畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (5): 2466-2480.doi: 10.11843/j.issn.0366-6964.2025.05.042

• 临床兽医 • 上一篇    下一篇

基于HPLC指纹图谱和网络药理学的白屈菜缓解IPEC-J2细胞炎性损伤作用研究

陈泽晗1(), 张偌益1, 林惠莹1, 曾春丽1, 林福2, 李健1,*()   

  1. 1. 福建农林大学动物科学学院 福建省兽医中药与动物保健重点实验室, 福州 350002
    2. 福建福德农业发展有限公司, 福州 350000
  • 收稿日期:2024-07-01 出版日期:2025-05-23 发布日期:2025-05-27
  • 通讯作者: 李健 E-mail:2587583262@qq.com;lijian@fafu.edu.cn
  • 作者简介:陈泽晗(2001-),男,福建福清人,硕士生,主要从事兽医中药药理学研究,E-mail:2587583262@qq.com
  • 基金资助:
    福建省科技重大专项(2021NZ029023)

Anti-inflammatory Effects of Chelidonium majus on IPEC-J2 Cells based on HPLC Fingerprint and Network Pharmacology

CHEN Zehan1(), ZHANG Ruoyi1, LIN Huiying1, ZENG Chunli1, LIN Fu2, LI Jian1,*()   

  1. 1. Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    2. Fujian Fude Agricultural Development Co., Ltd, Fuzhou 350000, China
  • Received:2024-07-01 Online:2025-05-23 Published:2025-05-27
  • Contact: LI Jian E-mail:2587583262@qq.com;lijian@fafu.edu.cn

摘要:

白屈菜可用于治疗多种消化道和呼吸道炎症,但其作用机制尚不明确。本研究基于指纹图谱和网络药理学预测分析白屈菜的药效成分及作用机制。采用HPLC法建立15批白屈菜指纹图谱并进行相似度评价和主成分分析;通过网络药理学方法建立白屈菜活性成分-靶点网络,分析其核心抗炎成分,通过蛋白互作网络分析其核心靶点,并进行GO和KEGG富集分析;将指纹图谱指认的共有峰与网络药理学筛选出的核心成分取交集,MTT法和ELISA法研究其对IPEC-J2细胞炎症损伤的影响。结果发现,15批次白屈菜中有12批次相似度>0.9,标定出21个共有峰,指认出其中6个分别为原阿片碱、白屈菜碱、黄连碱、血根碱、小檗碱和白屈菜红碱;网络药理学筛选出8个核心抗炎成分,分别为异紫堇定碱、(s)-金罂粟碱、(s)-氢化小檗碱、小檗碱、白屈菜碱、白屈菜红碱、氧化血根碱和(+/-)-高白屈菜碱;上述2组成分交集为白屈菜碱、小檗碱和白屈菜红碱,参考中国药典规定,选取白屈菜红碱,研究其对IPEC-J2细胞炎症的影响,发现2.5~10 μg·mL-1白屈菜红碱能显著提高细胞存活率,显著升高IL-4和IL-10含量,降低NO、IL-1β、IL-6、IL-8、TNF-α和TGF-β1含量。综上,本研究建立了白屈菜HPLC指纹图谱,结合网络药理学方法初步揭示了白屈菜的药效成分及作用机制,为其质量控制与深入开发提供参考。

关键词: 白屈菜, 指纹图谱, 网络药理学, 白屈菜红碱, 抗炎作用

Abstract:

Chelidonium majus can be used to treat various digestive and respiratory tract inflammations, but its mechanism of action is still unclear. This study predicts and analyzes the pharmacodynamic components and mechanisms of C. majus using fingerprint and network pharmacology. A total of 15 batches of C. majus fingerprint were established using HPLC and evaluated for similarity and principal component analysis. A network of active components and targets of C. majus was established using network pharmacology methods. The core anti-inflammatory components were analyzed, along with the core targets through protein interaction network analysis, followed by GO enrichment and KEGG enrichment analysis. The common peaks identified by fingerprint and the core components filtered by network pharmacology were intersected. The effects of C. majus on IPEC-J2 cell inflammation damage were studied using MTT and ELISA methods. The results showed that 12 out of 15 batches of C. majus had a similarity >0.9, with 21 common peaks identified, among which 6 were identified as protopine, chelidonine, coptisine, sanguinarine, berberine, and chelerythrine. Network pharmacology filtered out 8 core anti-inflammatory components, namely thalictriline, (s)-thalictroidine, (s)-tetrahydropalmatine, berberine, chelidonine, chelerythrine, oxidized sanguinarine, and (+/-)-thalicarpine. The intersection of these two sets of components was chelidonine, berberine, and chelerythrine. Referring to the regulations of the Chinese Pharmacopoeia, chelerythrine was selected for a study on its effect on IPEC-J2 cell inflammation. The study found that chelerythrine at concentrations of 2.5 to 10 μg·mL-1 could significantly improve cell survival rate, increase the content of IL-4 and IL-10, and decrease the content of NO, IL-1β, IL-6, IL-8, TNF-α, and TGF-β1. This study has established the HPLC fingerprint of C. majus and preliminarily revealed its pharmacodynamic components and mechanisms of action using network pharmacology methods. This provides a reference for its quality control and further development.

Key words: Chelidonium majus, fingerprint, network pharmacology, chelerythrine, anti-inflammatory

中图分类号: