畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (5): 2056-2069.doi: 10.11843/j.issn.0366-6964.2025.05.007
詹清宇1,2(), 邓娟丽2,3, 刘虎军2, 尹鹏2, 王红亮1, 李天天2,*(
)
收稿日期:
2024-07-17
出版日期:
2025-05-23
发布日期:
2025-05-27
通讯作者:
李天天
E-mail:1354763938@qq.com;ltt@ags.ac.cn
作者简介:
詹清宇(2000-),女,吉林白城人,硕士生,主要从事真菌毒素污染与防控研究,E-mail:1354763938@qq.com
基金资助:
ZHAN Qingyu1,2(), DENG Juanli2,3, LIU Hujun2, YIN Peng2, WANG Hongliang1, LI Tiantian2,*(
)
Received:
2024-07-17
Online:
2025-05-23
Published:
2025-05-27
Contact:
LI Tiantian
E-mail:1354763938@qq.com;ltt@ags.ac.cn
摘要:
玉米赤霉烯酮(ZEN)及其衍生物在全球范围内对农作物及其制品构成了严重的污染问题,不仅影响农业生产和饲料安全,还对动物和人类健康构成威胁,导致机体免疫机能降低、生长受阻,诱发雌激素相关的疾病甚至癌症。因此,ZEN及其衍生物的毒害越来越受到广泛关注。但目前对ZEN衍生物的研究较少,本文对现有的ZEN及其衍生物毒性和减毒机制进行汇总,包括类雌激素作用、诱导器官损伤、引发细胞凋亡和自噬、诱发炎症、激活致癌基因以及DNA损伤等毒性机理,归纳了物理法、化学法和生物法对其的减毒机理。旨在为开发更加高效、安全的ZEN及其衍生物减毒药物提供参考。
中图分类号:
詹清宇, 邓娟丽, 刘虎军, 尹鹏, 王红亮, 李天天. 玉米赤霉烯酮及其衍生物的毒性和减毒机制研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2056-2069.
ZHAN Qingyu, DENG Juanli, LIU Hujun, YIN Peng, WANG Hongliang, LI Tiantian. Research Progress on the Toxicology and Detoxification Mechanisms of Zearalenone and Its Derivatives in Corn[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2056-2069.
表 1
ZEN及其衍生物减毒方法"
方法 Methods | 减毒效果 Detoxification effects | 参考文献 References | |
物理法 Physicalmethod | 吸附:Lactobacillus plantae(L1)、Lactobacillus plantarum(L2)、Lactobacillus paracasei(L8)、Lactobacillus acidophilus(L9) | L9吸附率为90.39%、其次是L2为88.68%、L1为86.49%、L8为86.14% | [ |
光辐射:γ射线 | 低浓度ZEN(33 mol·L-1)条件下,γ射线对ZEN有较好的降解效果 | [ | |
其他新兴技术:介质阻挡放电(DBD)冷等离子体、非热技术-大气冷等离子体(ACP) | DBD在50 kV电压下处理120 s时,降解率高达98.28%;ACP处理在溶液和干燥条件下降解率分别为100%和66.8% | [ | |
化学法 Chemicalmethod | 臭氧(O3) | ZEN最大降解率为62.3% | [ |
光催化 | 模拟太阳光照射下,ZEN分子中的双键可以从反式(trans)结构转变为顺式(cis)结构;La-ZnFe2O4@Fe3O4@carbon磁性复合光催化剂,ZEN降解率达到98.52% | [ | |
热处理 | 热处理结合特定化学添加剂,在Ca(OH)2存在下,随着MMA剂量的增加,ZEN浓度降低效果显著,5 min内分别降低了72%、85%和95% | [ | |
生物法 Biological method | 酶降解 | 3α-和3β-羟甾体脱氢酶:将ZEN转化为其羟基化代谢产物α-ZOL和β-ZOL;ZHD101内酯酶:水解为HZEN和DHZEN,它们比ZEN的雌激素活性低50至10 000倍;ZHDR52、ZHDP83内酯酶:降解ZEN的产物不表现出雌激素活性;ZENG内酯酶:在所有报道的ZEN内酯酶中热稳定性排名第一;细菌内酯酶ZenA:水解ZEN | [ |
生物保护 | 氧化应激和细胞凋亡的缓解途径:ERK/MAPK途径参与调节细胞增殖和存活;PI3K/Akt途径参与调节细胞生长、存活和代谢 | [ | |
抗氧化途径:Nrf2能够调节一系列抗氧化酶的表达,促进细胞对氧化应激的抵抗能力 | [ | ||
炎症的减缓途径:番茄素、姜黄素、Bacillus velezensis A2(A2)减缓炎症反应 | [ |
1 | GB 2761—2017. 食品中真菌毒素限量[S]. 中国标准出版社, 2017. |
GB 2761—2017. Mycotoxin limits in food[S]. China Standard Press, 2017. (in Chinese) | |
2 | EFSA Panel on Contaminants in the Food Chain (CONTAM) . Appropriateness to set a group health-based guidance value for zearalenone and its modified forms[J]. EFSA Journal, 2016, 14 (4): e04425. |
3 |
YANG S P , LI Y S , DE BOEVRE M , et al. Toxicokinetics of α-zearalenol and its masked form in rats and the comparative biotransformation in liver microsomes from different livestock and humans[J]. J Hazard Mater, 2020, 393, 121403.
doi: 10.1016/j.jhazmat.2019.121403 |
4 |
CHHAYA R S , O'BRIEN J , NAG R , et al. Prevalence and concentration of mycotoxins in bovine feed and feed components: A global systematic review and meta-analysis[J]. Sci Total Environ, 2024, 929, 172323.
doi: 10.1016/j.scitotenv.2024.172323 |
5 |
HUDU A R , ADDY F , MAHUNU G K , et al. Zearalenone contamination in maize, its associated producing fungi, control strategies, and legislation in Sub- Saharan Africa[J]. Food Sci Nutr, 2024, 12 (7): 4489- 4512.
doi: 10.1002/fsn3.4125 |
6 | BAHRAMI-SAMANI O , RAHIMI E , NILI-AHMADABADI A . Assessment of zearalenone contamination in processed cereal-based foods in Shahrekord, Iran[J]. Toxin Reviews, 2017, 36 (3): 1- 4. |
7 |
王苏楠, 胡寅瑞, 梁栗源. 2018—2019年洛阳市玉米制品中玉米赤霉烯酮监测结果分析[J]. 应用预防医学, 2021, 27 (1): 42- 43.
doi: 10.3969/j.issn.1673-758X.2021.01.013 |
WANG S N , HU Y R , LIANG L Y . Analysis of zearalenone monitoring results in corn products in Luoyang city, 2018-2019[J]. Applied Preventive Medicine, 2021, 27 (1): 42- 43.
doi: 10.3969/j.issn.1673-758X.2021.01.013 |
|
8 |
黄志伟, 赵盼盼, 张华, 等. 不同植物性饲料原料中玉米赤霉烯酮污染状况调查[J]. 养殖与饲料, 2024, 23 (6): 45- 48.
doi: 10.3969/j.issn.1671-427X.2024.06.010 |
HUANG Z W , ZHAO P P , ZHANG H , et al. Investigation on the contamination of zearalenone in different plant-based feedstuffs[J]. Animals Breeding and Feed, 2024, 23 (6): 45- 48.
doi: 10.3969/j.issn.1671-427X.2024.06.010 |
|
9 | 刘建高, 厉学武, 彭哲, 等. 2021年我国饲料原料中常见霉菌毒素污染情况调查[J]. 中国家禽, 2023, 45 (10): 70- 75. |
LIU J G , LI X W , PENG Z , et al. Investigation of common mycotoxins contamination in feed ingredients in China in 2021[J]. China Poultry, 2023, 45 (10): 70- 75. | |
10 | 苏青云, 齐莎日娜, 雷元培, 等. 2022年中国饲料和原料中霉菌毒素污染调查报告[J]. 饲料工业, 2024, 45 (9): 121- 125. |
SU Q Y , QI S R N , LEI Y P , et al. A survey report on the mycotoxin contamination of Chinese raw materials and feed in 2022[J]. Feed Industry, 2024, 45 (9): 121- 125. | |
11 | 张梦妍, 郭爱静, 马辉, 等. 河北省市售玉米面中玉米赤霉烯酮和伏马菌毒素B1、B2污染状况调查[J]. 医学动物防制, 2018, 34 (5): 490- 491. |
ZHANG M Y , GUO A J , MA H , et al. Investigation on the contamination of zearalenone and fumonisin B1 and B2 in maize flour from the market of Hebei Province[J]. Journal of Medical Pest Control, 2018, 34 (5): 490- 491. | |
12 |
程传民, 李云, 李茂, 等. 我国玉米赤霉烯酮在饲料产品中的污染分布规律[J]. 饲料博览, 2019 (11): 11- 15.
doi: 10.3969/j.issn.1001-0084.2019.11.003 |
CHENG C M , LI Y , LI M , et al. Distribution of zearalenone contamination of feedstuffs in China[J]. Feed Review, 2019 (11): 11- 15.
doi: 10.3969/j.issn.1001-0084.2019.11.003 |
|
13 |
武亭亭, 杨丹. 粮食加工品中玉米赤霉烯酮和呕吐毒素污染情况调查[J]. 食品安全质量检测学报, 2019, 10 (12): 3674- 3678.
doi: 10.3969/j.issn.2095-0381.2019.12.006 |
WU T T , YANG D . Investigation of zearalenone and deoxynivaleol contamination in grain-related food[J]. Journal of Food Safety & Quality, 2019, 10 (12): 3674- 3678.
doi: 10.3969/j.issn.2095-0381.2019.12.006 |
|
14 | 陈继美, 陈奋. 鸡饲料及原料中玉米赤霉烯酮污染的检测及分布研究[J]. 畜禽业, 2021, 32 (6): 36- 38. |
CHEN J M , CHEN F . Detection and distribution of zearalenone contamination in chicken feed and raw materials[J]. Livestock and Poultry Industry, 2021, 32 (6): 36. | |
15 | LLORENS CASTELLÓ P , SACCO M A , AQUILA I , et al. Evaluation of zearalenones and their metabolites in chicken, pig and lamb liver samples[J]. Toxins(Basel), 2022, 14 (11): 782. |
16 |
OTHMEN Z O B , GOLLI E E , ABID-ESSEFI S , et al. Cytotoxicity effects induced by zearalenone metabolites, α zearalenol and β zearalenol, on cultured Vero cells[J]. Toxicology, 2008, 252 (1-3): 72- 77.
doi: 10.1016/j.tox.2008.07.065 |
17 |
FRIZZELL C , UHLIG S , MILES C O , et al. Biotransformation of zearalenone and zearalenols to their major glucuronide metabolites reduces estrogenic activity[J]. Toxicology In Vitro, 2015, 29 (3): 575- 581.
doi: 10.1016/j.tiv.2015.01.006 |
18 |
BELHASSEN H , JIMÉNEZ-DÍAZ I , ARREBOLA J P , et al. Zearalenone and its metabolites in urine and breast cancer risk: A case-control study in Tunisia[J]. Chemosphere, 2015, 128, 1- 6.
doi: 10.1016/j.chemosphere.2014.12.055 |
19 |
LU Q , SUI M , LUO Y W , et al. Further insight into the potential toxicity of zearalenone-14-glucoside based on toxicokinetics, tissue distribution, transformation, and excretion in rats[J]. Ecotoxicol Environ Saf, 2022, 246, 114184.
doi: 10.1016/j.ecoenv.2022.114184 |
20 | RUAN H N , WANG Y Y , HOU Y , et al. Zearalenone-14-glucoside is hydrolyzed to zearalenone by β-glucosidase in extracellular matrix to exert intracellular toxicity in KGN cells[J]. Toxins(Basel), 2022, 14 (7): 458. |
21 |
TATAY E , ESPÍN S , GARCÍA-FERNÁNDEZ A J , et al. Estrogenic activity of zearalenone, α-zearalenol and β-zearalenol assessed using the E-screen assay in MCF-7 cells[J]. Toxicol Mech Methods, 2018, 28 (4): 239- 242.
doi: 10.1080/15376516.2017.1395501 |
22 |
WARTH B , PREINDL K , MANSER P , et al. Transfer and metabolism of the xenoestrogen zearalenone in Human perfused Placenta[J]. Environ Health Perspect, 2019, 127 (10): 107004.
doi: 10.1289/EHP4860 |
23 |
YAN W K , LIU Y N , SONG S S , et al. Zearalenone affects the growth of endometriosis via estrogen signaling and inflammatory pathways[J]. Ecotoxicol Environ Saf, 2022, 241, 113826.
doi: 10.1016/j.ecoenv.2022.113826 |
24 | ZHOU M , YANG L J , SHAO M H , et al. Effects of zearalenone exposure on the TGF-β1/Smad3 signaling pathway and the expression of proliferation or apoptosis related genes of post-weaning gilts[J]. Toxins(Basel), 2018, 10 (2): 49. |
25 | ZHANG P F , JING C W , LIANG M , et al. Zearalenone exposure triggered cecal physical barrier injury through the TGF-β1/Smads signaling pathway in weaned piglets[J]. Toxins(Basel), 2021, 13 (12): 902. |
26 |
ZHAO J , HAI S , CHEN J , et al. Zearalenone induces apoptosis in porcine endometrial stromal cells through JNK signaling pathway based on endoplasmic reticulum stress[J]. Toxins (Basel)., 2022, 14 (11): 758.
doi: 10.3390/toxins14110758 |
27 |
HAI S R , ZHAO J , CHEN C J , et al. Zearalenone promotes porcine ESCs apoptosis by enhancing Drp1-mediated mitochondrial fragmentation and activating the JNK pathway[J]. Food Chem Toxicol, 2023, 182, 114110.
doi: 10.1016/j.fct.2023.114110 |
28 |
HE Y , H SU N R , YANG H Y , et al. ZEA mediates autophagy through the ROS-AMPK-m-TOR pathway to enhance the susceptibility of mastitis induced by Staphylococcus aureus in mice[J]. Ecotoxicol Environ Saf, 2023, 266, 115548.
doi: 10.1016/j.ecoenv.2023.115548 |
29 | YANG L J , LIAO W S , DONG J Y , et al. Zearalenone promotes uterine hypertrophy through AMPK/mTOR mediated autophagy[J]. Toxins(Basel), 2024, 16 (2): 73. |
30 | RUAN H N , WU J S , ZHANG F Q , et al. Zearalenone exposure disrupts STAT-ISG15 in rat colon: A potential linkage between zearalenone and inflammatory bowel disease[J]. Toxins(Basel), 2023, 15 (6): 392. |
31 | LEE P Y , LIU C C , WANG S C , et al. Mycotoxin zearalenone attenuates innate immune responses and suppresses NLRP3 inflammasome activation in LPS-activated macrophages[J]. Toxins(Basel), 2021, 13 (9): 593. |
32 | MARIN D E , TARANU I , BURLACU R , et al. Effects of zearalenone and its derivatives on porcine immune response[J]. Toxicol In Vitro, 2011, 25 (8): 1981- 1988. |
33 | 黄沁怡. 玉米赤霉烯酮诱发睾丸间质肿瘤机制的体外研究[D]. 扬州: 扬州大学, 2016. |
HUANG Q Y. Study on the mechanism of zearalenone-induce testicular stromal tumor in vitro[D]. Yangzhou: Yangzhou University, 2016. (in Chinese) | |
34 | LAHJOUJI T , BERTACCINI A , NEVES M , et al. Acute exposure to zearalenone disturbs intestinal homeostasis by modulating the Wnt/β-Catenin signaling pathway[J]. Toxins(Basel), 2020, 12 (2): 113. |
35 | CAI J , YUAN X S , SUN Y H , et al. Bacillus velezensis A2 can protect against damage to IPEC-J2 cells induced by zearalenone via the Wnt/FRZB/β-Catenin signaling pathway[J]. Toxins(Basel), 2024, 16 (1): 44. |
36 | YANG D C , JIANG X W , SUN J X , et al. Toxic effects of zearalenone on gametogenesis and embryonic development: A molecular point of review[J]. Food Chem Toxicol, 2018, 119, 24- 30. |
37 | DOMIJAN A M , HERCOG K , ŠTAMPAR M , et al. Impact of deoxynivalenol and zearalenone as single and combined treatment on DNA, cell cycle and cell proliferation in HepG2 cells[J]. Int J Mol Sci, 2023, 24 (4): 4082. |
38 | FLECK S C , HILDEBRAND A A , PFEIFFER E , et al. Catechol metabolites of zeranol and 17β-estradiol: A comparative in vitro study on the induction of oxidative DNA damage and methylation by catechol-O-methyltransferase[J]. Toxicol Lett, 2012, 210 (1): 9- 14. |
39 | TATAY E , FONT G , RUIZ M J . Cytotoxic effects of zearalenone and its metabolites and antioxidant cell defense in CHO-K1 cells[J]. Food Chem Toxicol, 2016, 96, 43- 49. |
40 | MURTAZA B , JIN B W , WANG L L , et al. Mitigation of zearalenone in vitro using probiotic strains[J]. LWT, 2023, 186, 115265. |
41 | CALADO T , ABRUNHOSA L , CABO VERDE S , et al. Effect of gamma-radiation on zearalenone—degradation, cytotoxicity and estrogenicity[J]. Foods, 2020, 9 (11): 1687. |
42 | 郑哲. 低温等离子体用于玉米赤霉烯酮的降解及对玉米品质的影响研究[D]. 南昌: 南昌大学, 2022. |
ZHENG Z. Degradation of zearalenone by cold plasma and its effect on corn quality[D]. Nanchang: Nanchang University, 2022. (in Chinese) | |
43 | FEIZOLLAHI E , ROOPESH M S . Degradation of zearalenone by atmospheric cold plasma: Effect of selected process and product factors[J]. Food Bioproc Tech, 2021, 14, 2107- 2119. |
44 | YANG K , LI K , PAN L H , et al. Effect of ozone and electron beam irradiation on degradation of zearalenone and ochratoxin A[J]. Toxins(Basel), 2020, 12 (2): 138. |
45 | YU M H , PANG Y H , YANG C , et al. Electrochemical oxidation diminished toxicity of zearalenone significantly, while reduction increased[J]. Food Chem, 2023, 429, 136768. |
46 | EMÍDIO E S , CALISTO V , DE MARCHI M R R , et al. Photochemical transformation of zearalenone in aqueous solutions under simulated solar irradiation: Kinetics and influence of water constituents[J]. Chemosphere, 2017, 169, 146- 154. |
47 | YANG X B , PAN J J , HU J P , et al. MOF-derived La-ZnFe2O4@Fe3O4@carbon magnetic hybrid composite as a highly efficient and recyclable photocatalyst for mycotoxins degradation[J]. Chem Eng J, 2023, 467, 143381. |
48 | REMPE I , KERSTEN S , VALENTA H , et al. Hydrothermal treatment of naturally contaminated maize in the presence of sodium metabisulfite, methylamine and calcium hydroxide; effects on the concentration of zearalenone and deoxynivalenol[J]. Mycotoxin Res, 2013, 29 (3): 169- 175. |
49 | MALEKINEJAD H , COLENBRANDER B , FINK-GREMMELS J . Hydroxysteroid Dehydrogenases in Bovine and Porcine Granulosa Cells Convert Zearalenone into its Hydroxylated Metabolites α-Zearalenol and β-Zearalenol[J]. Vet Res Commun, 2006, 30 (4): 445- 453. |
50 | FRUHAUF S , PVHRINGER D , THAMHESL M , et al. Bacterial lactonases ZenA with noncanonical structural features hydrolyze the mycotoxin zearalenone[J]. ACS Catal, 2024, 14 (5): 3392- 3410. |
51 | SUN Z P , FANG Y T , ZHU Y H , et al. Biotransformation of zearalenone to non-estrogenic compounds with two novel recombinant lactonases from Gliocladium[J]. BMC Microbiol, 2024, 24 (1): 75. |
52 | FANG Y Y , HUANG Z L , XU W , et al. Efficient elimination of zearalenone at high processing temperatures by a robust mutant of Gliocladium roseum zearalenone lactonase[J]. Food Control, 2022, 142, 109222. |
53 | LIN X , ZHU L J , GAO X Y , et al. Ameliorative effect of betulinic acid against zearalenone exposure triggers testicular dysfunction and oxidative stress in mice via p38/ERK MAPK inhibition and Nrf2-mediated antioxidant defense activation[J]. Ecotoxicol Environ Saf, 2022, 238, 113561. |
54 | YANG C L , CHEN Y Q , YANG M R , et al. Betulinic acid alleviates zearalenone-induced uterine injury in mice[J]. Environ Pollut, 2023, 316 (Pt 1): 120435. |
55 | XU W , ZHENG H , FU Y , et al. Role of PI3K/Akt-mediated Nrf2/HO-1 signaling pathway in resveratrol alleviation of zearalenone-induced oxidative stress and apoptosis in TM4 cells[J]. Toxins (Basel), 2022, 14 (11): 733. |
56 | RAJENDRAN P , AMMAR R B , AL-SAEEDI F J , et al. Kaempferol inhibits zearalenone-induced oxidative stress and apoptosis via the PI3K/Akt-mediated Nrf2 signaling pathway: In vitro and in vivo Studies[J]. Int J Mol Sci, 2020, 22 (1): 217. |
57 | 姚丹, 李怡娜, 成晓丽, 等. 白藜芦醇对玉米赤霉烯酮所致雌性大鼠子宫和卵巢损伤的影响[J]. 动物营养学报, 2024, 36 (5): 3317- 3328. |
YAO D , LI Y N , CHENG X L , et al. Effects of resveratrol on zearalenone-induced uterine and ovarian damage in female rats[J]. Chinese Journal of Animal Nutrition, 2024, 36 (5): 3317- 3328. | |
58 | WU J , LI J Y , LIU Y W , et al. Tannic acid repair of zearalenone-induced damage by regulating the death receptor and mitochondrial apoptosis signaling pathway in mice[J]. Environ Pollut, 2021, 287, 117557. |
59 | CHENG Q , JIANG S Z , HUANG L B , et al. Zearalenone exposure affects the Keap1-Nrf2 signaling pathway and glucose nutrient absorption related genes of porcine jejunal epithelial cells[J]. Toxins (Basel), 2022, 14 (11): 793. |
60 | WU F Y , WANG F X , TANG Z H , et al. Quercetagetin alleviates zearalenone-induced liver injury in rabbits through Keap1/Nrf2/ARE signaling pathway[J]. Front Pharmacol, 2023, 14, 1271384. |
61 | KANG J G , LI Y , MA Z F , et al. Protective effects of lycopene against zearalenone-induced reproductive toxicity in early pregnancy through anti-inflammatory, antioxidant and anti-apoptotic effects[J]. Food Chem Toxicol, 2023, 179, 113936. |
62 | YANG X P , ZHENG H , NIU J L , et al. Curcumin alleviates zearalenone-induced liver injury in mice by scavenging reactive oxygen species and inhibiting mitochondrial apoptosis pathway[J]. Ecotoxicol Environ Saf, 2024, 277, 116343. |
63 | FENG N N , WANG B J , CAI P R , et al. ZEA-induced autophagy in TM4 cells was mediated by the release of Ca2+ activates CaMKKβ-AMPK signaling pathway in the endoplasmic reticulum[J]. Toxicol Lett, 2020, 323, 1- 9. |
64 | ZHU Y F , WANG H , WANG J P , et al. Zearalenone induces apoptosis and cytoprotective autophagy in chicken granulosa cells by PI3K-AKT-mTOR and MAPK signaling pathways[J]. Toxins (Basel), 2021, 13 (3): 199. |
65 | BAI J , LI J , LIU N , et al. Zearalenone induces apoptosis and autophagy by regulating endoplasmic reticulum stress signalling in porcine trophectoderm cells[J]. Anim Nutr, 2022, 12, 186- 199. |
[1] | 灭列·马达尼牙提, 孙萌, 褚瑰燕. Hedgehog信号通路在动物卵巢卵泡发育和类固醇生成中的调控作用[J]. 畜牧兽医学报, 2025, 56(3): 969-978. |
[2] | 陈远才, 黄建营, 秦慧凯, 张龙现. 隐孢子虫基因组学研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1059-1064. |
[3] | 余昕雅, 何海健, 王磊, 倪语晨, 杜静, 周莹珊, 董婉玉, 王晓杜. LncRNA 18850对猪流行性腹泻病毒复制的影响[J]. 畜牧兽医学报, 2025, 56(3): 1366-1375. |
[4] | 刘芮伶, 李昱辰, 汤荣锋, 杨倩. 猪流行性腹泻病毒感染对小肠杯状细胞的影响及其机制的初步分析[J]. 畜牧兽医学报, 2025, 56(2): 900-911. |
[5] | 吕永乐, 郑雯, 王签慧, 朱家琦, 黄晓琦, 曹中赞, 栾新红. 抗代谢相关脂肪性肝病的天然活性物质研究进展[J]. 畜牧兽医学报, 2025, 56(1): 45-62. |
[6] | 吴少强, 刘雨帆, 韦义荣, 黄艳娜, 蒋钦杨. 白藜芦醇通过PROX1/SIRT1信号通路调控山羊肌纤维类型转化的机制研究[J]. 畜牧兽医学报, 2025, 56(1): 201-212. |
[7] | 王浩, 王世玉, 肖金龙, 沈珏, 潘天灵, 张靖松, 肖鹏, 高洪. 猪源大肠杆菌高致病性毒力岛结构基因进化分析及其对TNF/NF-κB通路的影响[J]. 畜牧兽医学报, 2025, 56(1): 392-403. |
[8] | 古丽米热·阿布都热依木, 张欣如, 吴阳升, 陈莹, 汪立芹, 徐新明, 黄俊成, 林嘉鹏. FKBP5基因对绵羊卵泡颗粒细胞功能的影响[J]. 畜牧兽医学报, 2024, 55(9): 3947-3956. |
[9] | 娄明, 罗昊玉, 牟芳, 李辉, 王宁. 鸡胰岛素信号通路的研究进展[J]. 畜牧兽医学报, 2024, 55(8): 3288-3296. |
[10] | 王梦迪, 王恒, 鲁秀香, 王昱旻, 樊文杰, 姚晨, 刘鹏翔, 马延杰, 杨国宇. 锰纳米佐剂的制备及生物学效应[J]. 畜牧兽医学报, 2024, 55(8): 3374-3382. |
[11] | 李婉卿, 曾亚琦, 姚新奎, 王建文, 袁鑫鑫, 孟晨, 孙远方, 彭宣, 孟军. 肉用型伊犁马的血液转录组比较分析[J]. 畜牧兽医学报, 2024, 55(7): 2951-2962. |
[12] | 许师源, 张留光, 刘松奇, 吴开慧, 汪超, 王栋, 庞云渭. ART3调控小鼠精子发生的作用与机制研究[J]. 畜牧兽医学报, 2024, 55(7): 2995-3010. |
[13] | 李竟, 张元旭, 王泽昭, 陈燕, 徐凌洋, 张路培, 高雪, 高会江, 李俊雅, 朱波, 郭鹏. 机器学习全基因组选择研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2281-2292. |
[14] | 李殿玉, 莫荣纤, 赵旭, 高铭, 李洪珊, 白辉盛, 马瑞仙, 李向茸, 冯若飞. 热休克蛋白27对水泡性口炎病毒体外增殖的调控作用[J]. 畜牧兽医学报, 2024, 55(6): 2540-2549. |
[15] | 张元旭, 李竟, 王泽昭, 陈燕, 徐凌洋, 张路培, 高雪, 高会江, 李俊雅, 朱波, 郭鹏. 动物遗传评估软件研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1827-1841. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||