1 |
李洁群, 余静贵, 饶洁, 等. 耐甲氧西林金黄色葡萄球菌的临床分布和耐药性分析[J]. 中国当代医药, 2023, 30 (22): 120- 123.
doi: 10.3969/j.issn.1674-4721.2023.22.030
|
|
LI J Q , YU J G , RAO J , et al. Analysis of drug resistance and clinical distribution in methicillin-resistant Staphylococcus aureus[J]. China Modern Medicine, 2023, 30 (22): 120- 123.
doi: 10.3969/j.issn.1674-4721.2023.22.030
|
2 |
田洪亮, 徐刘溢, 彭练慈, 等. 金黄色葡萄球菌病防治研究进展[J]. 微生物学报, 2023, 63 (12): 4441- 4450.
|
|
TIAN H L , XU L Y , PENG L C , et al. Research progress in prevention and treatment of Staphylococcus aureus[J]. Acta Microbiologica Sinica, 2023, 63 (12): 4441- 4450.
|
3 |
PARK J , LEE J , JUNG E , et al. In vitro antibacterial and anti-inflammatory effects of honokiol and magnolol against Propionibacterium sp[J]. Eur J Pharmacol, 2004, 496 (1-3): 189- 195.
doi: 10.1016/j.ejphar.2004.05.047
|
4 |
张建国, 赵东方, 任乐. 厚朴超临界提出物中厚朴酚与和厚朴酚抑菌性研究[J]. 中国美容医学, 2010, 19 (11): 1678- 1679.
doi: 10.3969/j.issn.1008-6455.2010.11.047
|
|
ZHANG J G , ZHAO D F , REN L . Antimicrobial research of honokiol and magnolol isolated from Magnolia officinalis[J]. Chinese Journal of Aesthetic Medicine, 2010, 19 (11): 1678- 1679.
doi: 10.3969/j.issn.1008-6455.2010.11.047
|
5 |
SYU W J , SHEN C C , LU J J , et al. Antimicrobial and cytotoxic activities of neolignans from Magnolia officinalis[J]. Chem Biodivers, 2004, 1 (3): 530- 537.
doi: 10.1002/cbdv.200490046
|
6 |
乔瑞红. 和厚朴酚抑制耐甲氧西林金黄色葡萄球菌生物被膜形成的作用机制[D]. 大连: 辽宁师范大学, 2016.
|
|
QIAO R H. Inhibition mechanism of honokiol on biofilm formation by methicillin-resistant Staphylococcus aureus[D]. Dalian: Liaoning Normal University, 2016. (in Chinese)
|
7 |
蒋健. 靶向细菌的载厚朴酚纳米组装体的构建及抗菌性能研究[D]. 扬州: 扬州大学, 2022.
|
|
JIANG J. Construction and antibacterial properties of bacteria-targeted magnolol loaded nanoassemblies[D]. Yangzhou: Yangzhou University, 2022. (in Chinese)
|
8 |
HO K Y , TSAI C C , CHEN C P , et al. Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis[J]. Phytother Res, 2001, 15 (2): 139- 141.
doi: 10.1002/ptr.736
|
9 |
KIM Y S , LEE J Y , PARK J , et al. Synthesis and microbiological evaluation of honokiol derivatives as new antimicrobial agents[J]. Arch Pharm Res, 2010, 33 (1): 61- 65.
doi: 10.1007/s12272-010-2225-7
|
10 |
LI W L , ZHAO X C , ZHAO Z W , et al. In vitro antimicrobial activity of honokiol against Staphylococcus aureus in biofilm mode[J]. J Asian Nat Prod Res, 2016, 18 (12): 1178- 1185.
doi: 10.1080/10286020.2016.1194829
|
11 |
董靖, 胥宁, 刘永涛, 等. 和厚朴酚对嗜水气单胞菌气溶素表达的抑制作用[J]. 水生生物学报, 2020, 44 (3): 541- 545.
|
|
DONG J , XU N , LIU Y T , et al. The inhibitory effect of honokiol on aerolysin secretion by Aeromonas hydrophila[J]. Acta Hydrobiologica Sinica, 2020, 44 (3): 541- 545.
|
12 |
孟美竹. 和厚朴酚抑制白色念珠菌的作用机制[D]. 大连: 辽宁师范大学, 2017.
|
|
MENG M Z. The Inhibition mechanism of honokiol against Candida albicans[D]. Dalian: Liaoning Normal University, 2017. (in Chinese)
|
13 |
陈听听. 和厚朴酚对葡萄座腔菌的抑菌机理[D]. 贵阳: 贵州大学, 2023.
|
|
CHEN T T. The antibacterial mechanism of honokiol on Staphylococcus aureus[D]. Guiyang: Guizhou University, 2023. (in Chinese)
|
14 |
燕银芳. 天然源和厚朴酚与异黄腐酚的抗菌活性评价及(和)厚朴酚的复配增效研究[D]. 兰州: 兰州大学, 2021.
|
|
YAN Y F. Evaluation of antifungal activity of natural honokiol and isoxanthohumol, and synergistic effects of magnolol and honokiol[D]. Lanzhou: Lanzhou University, 2021. (in Chinese)
|
15 |
汪娴娴. 药用植物提取物筛选及和厚朴酚对烟草疫霉的抑制作用[D]. 青岛: 青岛农业大学, 2022.
|
|
WANG X X. Screening of medicinal plant extracts and inhibition action of honokiol against Phytophthora nicotianae[D]. Qingdao: Qingdao Agricultural University, 2022. (in Chinese)
|
16 |
HAN D , LIU X , WU S . Metal organic framework-based antibacterial agents and their underlying mechanisms[J]. Chem Soc Rev, 2022, 51 (16): 7138- 7169.
doi: 10.1039/D2CS00460G
|
17 |
LI R , CHEN T , PAN X . Metal-organic-framework-based materials for antimicrobial applications[J]. ACS Nano, 2021, 15 (3): 3808- 3848.
doi: 10.1021/acsnano.0c09617
|
18 |
LIU X , ASTRUC D . Atomically precise copper nanoclusters and their applications[J]. Coord Chem Rev, 2018, 359, 112- 126.
doi: 10.1016/j.ccr.2018.01.001
|
19 |
LAI W F , WONG W T , ROGACH A L . Development of copper nanoclusters for in vitro and in vivo theranostic applications[J]. Adv Mater, 2020, 32 (9): e1906872.
doi: 10.1002/adma.201906872
|
20 |
SU Z , KONG L , MEI J , et al. Enzymatic bionanocatalysts for combating peri-implant biofilm infections by specific heat-amplified chemodynamic therapy and innate immunomodulation[J]. Drug Resist Updat, 2023, 67, 100917.
doi: 10.1016/j.drup.2022.100917
|
21 |
ESTEBAN-TEJEDA L , MALPARTIDA F , ESTEBAN-CUBILLO A , et al. Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles[J]. Nanotechnology, 2009, 20 (50): 505701.
doi: 10.1088/0957-4484/20/50/505701
|
22 |
WANG S , DENG W , YANG L , et al. Copper-based metal-organic framework nanoparticles with peroxidase-like activity for sensitive colorimetric detection of Staphylococcus aureus[J]. ACS Appl Mater Interfaces, 2017, 9 (29): 24440- 24445.
doi: 10.1021/acsami.7b07307
|
23 |
XIAO J , CHEN S , YI J , et al. A cooperative copper metal-organic framework-hydrogel system improves wound healing in diabetes[J]. Adv Funct Mater, 2017, 27 (1): 1604872.
doi: 10.1002/adfm.201604872
|
24 |
DUAN P , AN Y , WEI X , et al. A novel structure of ultra-high-loading small molecules-encapsulated ZIF-8 colloid particles[J]. Nano Res, 2024, 17 (4): 2929- 2940.
doi: 10.1007/s12274-023-6172-2
|
25 |
邓劲, 刘雅, 吴思颖, 等. 抗菌药物体外联合药物敏感性试验方法[J]. 检验医学, 2023, 38 (4): 385- 393.
|
|
DENG J , LIU Y , WU S Y , et al. Antimicrobial drugs combined with drug susceptibility test in vitro[J]. Laboratory Medicine, 2023, 38 (4): 385- 393.
|
26 |
SHI Y , CAO Y , CHENG J , et al. Construction of self-activated nanoreactors for cascade catalytic anti-biofilm therapy based on H2O2 self-generation and switch-on NO release[J]. Adv Funct Mater, 2022, 32 (20): 2111148.
doi: 10.1002/adfm.202111148
|
27 |
WU S , XU C , ZHU Y , et al. Biofilm-sensitive photodynamic nanoparticles for enhanced penetration and antibacterial efficiency[J]. Adv Funct Mater, 2021, 31 (33): 2103591.
doi: 10.1002/adfm.202103591
|
28 |
KALATHINATHAN P , SAIN A , PULICHERLA K , et al. A review on the various sources of beta-galactosidase and its lactose hydrolysis property[J]. Curr Microbiol, 2023, 80 (4): 122.
doi: 10.1007/s00284-023-03220-4
|
29 |
马丛丛, 吴广升. 铜在抗菌敷料中应用研究进展[J]. 青岛大学学报(医学版), 2023, 59 (03): 471- 474.
|
|
MA C C , WU G S . Research progress in application of copper in antibacterial wound dressings[J]. Journal of Qingdao University (Medical Sciences), 2023, 59 (3): 471- 474.
|