCV2的佐剂,可以诱导强效的Th1/Th2免疫应答,为PCV2的预防提供参考。
中图分类号:
朱怡萱, 谷鹏飞, 赵奇, 徐盼盼, 范迎赛, 包永占, 王霄, 史万玉. 共载丹参多糖和Mn2+的PLGA纳米粒作为灭活PCV2的佐剂效果评价[J]. 畜牧兽医学报, 2025, 56(8): 4031-4041.
ZHU Yixuan, GU Pengfei, ZHAO Qi, XU Panpan, FAN Yingsai, BAO Yongzhan, WANG Xiao, SHI Wanyu. Evaluation of PLGA Nanoparticles Co-loaded with Salvia miltiorrhiza Polysaccharide and Mn2+ as an Adjuvant for Inactivating PCV2[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 4031-4041.
1 |
FINSTERBUSCH T , MANKERTZ A . Porcine circoviruses--small but powerful[J]. Virus Res, 2009, 143 (2): 177- 183.
doi: 10.1016/j.virusres.2009.02.009 |
2 |
REN L , CHEN X , OUYANG H . Interactions of porcine circovirus 2 with its hosts[J]. Virus Genes, 2016, 52 (4): 437- 444.
doi: 10.1007/s11262-016-1326-x |
3 |
SEGALÉS J . Porcine circovirus type 2 (PCV2) infections: clinical signs, pathology and laboratory diagnosis[J]. Virus Res, 2012, 164 (1-2): 10- 19.
doi: 10.1016/j.virusres.2011.10.007 |
4 |
LIU X , OUYANG T , MA T , et al. Immunogenicity evaluation of inactivated virus and purified proteins of porcine circovirus type 2 in mice[J]. BMC Vet Res, 2018, 14 (1): 137.
doi: 10.1186/s12917-018-1461-9 |
5 |
CHAE C . A review of porcine circovirus 2-associated syndromes and diseases[J]. Vet J, 2005, 169 (3): 326- 336.
doi: 10.1016/j.tvjl.2004.01.012 |
6 |
HUANG Y , LIU Z , BO R , et al. The enhanced immune response of PCV-2 vaccine using Rehmannia glutinosa polysaccharide liposome as an adjuvant[J]. Int J Biol Macromol, 2016, 86, 929- 936.
doi: 10.1016/j.ijbiomac.2016.02.003 |
7 |
ZHANG G , JIA P , CHENG G , et al. Enhanced immune response to inactivated porcine circovirus type 2 (PCV2) vaccine by conjugation of chitosan oligosaccharides[J]. Carbohydr Polym, 2017, 166, 64- 72.
doi: 10.1016/j.carbpol.2017.02.058 |
8 | 邓盈盈. 猪圆环病毒2型Cap蛋白抗独特型纳米抗体免疫保护性及其机制研究[D]. 杨凌: 西北农林科技大学, 2023. |
DENG Y Y. Study on the immune protection and mechanism of porcine circovirus type 2 Cap protein anti-idiotypic nanobody[D]. Yangling: Northwest A&F University, 2023. (in Chinese) | |
9 |
SUN J , HUANG L , WEI Y , et al. Prevalence of emerging porcine parvoviruses and their co-infections with porcine circovirus type 2 in China[J]. Arch Virol, 2015, 160 (5): 1339- 1344.
doi: 10.1007/s00705-015-2373-7 |
10 |
BEACH N M , MENG X-J . Efficacy and future prospects of commercially available and experimental vaccines against porcine circovirus type 2 (PCV2)[J]. Virus Res, 2012, 164 (1-2): 33- 42.
doi: 10.1016/j.virusres.2011.09.041 |
11 |
BURAKOVA Y , MADERA R , MCVEY S , et al. Adjuvants for animal vaccines[J]. Viral Immunol, 2018, 31 (1): 11- 22.
doi: 10.1089/vim.2017.0049 |
12 |
EXLEY C . Aluminium adjuvants and adverse events in sub-cutaneous allergy immunotherapy[J]. Allergy Asthma Clin Immunol, 2014, 10 (1): 4.
doi: 10.1186/1710-1492-10-4 |
13 |
LIU Z , XING J , HUANG Y , et al. Activation effect of Ganoderma lucidum polysaccharides liposomes on murine peritoneal macrophages[J]. Int J Biol Macromol, 2016, 82, 973- 978.
doi: 10.1016/j.ijbiomac.2015.10.088 |
14 |
WAN X , YIN Y , ZHOU C , et al. Polysaccharides derived from Chinese medicinal herbs: A promising choice of vaccine adjuvants[J]. Carbohydr Polym, 2022, 276, 118739.
doi: 10.1016/j.carbpol.2021.118739 |
15 |
ZHU Y , YANG X , GU P , et al. The structural characterization of a polysaccharide from the dried root of Salvia miltiorrhiza and its use as a vaccine adjuvant to induce humoral and cellular immune responses[J]. Int J Mol Sci, 2024, 25 (14): 7765.
doi: 10.3390/ijms25147765 |
16 |
JIANG Y , WANG L , ZHANG L , et al. Optimization of extraction and antioxidant activity of polysaccharides from Salvia miltiorrhiza Bunge residue[J]. Int J Biol Macromol, 2015, 79, 533- 541.
doi: 10.1016/j.ijbiomac.2015.05.024 |
17 |
JI H Y , LIU C , DAI K Y , et al. The extraction, structure, and immunomodulation activities in vivo of polysaccharides from Salvia miltiorrhiza[J]. Ind Crop Prod, 2021, 173, 114085.
doi: 10.1016/j.indcrop.2021.114085 |
18 |
LATZ E , XIAO T S , STUTZ A . Activation and regulation of the inflammasomes[J]. Nat Rev Immunol, 2013, 13 (6): 397- 411.
doi: 10.1038/nri3452 |
19 |
CHEN Y , LI H , LI M , et al. Salvia miltiorrhiza polysaccharide activates T lymphocytes of cancer patients through activation of TLRs mediated -MAPK and -NF-κB signaling pathways[J]. J Ethnopharmacol, 2017, 200, 165- 173.
doi: 10.1016/j.jep.2017.02.029 |
20 |
WANG N , YANG J , LU J , et al. A polysaccharide from Salvia miltiorrhiza Bunge improves immune function in gastric cancer rats[J]. Carbohydr Polym, 2014, 111, 47- 55.
doi: 10.1016/j.carbpol.2014.04.061 |
21 |
WANG C , GUAN Y , LV M , et al. Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses[J]. Immunity, 2018, 48 (4): 675- 687.
doi: 10.1016/j.immuni.2018.03.017 |
22 |
PORANEN M M , SALGADO P S , KOIVUNEN M R L , et al. Structural explanation for the role of Mn2+ in the activity of phi6 RNA-dependent RNA polymerase[J]. Nucleic Acids Res, 2008, 36 (20): 6633- 6644.
doi: 10.1093/nar/gkn632 |
23 |
ZHAO Z , MA Z , WANG B , et al. Mn2+ directly activates cGAS and structural analysis suggests Mn2+ induces a noncanonical catalytic synthesis of 2'3'-cGAMP[J]. Cell Rep, 2020, 32 (7): 108053.
doi: 10.1016/j.celrep.2020.108053 |
24 |
LIU Z , XING J , ZHENG S , et al. Ganoderma lucidum polysaccharides encapsulated in liposome as an adjuvant to promote Th1-bias immune response[J]. Carbohydr Polym, 2016, 142, 141- 148.
doi: 10.1016/j.carbpol.2016.01.021 |
25 |
ZHANG S , PANG G , CHEN C , et al. Effective cancer immunotherapy by Ganoderma lucidum polysaccharide-gold nanocomposites through dendritic cell activation and memory T cell response[J]. Carbohydr Polym, 2019, 205, 192- 202.
doi: 10.1016/j.carbpol.2018.10.028 |
26 |
SARTI F , PERERA G , HINTZEN F , et al. In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A[J]. Biomaterials, 2011, 32 (16): 4052- 4057.
doi: 10.1016/j.biomaterials.2011.02.011 |
27 | 张威风. 粒径均一聚乳酸基微球作为亚单位疫苗佐剂的研究[D]. 北京: 中国科学院研究生院, 2015. |
ZHANG W F. Study on uniform particle size polylactic acid microspheres as adjuvants for subunit vaccines[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2015. (in Chinese) | |
28 |
ZHU Y X , ZHAO Q , GU P F , et al. PLGA co-loaded Salvia miltiorrhiza polysaccharide and Mn2+ as an adjuvant to induce potent immunity[J]. Int J Biol Macromol, 2025, 300, 140050.
doi: 10.1016/j.ijbiomac.2025.140050 |
29 | 谷鹏飞. 聚乙烯亚胺修饰的当归多糖PLGA纳米粒的佐剂活性及作用机理研究[D]. 南京: 南京农业大学, 2022. |
GU P F. Study on the adjuvant activity and mechanism of polyethyleneimine-coated PLGA nanoparticles-encapsulated angelica sinensis polysaccharide[D]. Nanjing: Nanjing Agricultural University, 2022. (in Chinese) | |
30 |
WANG Z , YUAN Y , CHEN C , et al. Colloidal manganese salt improves the efficacy of rabies vaccines in mice, cats, and dogs[J]. J Virol, 2021, 95 (23): e0141421.
doi: 10.1128/JVI.01414-21 |
31 |
LU T , HU F , YUE H , et al. The incorporation of cationic property and immunopotentiator in poly (lactic acid) microparticles promoted the immune response against chronic hepatitis B[J]. J Control Release, 2020, 321, 576- 588.
doi: 10.1016/j.jconrel.2020.02.039 |
32 |
ZHANG W , WANG L , LIU Y , et al. Immune responses to vaccines involving a combined antigen-nanoparticle mixture and nanoparticle-encapsulated antigen formulation[J]. Biomaterials, 2014, 35 (23): 6086- 6097.
doi: 10.1016/j.biomaterials.2014.04.022 |
33 | SABJAN K B , MUNAWAR S M , RAJENDIRAN D , et al. Nanoemulsion as oral drug delivery-a review[J]. Curr Drug Res Rev, 2020, 12 (1): 14- 15. |
34 |
DU G , HATHOUT R M , NASR M , et al. Intradermal vaccination with hollow microneedles: A comparative study of various protein antigen and adjuvant encapsulated nanoparticles[J]. J Control Release, 2017, 266, 109- 118.
doi: 10.1016/j.jconrel.2017.09.021 |
35 |
TRAPANI J A , SMYTH M J . Functional significance of the perforin/granzyme cell death pathway[J]. Nat Rev Immunol, 2002, 2 (10): 735- 747.
doi: 10.1038/nri911 |
36 |
LEE J Y , CHAE D W , KIM S M , et al. Expression of FasL and perforin/granzyme B mRNA in chronic hepatitis B virus infection[J]. J Viral Hepat, 2004, 11 (2): 130- 135.
doi: 10.1046/j.1365-2893.2003.00486.x |
37 |
HU F , YUE H , LU T , et al. Cytosolic delivery of HBsAg and enhanced cellular immunity by pH-responsive liposome[J]. J Control Release, 2020, 324, 460- 470.
doi: 10.1016/j.jconrel.2020.05.042 |
38 |
JIA J , LIU Q , YANG T , et al. Facile fabrication of varisized calcium carbonate microspheres as vaccine adjuvants[J]. J Mater Chem B, 2017, 5 (8): 1611- 1623.
doi: 10.1039/C6TB02845D |
39 | 卫潇茗, 王晨光, 张睿, 等. 锰离子作为免疫调节剂的发现及应用展望[J]. 中国细胞生物学学报, 2020, 42 (10): 1721- 1731. |
WEI X M , WANG C G , ZHANG R , et al. The discovery and application of manganese ions as immunomodulators[J]. Chinese Journal of Cell Biology, 2020, 42 (10): 1721- 1731. | |
40 |
KUMAR S , KESHARWANI S S , KUPPAST B , et al. Pathogen-mimicking vaccine delivery system designed with a bioactive polymer (inulin acetate) for robust humoral and cellular immune responses[J]. J Control Release, 2017, 261, 263- 274.
doi: 10.1016/j.jconrel.2017.06.026 |
41 |
COURANT T , BAYON E , REYNAUD-DOUGIER H L , et al. Tailoring nanostructured lipid carriers for the delivery of protein antigens: Physicochemical properties versus immunogenicity studies[J]. Biomaterials, 2017, 136, 29- 42.
doi: 10.1016/j.biomaterials.2017.05.001 |
42 |
CHEN X , LIU Y , WANG L , et al. Enhanced humoral and cell-mediated immune responses generated by cationic polymer-coated PLA microspheres with adsorbed HBsAg[J]. Mol Pharm, 2014, 11 (6): 1772- 1784.
doi: 10.1021/mp400597z |
43 |
LIU Y , JIAO F , QIU Y , et al. The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-alpha mediated cellular immunity[J]. Biomaterials, 2009, 30 (23-24): 3934- 3945.
doi: 10.1016/j.biomaterials.2009.04.001 |
44 |
QIAO N , WANG H , XU Y , et al. A MnAl double adjuvant nanovaccine to induce strong humoral and cellular immune responses[J]. J Control Release, 2023, 358, 190- 203.
doi: 10.1016/j.jconrel.2023.04.036 |
45 | 卢婷. 基于聚乳酸微球佐剂的乙肝疫苗研究[D]. 北京: 中国科学院大学, 2020. |
LU T. Study on hepatitis B vaccine based on polylactic acid microsphere adjuvant[D]. Beijing: University of Chinese Academy of Sciences, 2020. (in Chinese) |
[1] | 林欣怡, 蒋欣雨, 苏子诺, 王煜灵, 阮诗雨, 洪海龙, 吴佳豪, 伯若楠. 白术多糖超大介孔二氧化硅纳米颗粒的制备及其黏膜免疫佐剂活性的研究[J]. 畜牧兽医学报, 2025, 56(5): 2507-2519. |
[2] | 王梦迪, 王恒, 鲁秀香, 王昱旻, 樊文杰, 姚晨, 刘鹏翔, 马延杰, 杨国宇. 锰纳米佐剂的制备及生物学效应[J]. 畜牧兽医学报, 2024, 55(8): 3374-3382. |
[3] | 周梦婷, 宋银娟, 许健, 李斌, 冉多良, 储岳峰. 基于碳水化合物的佐剂作用机制研究进展[J]. 畜牧兽医学报, 2024, 55(2): 491-501. |
[4] | 王子, 王年祥, 田长明, 赵福杰, 刘林涛, 马梦瑶, 贾鑫浩, 刘国星, 郑兰兰. 桥连双苯丙氨酸二肽增强灭活猪丁型冠状病毒在小鼠上的免疫效果分析[J]. 畜牧兽医学报, 2023, 54(4): 1590-1597. |
[5] | 李让, 翁翔, 李泉晓, 吴道澄, 曹辉, 张爱莲. 栽培一枝蒿粗多糖混合口蹄疫疫苗乳化方法及稳定性分析[J]. 畜牧兽医学报, 2023, 54(4): 1608-1615. |
[6] | 潘伟雄, 陈钰怡, 赵锃珏, 冯赛祥, 仇微红, 叶贺佳, 张玲华. 高效赤红球菌协同CpG ODN增强鸡禽流感疫苗的免疫效力[J]. 畜牧兽医学报, 2022, 53(12): 4367-4378. |
[7] | 如孜万古丽·依马木, 张爱莲, 翁翔, 肖鹏, 曹辉, 吴道澄. 新疆栽培与野生一枝蒿粗多糖对口蹄疫疫苗免疫小鼠的佐剂活性比较[J]. 畜牧兽医学报, 2022, 53(11): 4089-4096. |
[8] | 翁翔, 张爱莲, 李泉晓, 吴道澄, 曹辉. 栽培一枝蒿粗多糖佐剂增强口蹄疫疫苗的皮下免疫效果[J]. 畜牧兽医学报, 2022, 53(1): 315-323. |
[9] | 孟祯, 孙梦珂, 许永得, 秦韬, 任喆. 余甘子多糖的结构表征及免疫增强作用[J]. 畜牧兽医学报, 2021, 52(12): 3627-3640. |
[10] | 刘丹华, 郑世民, 刘晓静, 吕晓萍, 高雪丽, 刘超男. 禽网状内皮组织增生病病毒感染对SPF雏鸡血液和局部淋巴组织CD4+/CD8+细胞及相关细胞因子表达的影响[J]. 畜牧兽医学报, 2020, 51(6): 1447-1454. |
[11] | 裴世璇, 宋吉健, 韩忆侬, 薛云, 王臣, 司丽芳, 赵战勤. 猪丹毒丝菌灭活疫苗免疫佐剂的筛选[J]. 畜牧兽医学报, 2020, 51(5): 1083-1090. |
[12] | 姚焱彬, 陈章, 储霞飞, 魏建忠, 孙裴, 李郁. 副猪嗜血杆菌TbpA对仔猪的免疫效力评价[J]. 畜牧兽医学报, 2018, 49(3): 588-596. |
[13] | 张静,周倩,唐梦君,张小燕,赵敏,杨星星,万玉,高玉时. 疫苗油佐剂在鸡蛋和组织中的残留代谢分析[J]. 畜牧兽医学报, 2017, 48(3): 544-551. |
[14] | 谭鑫, 库旭钢, 于学祥, 郭恒科, 何东贤, 范盛先, 何启盖. IFN-γ-ELISpot方法用于评价猪伪狂犬病疫苗免疫效果[J]. 畜牧兽医学报, 2017, 48(10): 1939-1948. |
[15] | 周业飞,周梅仙. 面筋蛋白外啡肽B5对传染性支气管炎灭活疫苗免疫效果的影响[J]. 畜牧兽医学报, 2016, 47(3): 566-583. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||