1 |
ILYAS B , TSAI C N , COOMBES B K . Evolution of Salmonella-host cell interactions through a dynamic bacterial genome[J]. Front Cell Infect Microbiol, 2017, 7, 428.
doi: 10.3389/fcimb.2017.00428
|
2 |
GAL-MOR O , FINLAY B B . Pathogenicity islands: a molecular toolbox for bacterial virulence[J]. Cell Microbiol, 2006, 8 (11): 1707- 1719.
doi: 10.1111/j.1462-5822.2006.00794.x
|
3 |
SANA T G , FLAUGNATTI N , LUGO K A , et al. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut[J]. Proc Natl Acad Sci U S A, 2016, 113 (34): E5044- E5051.
|
4 |
SCHAT K A , NAGARAJA K V , SAIF Y M . Pullorum disease: evolution of the eradication strategy[J]. Avian Dis, 2021, 65 (2): 227- 236.
|
5 |
孟繁新. 鸡白痢沙门氏菌病的流行病学、临床症状、诊断与防控措施[J]. 现代畜牧科技, 2020 (11): 90- 91.
|
|
MENG F X . Epidemiology, clinical symptoms, diagnosis and control measures of chicken Salmonella Pullorum[J]. Modern Animal Husbandry Science & Technology, 2020 (11): 90- 91.
|
6 |
WIGLEY P , BERCHIERI A J , PAGE K L , et al. Salmonella enterica serovar Pullorum persists in splenic macrophages and in the reproductive tract during persistent, disease-free carriage in chickens[J]. Infect Immun, 2001, 69 (12): 7873- 7879.
doi: 10.1128/IAI.69.12.7873-7879.2001
|
7 |
THOMPSON J L , HINTON M . Antibacterial activity of formic and propionic acids in the diet of hens on Salmonellas in the crop[J]. Br Poult Sci, 1997, 38 (1): 59- 65.
doi: 10.1080/00071669708417941
|
8 |
RIBEIRO S A , DE PAIVA J B , ZOTESSO F , et al. Molecular differentiation between Salmonella enterica subsp enterica serovar Pullorum and Salmonella enterica subsp enterica serovar Gallinarum[J]. Braz J Microbiol, 2009, 40 (1): 184- 188.
doi: 10.1590/S1517-83822009000100032
|
9 |
BERCHIERI A J , MURPHY C K , MARSTON K , et al. Observations on the persistence and vertical transmission of Salmonella enterica serovars Pullorum and Gallinarum in chickens: effect of bacterial and host genetic background[J]. Avian Pathol, 2001, 30 (3): 221- 231.
doi: 10.1080/03079450120054631
|
10 |
CALENGE F , KAISER P , VIGNAL A , et al. Genetic control of resistance to salmonellosis and to Salmonella carrier-state in fowl: a review[J]. Genet Sel Evol, 2010, 42 (1): 11.
doi: 10.1186/1297-9686-42-11
|
11 |
周雪雁, 李琼毅, 丁功涛, 等. 鸡肠道微生物菌群的建立发育、分布和生理学意义[J]. 微生物学报, 2020, 60 (4): 641- 652.
|
|
ZHOU X Y , LI Q Y , DING G T , et al. Establishment, development, distribution and physiological significance of chicken intestinal microflora[J]. Acta Microbiologica Sinica, 2020, 60 (4): 641- 652.
|
12 |
陈东虹, 袁岩聪, 马雪惠, 等. 家禽肠道微生物的组成、分布及功能研究进展[J]. 中国家禽, 2022, 44 (11): 121- 127.
|
|
CHEN D H , YUAN Y C , MA X H , et al. Research progress on the composition, distribution and function of intestinal microorganisms in poultry[J]. China Poultry, 2022, 44 (11): 121- 127.
|
13 |
WICKRAMASURIYA S S , PARK I , LEE K , et al. Role of physiology, immunity, microbiota, and infectious diseases in the gut health of poultry[J]. Vaccines (Basel), 2022, 10 (2): 172.
doi: 10.3390/vaccines10020172
|
14 |
STANLEY D , KEYBURN A L , DENMAN S E , et al. Changes in the caecal microflora of chickens following Clostridium perfringens challenge to induce necrotic enteritis[J]. Vet Microbiol, 2012, 159 (1-2): 155- 162.
doi: 10.1016/j.vetmic.2012.03.032
|
15 |
HU G , LIU L , MIAO X , et al. The response of cecal microbiota to inflammatory state induced by Salmonella enterica serovar Enteritidis[J]. Front Microbiol, 2022, 13, 963678.
doi: 10.3389/fmicb.2022.963678
|
16 |
胡耿, 杨光会, 任艳茹, 等. 家禽肠道微生物与健康养殖[J]. 养禽与禽病防治, 2023 (7): 2- 6.
|
|
HU G , YANG G H , REN Y R , et al. Intestinal microbiota and healthy breeding of poultry[J]. Poultry Husbandry and Disease Control, 2023 (7): 2- 6.
|
17 |
李想, 王巧, 李庆贺, 等. 肠道微生物对家禽抗病力的影响研究进展[J]. 中国畜禽种业, 2024, 20 (1): 29- 35.
doi: 10.3969/j.issn.1673-4556.2024.01.006
|
|
LI X , WANG Q , LI Q H , et al. Research progress on the effect of intestinal microorganisms on disease resistance of poultry[J]. The Chinese Livestock and Poultry Breeding, 2024, 20 (1): 29- 35.
doi: 10.3969/j.issn.1673-4556.2024.01.006
|
18 |
QIN J , LI R , RAES J , et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464 (7285): 59- 65.
doi: 10.1038/nature08821
|
19 |
NIU Q , WANG X , QI X , et al. Identification of the gut microbiota affecting Salmonella pullorum and their relationship with reproductive performance in hens[J]. Front Microbiol, 2023, 14, 1216542.
doi: 10.3389/fmicb.2023.1216542
|
20 |
于曦. 鲎素抗菌肽对感染鸡白痢沙门菌雏鸡肠道菌群变化的研究[D]. 长春: 吉林大学, 2019.
|
|
YU X. The effect of tachyplesin antimicrobial peptides on intestinal microflora of chivkens infected with Salmonella pullorum[D]. Changchun: Jilin University, 2019. (in Chinese)
|
21 |
BOLYEN E , RIDEOUT J R , DILLON M R , et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nat Biotechnol, 2019, 37 (8): 852- 857.
doi: 10.1038/s41587-019-0209-9
|
22 |
AMIR A , MCDONALD D , NAVAS-MOLINA J A , et al. Deblur rapidly resolves single-nucleotide community sequence patterns[J]. mSystems, 2017, 2 (2): e00191- 16.
|
23 |
BOKULICH N A , KAEHLER B D , RIDEOUT J R , et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin[J]. Microbiome, 2018, 6 (1): 90.
doi: 10.1186/s40168-018-0470-z
|
24 |
SEGATA N , IZARD J , WALDRON L , et al. Metagenomic biomarker discovery and explanation[J]. Genome Biol, 2011, 12 (6): R60.
doi: 10.1186/gb-2011-12-6-r60
|
25 |
LANGILLE M G , ZANEVELD J , CAPORASO J G , et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nat Biotechnol, 2013, 31 (9): 814- 821.
doi: 10.1038/nbt.2676
|
26 |
DING J , ZHOU H , LUO L , et al. Heritable gut microbiome associated with Salmonella enterica serovar Pullorum infection in chickens[J]. mSystems, 2021, 6 (1): e01192- 20.
|
27 |
MON K K , SAELAO P , HALSTEAD M M , et al. Salmonella enterica serovars Enteritidis infection alters the indigenous microbiota diversity in young layer chicks[J]. Front Vet Sci, 2015, 2, 61.
|
28 |
LIU L , LIN L , ZHENG L , et al. Cecal microbiome profile altered by Salmonella enterica, serovar Enteritidis inoculation in chicken[J]. Gut Pathog, 2018, 10, 34.
doi: 10.1186/s13099-018-0261-x
|
29 |
JUMPERTZ R , LE D S , TURNBAUGH P J , et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans[J]. Am J Clin Nutr, 2011, 94 (1): 58- 65.
doi: 10.3945/ajcn.110.010132
|
30 |
WONG J M , DE SOUZA R , KENDALL C W , et al. Colonic health: fermentation and short chain fatty acids[J]. J Clin Gastroenterol, 2006, 40 (3): 235- 243.
doi: 10.1097/00004836-200603000-00015
|
31 |
LABBE A , GANOPOLSKY J G , MARTONI C J , et al. Bacterial bile metabolising gene abundance in Crohn's, ulcerative colitis and type 2 diabetes metagenomes[J]. PLoS One, 2014, 9 (12): e115175.
|
32 |
LI S , ZHUGE A , WANG K , et al. Ketogenic diet aggravates colitis, impairs intestinal barrier and alters gut microbiota and metabolism in DSS-induced mice[J]. Food Funct, 2021, 12 (20): 10210- 10225.
|
33 |
KAAKOUSH N O . Insights into the role of erysipelotrichaceae in the human host[J]. Front Cell Infect Microbiol, 2015, 5, 84.
|
34 |
CAI S , YANG Y , KONG Y , et al. Gut bacteria erysipelatoclostridium and its related metabolite ptilosteroid a could predict radiation-induced intestinal injury[J]. Front Public Health, 2022, 10, 862598.
|
35 |
CHEN Z , WU S , ZENG Y , et al. Fuzhenghuayujiangzhutongluofang prescription modulates gut microbiota and gut-derived metabolites in UUO rats[J]. Front Cell Infect Microbiol, 2022, 12, 837205.
|
36 |
WALTER J , O'TOOLE P W . Microbe profile: the Lactobacillaceae[J]. Microbiology (Reading), 2023, 169 (12): 001414.
|
37 |
DO C M , NORONHA F M , ARRUDA M O , et al. Lactobacillus fermentum ATCC 23271 displays in vitro inhibitory activities against Candida spp[J]. Front Microbiol, 2016, 7, 1722.
|
38 |
VACCA M , CELANO G , CALABRESE F M , et al. The controversial role of human gut lachnospiraceae[J]. Microorganisms, 2020, 8 (4): 573.
|
39 |
MUNIZ P D , CHEN J , HILLMANN B , et al. An increased abundance of clostridiaceae characterizes arthritis in inflammatory bowel disease and rheumatoid arthritis: a cross-sectional study[J]. Inflamm Bowel Dis, 2019, 25 (5): 902- 913.
|
40 |
JANG J H , YEOM M J , AHN S , et al. Acupuncture inhibits neuroinflammation and gut microbial dysbiosis in a mouse model of Parkinson's disease[J]. Brain Behav Immun, 2020, 89, 641- 655.
|
41 |
LI Y , CHEN X . Sialic acid metabolism and sialyltransferases: natural functions and applications[J]. Appl Microbiol Biotechnol, 2012, 94 (4): 887- 905.
|
42 |
MCDONALD N D , LUBIN J B , CHOWDHURY N , et al. Host-derived sialic acids are an important nutrient source required for optimal bacterial fitness in vivo[J]. mBio, 2016, 7 (2): e02215- e02237-15.
|
43 |
LUBIN J B , LEWIS W G , GILBERT N M , et al. Host-like carbohydrates promote bloodstream survival of Vibrio vulnificus in vivo[J]. Infect Immun, 2015, 83 (8): 3126- 3136.
|
44 |
PAWLAK A , RYBKA J , DUDEK B , et al. Salmonella O48 serum resistance is connected with the elongation of the lipopolysaccharide o-antigen containing sialic acid[J]. Int J Mol Sci, 2017, 18 (10): 2022.
|