畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (4): 1473-1483.doi: 10.11843/j.issn.0366-6964.2025.04.001
王佳美1,2(), 黄永震2, 高晨1, 李俊良1, 陈燕1, 朱波1, 张路培1, 王泽昭1, 高会江1, 李俊雅1,*(
), 高雪1,*(
)
收稿日期:
2024-08-01
出版日期:
2025-04-23
发布日期:
2025-04-28
通讯作者:
李俊雅,高雪
E-mail:wjm20210409@163.com;lijunya@caas.cn;gaoxue@caas.cn
作者简介:
王佳美(2000-), 女, 满族, 河北秦皇岛人, 硕士生, 主要从事动物遗传育种与繁殖研究, E-mail: wjm20210409@163.com
基金资助:
WANG Jiamei1,2(), HUANG Yongzhen2, GAO Chen1, LI Junliang1, CHEN Yan1, ZHU Bo1, ZHANG Lupei1, WANG Zezhao1, GAO Huijiang1, LI Junya1,*(
), GAO Xue1,*(
)
Received:
2024-08-01
Online:
2025-04-23
Published:
2025-04-28
Contact:
LI Junya, GAO Xue
E-mail:wjm20210409@163.com;lijunya@caas.cn;gaoxue@caas.cn
摘要:
多能性干细胞具有无限增殖潜力和分化成多种类型组织细胞的能力,是当前干细胞研究的热点和焦点,家畜多能性干细胞的研究不仅具有基础理论意义,在家畜繁殖育种、生物医学、食品生产等领域具有重要的应用价值。本文以胚胎干细胞和诱导性多能干细胞为例,对多能性干细胞的多能性状态及培养条件、鉴定方法进行概述,综述了家畜多能性干细胞的研究进展,并对其应用前景进行了展望,以期为家畜多能性干细胞的研究提供参考。
中图分类号:
王佳美, 黄永震, 高晨, 李俊良, 陈燕, 朱波, 张路培, 王泽昭, 高会江, 李俊雅, 高雪. 多能性干细胞概述及其在家畜上的研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1473-1483.
WANG Jiamei, HUANG Yongzhen, GAO Chen, LI Junliang, CHEN Yan, ZHU Bo, ZHANG Lupei, WANG Zezhao, GAO Huijiang, LI Junya, GAO Xue. Research Progress and Overview on Pluripotent Stem Cells in Livestock[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1473-1483.
表 1
多能干细胞培养条件"
培养基Medium | 配方Formula | 细胞类型Cell type |
FBS/LIF[ | 基础培养基:KO-DMEM;FBS 15%、GlutaMAX 1%、NEAA 1%、双抗1%、β-巯基乙醇0.1 mmol· L-1、hLIF 10 ng·mL-1 | 胚胎干细胞、诱导性多能干细胞 |
2i/LIF[ | 基础培养基N2B27:DMEM/F-12 50%、Neurobasal 50%、N2 0.5%、B27 1%、双抗1%、β-巯基乙醇0.1 mmol· L-1;hLIF:10 ng·mL-1、CHIR99021:1 μmol· L-1、PD0325901:3 μmol· L-1 | 胚胎干细胞、诱导性多能干细胞 |
3i/LIF[ | 2i/LIF+A8301 | 胚胎干细胞、诱导性多能干细胞 |
3i/LAF[ | 基础培养基:N2B27、KnockOut Serum Replacement 5%、NEAA 1%、VC 50μg·mL-1;CHIR99021 1 umol· L-1、Activin A 25 ng·mL-1、WH-4-023 1 μmol· L-1、hLIF 10 ng·mL-1、FGF2 10 ng·mL-1、IWR-1-endo 2.5 μmol· L-1、Y-27632(2 μmol· L-1维持,10 μmol· L-1传代) | 原肠化前上胚层多能性干细胞 |
LCDM[ | 基础培养基:N2B27;10 ng·mL-1 hLIF、CHIR 99021(人:1 μmol· L-1,小鼠:3 μmol· L-1)(S)-(+)-马来酸二甲苯茚酸酯2 μmol· L-1、盐酸米诺环素2 μmol· L-1 | 山羊iPSCs、扩展多能干细胞、牛滋养层干细胞 |
1 | 王全全. 人脐带华通氏胶间充质干细胞治疗肌肉衰减综合征的实验研究[D]. 济南: 山东大学, 2018. |
WANG Q Q. Experimental study of treatment of sarcopenia with human umbilical cord wharton's jelly. mesenchymal stem cells[D]. Jinan: Shandong University, 2018. (in Chinese) | |
2 |
CAO J , LI W , LI J , et al. Live birth of chimeric monkey with high contribution from embryonic stem cells[J]. Cell, 2023, 186 (23): 4996- 5014.e24.
doi: 10.1016/j.cell.2023.10.005 |
3 |
EVANS M J , KAUFMAN M H . Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 292 (5819): 154- 156.
doi: 10.1038/292154a0 |
4 |
MARTIN G R . Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells[J]. Proc Natl Acad Sci U S A, 1981, 78 (12): 7634- 7638.
doi: 10.1073/pnas.78.12.7634 |
5 | ELKENANI M , MOHAMED B A . Murine embryonic stem cell culture, self-renewal, and differentiation[J]. Methods Mol Biol, 2022, 2520, 265- 273. |
6 | AZIZI H , ASGARI B , SKUTELLA T . Pluripotency potential of embryonic stem cell-like cells derived from mouse testis[J]. Cell J, 2019, 21 (3): 281- 289. |
7 |
EBRAHIMI M , FOROUZESH M , RAOUFI S , et al. Differentiation of human induced pluripotent stem cells into erythroid cells[J]. Stem Cell Res Ther, 2020, 11 (1): 483.
doi: 10.1186/s13287-020-01998-9 |
8 |
CHEN X , XU H , YUAN P , et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells[J]. Cell, 2008, 133 (6): 1106- 1117.
doi: 10.1016/j.cell.2008.04.043 |
9 |
MARTINS-NEVES S R , SAMPAIO-RIBEIRO G , GOMES C M F . Self-renewal and pluripotency in osteosarcoma stem cells' chemoresistance: Notch, Hedgehog, and Wnt/β-Catenin interplay with embryonic markers[J]. Int J Mol Sci, 2023, 24 (9): 8401.
doi: 10.3390/ijms24098401 |
10 |
TAKAHASHI K , YAMANAKA S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126 (4): 663- 676.
doi: 10.1016/j.cell.2006.07.024 |
11 |
DING D , SHYU W , LIN S . Mesenchymal stem cells[J]. Cell Transplant, 2011, 20 (1): 5- 14.
doi: 10.3727/096368910X |
12 |
HILL A , BRESSAN F , MURPHY B , et al. Applications of mesenchymal stem cell technology in bovine species[J]. Stem Cell Res Ther, 2019, 10 (1): 44.
doi: 10.1186/s13287-019-1145-9 |
13 |
YANG Y , LIU B , XU J , et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency[J]. Cell, 2017, 169 (2): 243- 257.e25.
doi: 10.1016/j.cell.2017.02.005 |
14 | BOROVIAK T , LOOS R , BERTONE P , et al. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification[J]. Nat Cell Biol, 2014, 16 (6): 516- 528. |
15 |
BRADLEY A , EVANS M , KAUFMAN M H , et al. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines[J]. Nature, 1984, 309 (5965): 255- 256.
doi: 10.1038/309255a0 |
16 | 刘芳远. 小鼠内胚层样干细胞系的建立与转录组分析[D]. 呼和浩特: 内蒙古大学, 2021. |
LIU F Y. Derivation and RNA-seq analysis of mouse endoderm-like stem cells[D]. Hohhot: Inner Mongolia University, 2021. | |
17 |
KINOSHITA M , BARBER M , MANSFIELD W , et al. Capture of mouse and human stem cells with features of formative pluripotency[J]. Cell Stem Cell, 2021, 28 (3): 453- 471.e8.
doi: 10.1016/j.stem.2020.11.005 |
18 |
KALKAN T , SMITH A . Mapping the route from naive pluripotency to lineage specification[J]. Philos Trans R Soc Lond B Biol Sci, 2014, 369 (1657): 20130540.
doi: 10.1098/rstb.2013.0540 |
19 |
YING Q L , NICHOLS J , CHAMBERS I , et al. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3[J]. Cell, 2003, 115 (3): 281- 292.
doi: 10.1016/S0092-8674(03)00847-X |
20 |
SATO N , MEIJER L , SKALTSOUNIS L , et al. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor[J]. Nat Med, 2004, 10 (1): 55- 63.
doi: 10.1038/nm979 |
21 |
YING Q L , WRAY J , NICHOLS J , et al. The ground state of embryonic stem cell self-renewal[J]. Nature, 2008, 453 (7194): 519- 523.
doi: 10.1038/nature06968 |
22 | SAITO S , YOKOYAMA K , TAMAGAWA T , et al. Derivation and induction of the differentiation of animal ES cells as well as human pluripotent stem cells derived from fetal membrane[J]. Hum Cell, 2005, 18 (3): 135- 141. |
23 |
ZHI M , ZHANG J , TANG Q , et al. Generation and characterization of stable pig pregastrulation epiblast stem cell lines[J]. Cell Res, 2022, 32 (4): 383- 400.
doi: 10.1038/s41422-021-00592-9 |
24 |
YANG Y , LIU B , XU J , et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency[J]. Cell, 2017, 169 (2): 243- 257.e25.
doi: 10.1016/j.cell.2017.02.005 |
25 |
GRAF U , CASANOVA E A , CINELLI P . The Role of the Leukemia inhibitory factor (LIF)-pathway in derivation and maintenance of murine pluripotent stem cells[J]. Genes (Basel), 2011, 2 (1): 280- 297.
doi: 10.3390/genes2010280 |
26 |
ACAMPORA D , DI GIOVANNANTONIO L G , GAROFALO A , et al. Functional antagonism between OTX2 and NANOG specifies a spectrum of heterogeneous identities in embryonic stem cells[J]. Stem Cell Reports, 2017, 9 (5): 1642- 1659.
doi: 10.1016/j.stemcr.2017.09.019 |
27 |
TAMM C , PIJUAN GALITO S , ANNEREN C . A comparative study of protocols for mouse embryonic stem cell culturing[J]. PLoS One, 2013, 8 (12): e81156.
doi: 10.1371/journal.pone.0081156 |
28 |
YING Q L , WRAY J , NICHOLS J , et al. The ground state of embryonic stem cell self-renewal[J]. Nature, 2008, 453 (7194): 519- 523.
doi: 10.1038/nature06968 |
29 | BALBASI E , GUVEN G , TERZI C N . Mouse embryonic stem cell culture in serum-containing or 2i conditions[J]. Methods Mol Biol, 2022, 2520, 275- 294. |
30 |
ZHOU H , LI W , ZHU S , et al. Conversion of mouse epiblast stem cells to an earlier pluripotency state by small molecules[J]. J Biol Chem, 2010, 285 (39): 29676- 29680.
doi: 10.1074/jbc.C110.150599 |
31 |
HU W T , YAN Q Y , FANG Y , et al. Transient folate deprivation in combination with small-molecule compounds facilitates the generation of somatic cell-derived pluripotent stem cells in mice[J]. J Huazhong Univ Sci Technolog Med Sci, 2014, 34 (2): 151- 156.
doi: 10.1007/s11596-014-1249-5 |
32 |
WANG Y , MING H , YU L , et al. Establishment of bovine trophoblast stem cells[J]. Cell Rep, 2023, 42 (5): 112439.
doi: 10.1016/j.celrep.2023.112439 |
33 | 王孟丽. Oct4、Sox2、c-Myc、Klf4-慢病毒载体构建与包装及感染人皮肤成纤维细胞的实验研究[D]. 福州: 福建医科大学, 2010. |
WANG M L. The study of construction and packing of Lentiviral vector Oct4, Sox2, c-Myc, Klf4 and infecting human skin fibroblasts[D]. Fuzhou: Fujian Medical University, 2010. (in Chinese) | |
34 |
LEE J , GO Y , KANG I , et al. Oct-4 controls cell-cycle progression of embryonic stem cells[J]. Biochem J, 2010, 426 (2): 171- 181.
doi: 10.1042/BJ20091439 |
35 |
LEE M R , PRASAIN N , CHAE H D , et al. Epigenetic regulation of NANOG by miR-302 cluster-MBD2 completes induced pluripotent stem cell reprogramming[J]. Stem Cells, 2013, 31 (4): 666- 681.
doi: 10.1002/stem.1302 |
36 |
ZHANG S , BELL E , ZHI H , et al. OCT4 and PAX6 determine the dual function of SOX2 in human ESCs as a key pluripotent or neural factor[J]. Stem Cell Res Ther, 2019, 10 (1): 122.
doi: 10.1186/s13287-019-1228-7 |
37 |
MASUI S , NAKATAKE Y , TOYOOKA Y , et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells[J]. Nat Cell Biol, 2007, 9 (6): 625- 635.
doi: 10.1038/ncb1589 |
38 |
BRATT-LEAL A M , CARPENEDO R L , MCDEVITT T C . Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation[J]. Biotechnol Prog, 2009, 25 (1): 43- 51.
doi: 10.1002/btpr.139 |
39 |
KUROSAWA H . Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells[J]. J Biosci Bioeng, 2007, 103 (5): 389- 398.
doi: 10.1263/jbb.103.389 |
40 |
STACHELSCHEID H , WULF-GOLDENBERG A , ECKERT K , et al. Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors[J]. J Tissue Eng Regen Med, 2013, 7 (9): 729- 741.
doi: 10.1002/term.1467 |
41 | NELAKANT R V , KOOREMAN N G , WU J C . Teratoma formation: a tool for monitoring pluripotency in stem cell research[J]. Curr Protoc Stem Cell Biol, 2015, 32, 4A.8.1- 4A.8.17. |
42 |
GAO X , NOWAK-IMIALEK M , CHEN X , et al. Establishment of porcine and human expanded potential stem cells[J]. Nat Cell Biol, 2019, 21 (6): 687- 699.
doi: 10.1038/s41556-019-0333-2 |
43 |
RUAN D , XUAN Y , TAM TTKK , et al. An optimized culture system for efficient derivation of porcine expanded potential stem cells from preimplantation embryos and by reprogramming somatic cells[J]. Nat Protoc, 2024, 19 (6): 1710- 1749.
doi: 10.1038/s41596-024-00958-4 |
44 |
ZHOU M , ZHANG M , GUO T , et al. Species origin of exogenous transcription factors affects the activation of endogenous pluripotency markers and signaling pathways of porcine induced pluripotent stem cells[J]. Front Cell Dev Biol, 2023, 11, 1196273.
doi: 10.3389/fcell.2023.1196273 |
45 | CAO S , WANG F , CHEN Z , et al. Isolation and culture of primary bovine embryonic stem cell colonies by a novel method[J]. J Exp Zool A Ecol Genet Physiol, 2009, 311 (5): 368- 376. |
46 |
MARUOTTI J , MUNOZ M , DEGRELLE S A , et al. Efficient derivation of bovine embryonic stem cells needs more than active core pluripotency factors[J]. Mol Reprod Dev, 2012, 79 (7): 461- 477.
doi: 10.1002/mrd.22051 |
47 |
HAN X , HAN J , DING F , et al. Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells[J]. Cell Res, 2011, 21 (10): 1509- 1512.
doi: 10.1038/cr.2011.125 |
48 |
SUMER H , LIU J , MALAVER-ORTEGA L F , et al. NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts[J]. J Anim Sci, 2011, 89 (9): 2708- 2716.
doi: 10.2527/jas.2010-3666 |
49 |
KAWAGUCHI T , TSUKIYAMA T , KIMURA K , et al. Generation of naïve bovine induced pluripotent stem cells using PiggyBac transposition of doxycycline-inducible transcription factors[J]. PLoS One, 2015, 10 (8): e0135403.
doi: 10.1371/journal.pone.0135403 |
50 |
BAI C , LI X , GAO Y , et al. Melatonin improves reprogramming efficiency and proliferation of bovine-induced pluripotent stem cells[J]. J Pineal Res, 2016, 61 (2): 154- 167.
doi: 10.1111/jpi.12334 |
51 |
SOTO D A , NAVARRO M , ZHENG C , et al. Simplification of culture conditions and feeder-free expansion of bovine embryonic stem cells[J]. Sci Rep, 2021, 11 (1): 11045.
doi: 10.1038/s41598-021-90422-0 |
52 |
ZHAO L , GAO X , ZHENG Y , et al. Establishment of bovine expanded potential stem cells[J]. Proc Natl Acad Sci U S A, 2021, 118 (15): e2018505118.
doi: 10.1073/pnas.2018505118 |
53 |
XIAO Y , SOSA F , ROSS P J , et al. Regulation of NANOG and SOX2 expression by activin A and a canonical WNT agonist in bovine embryonic stem cells and blastocysts[J]. Biol Open, 2021, 10 (11): bio058669.
doi: 10.1242/bio.058669 |
54 |
CANIZO J R , VAZQUEZ E C , KLISCH D , et al. Exogenous human OKSM factors maintain pluripotency gene expression of bovine and porcine iPS-like cells obtained with STEMCCA delivery system[J]. BMC Res Notes, 2018, 11 (1): 509.
doi: 10.1186/s13104-018-3627-8 |
55 |
PILLAI V V , KEI T G , REDDY S E , et al. Induced pluripotent stem cell generation from bovine somatic cells indicates unmet needs for pluripotency sustenance[J]. Anim Sci J, 2019, 90 (9): 1149- 1160.
doi: 10.1111/asj.13272 |
56 | 张学敏. 绵羊扩展多能干细胞的建立及其嵌合能力和转录图谱分析[D]. 呼和浩特: 内蒙古大学, 2022. |
ZHANG X M. Establishment of sheep extended pluripotent stem cells and analyses of chimeric capacity and transcriptional map[D]. Hohhot: Inner Mongolia University, 2022. (in Chinese) | |
57 |
BAO L , HE L , CHEN J , et al. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors[J]. Cell Res, 2011, 21 (4): 600- 608.
doi: 10.1038/cr.2011.6 |
58 |
LIU J , BALEHOSUR D , MURRAY B , et al. Generation and characterization of reprogrammed sheep induced pluripotent stem cells[J]. Theriogenology, 2012, 77 (2): 338- 346.e1.
doi: 10.1016/j.theriogenology.2011.08.006 |
59 |
SARTORI C , DIDOMENICO A I , THOMSON A J , et al. Ovine-induced pluripotent stem cells can contribute to chimeric lambs[J]. Cell Reprogram, 2012, 14 (1): 8- 19.
doi: 10.1089/cell.2011.0050 |
60 |
LIU M , ZHAO L , WANG Z , et al. Generation of sheep induced pluripotent stem cells with defined dox-inducible transcription factors via piggyBac transposition[J]. Front Cell Dev Biol, 2021, 9, 785055.
doi: 10.3389/fcell.2021.785055 |
61 |
VILARINO M , ALBA SOTO D , SOLEDAD-BOGLIOTTI Y , et al. Derivation of sheep embryonic stem cells under optimized conditions[J]. Reproduction, 2020, 160 (5): 761- 772.
doi: 10.1530/REP-19-0606 |
62 |
LI L , ZHANG D , REN Y , et al. The modification of mitochondrial energy metabolism and histone of goat somatic cells under small molecules compounds induction[J]. Reprod Domest Anim, 2019, 54 (2): 138- 149.
doi: 10.1111/rda.13304 |
63 |
SINGH A , SINGH S K , KUMAR M , et al. Establishment of Capra hircus somatic cells and induction of pluripotent stem-like cells[J]. In Vitro Cell Dev Biol Anim, 2024, 60 (1): 3- 8.
doi: 10.1007/s11626-023-00840-9 |
64 | LIU F , WANG J , YUE Y , et al. Derivation of arbas Cashmere goat induced pluripotent stem cells in LCDM with trophectoderm lineage differentiation and interspecies chimeric abilities[J]. Int J Mol Sci, 2023, 24 (19): 14728. |
65 | 罗睿杰, 曹素英. 大家畜多能干细胞的研究进展与应用前景[J]. 畜牧兽医学报, 2023, 54 (10): 4003- 4015. |
LUO R J , CAO S Y . Research progress and application prospect of livestock pluripotent stem cells[J]. Acta Veterinaeria Et Zootechnica Sinica, 2023, 54 (10): 4003- 4015. | |
66 | GENOVESE NJ , DOMEIER TL , TELUGU BP , et al. Enhanced development of skeletal myotubes from porcine induced pluripotent stem cells[J]. Sci Rep, 2017, 7, 41833. |
[1] | 赵文轩, 高雪, 余大为, 高晨, 李俊雅. 蒙山牛诱导多能干细胞的建立[J]. 畜牧兽医学报, 2025, 56(4): 1731-1743. |
[2] | 丁莹莹, 张嘉芸, 唐龙轩, 张少华, 郭小腊, 蒲丽霞, 牟文杰, 王帅. 肠道共生生物对肠道干细胞的调节机制研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1019-1026. |
[3] | 闫炎, 刘晏辰, 王仲发, 李旻娟, 何玉楠, 关伟军, 姜运良. 洛岛红鸡卵黄囊源性间充质干细胞的分离培养及其分化潜能研究[J]. 畜牧兽医学报, 2025, 56(3): 1252-1263. |
[4] | 贺海洋, 马保华, 彭莎. 间充质干细胞源外泌体对动物急性肾损伤的治疗作用及机制研究进展[J]. 畜牧兽医学报, 2025, 56(1): 115-125. |
[5] | 吕英光, 焦广明, 桑金芳, 寇志鹏, 刘涛, 王月, 陆翔宇, 朴晨曦, 马亚军, 张建涛, 王洪斌. 脂肪间充质干细胞对巴马小型猪自体皮肤移植愈合过程的影响[J]. 畜牧兽医学报, 2024, 55(7): 3193-3204. |
[6] | 朱明德, 陈奕静, 戴鹏秀, 张翊华, 张欣珂. 重编程诱导犬脂肪间充质干细胞向胰岛素分泌细胞分化[J]. 畜牧兽医学报, 2024, 55(7): 3205-3212. |
[7] | 谭宁, 李巴仑, 韩苗, 李琛琛, 景远翔, 寇正, 李娜, 彭莎, 赵献军, 华进联. 米托蒽醌甲磺酸盐预处理脂肪间充质干细胞对犬糖尿病的治疗效果评价[J]. 畜牧兽医学报, 2024, 55(3): 1328-1344. |
[8] | 刘晏辰, 周世莹, 张洋, 高扬, 关伟军. 荷斯坦牛肺干细胞分离培养与生物学特性研究[J]. 畜牧兽医学报, 2024, 55(2): 540-551. |
[9] | 沈可成, 朱家桥, 刘宗平. 非人灵长类多能干细胞体外培养和诱导分化的研究进展[J]. 畜牧兽医学报, 2024, 55(10): 4278-4289. |
[10] | 田启会, 张亮, 龙亚丽. 黄芪影响缺氧微环境中骨髓间充质干细胞增殖活性的PI3K-AKT信号通路分析[J]. 畜牧兽医学报, 2024, 55(1): 346-354. |
[11] | 马亚军, 焦智慧, 刘笑凝, 陆翔羽, 刘涛, 王月, 朴晨曦, 王洪斌. 脂肪间充质干细胞对小型猪肝缺血再灌注合并肝切除组织细胞焦亡的影响[J]. 畜牧兽医学报, 2024, 55(1): 355-364. |
[12] | 焦广明, 吕英光, 桑金芳, 寇志鹏, 刘涛, 王月, 陆翔宇, 朴晨曦, 马亚军, 张建涛, 王洪斌. 脂肪间充质干细胞与甲泼尼龙联合用药对小型猪异体皮肤移植的影响[J]. 畜牧兽医学报, 2023, 54(8): 3533-3545. |
[13] | 胥辉豪, 冯雪倩, 朴雪玲, 慎晓军, 郑小波, 杨恒, 林珈好, 金艺鹏, 林德贵. 猫角膜缘干细胞不同采集、分离与培养鉴定方法的对比研究[J]. 畜牧兽医学报, 2023, 54(7): 3091-3101. |
[14] | 许甜甜, 张彤彤, 王蒙, 王昕. 转录因子Foxq1通过WNT/β-catenin信号通路影响绒山羊毛囊干细胞增殖的研究[J]. 畜牧兽医学报, 2023, 54(6): 2653-2661. |
[15] | 罗睿杰, 曹素英. 大家畜多能干细胞的研究进展与应用前景[J]. 畜牧兽医学报, 2023, 54(10): 4003-4015. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||