[1] |
SCHLOTTMANN F, BUCAN V, VOGT P M, et al. A short history of skin grafting in burns:from the gold standard of autologous skin grafting to the possibilities of allogeneic skin grafting with immunomodulatory approaches[J]. Medicina (Kaunas), 2021, 57(3):225.
|
[2] |
GOOPTU M, KORETH J. Translational and clinical advances in acute graft-versus-host disease[J]. Haematologica, 2020, 105(11):2550-2560.
|
[3] |
CLIMOV M, MATAR A J, FARKASH E A, et al. Survival of allogeneic self-assembled cultured skin[J]. Transplantation, 2016, 100(10):2071-2078.
|
[4] |
UENO P, FELIPE C, FERREIRA A, et al. Wound healing complications in kidney transplant recipients receiving Everolimus[J]. Transplantation, 2017, 101(4):844-850.
|
[5] |
BOOTUN R. Effects of immunosuppressive therapy on wound healing[J]. Int Wound J, 2013, 10(1):98-104.
|
[6] |
HAHNENKAMP K, BÖHLER K, WOLTERS H, et al. Organ-protective intensive care in organ donors[J]. Dtsch Arztebl Int, 2016, 113(33-34):552-558.
|
[7] |
ANUDEEP T C, JEYARAMAN M, MUTHU S, et al. Advancing regenerative cellular therapies in non-scarring alopecia[J]. Pharmaceutics, 2022, 14(3):612.
|
[8] |
LI C, WEI S Q, XU Q C, et al. Application of ADSCs and their exosomes in scar prevention[J]. Stem Cell Rev Rep, 2022, 18(3):952-967.
|
[9] |
HU J L, KWON S T, KIM S W, et al. Effects of administration route of adipose-derived stem cells on the survival of allogeneic skin grafts in mice[J]. Transplant Proc, 2021, 53(7):2397-2406.
|
[10] |
MAZINI L, ROCHETTE L, ADMOU B, et al. Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in wound healing[J]. Int J Mol Sci, 2020, 21(4):1306.
|
[11] |
SMAKAJ A, DE MAURO D, ROVERE G, et al. Clinical application of adipose derived stem cells for the treatment of aseptic non-unions:current stage and future perspectives-systematic review[J]. Int J Mol Sci, 2022, 23(6):3057.
|
[12] |
EYLERT G, DOLP R, PAROUSIS A, et al. Skin regeneration is accelerated by a lower dose of multipotent mesenchymal stromal/stem cells-a paradigm change[J]. Stem Cell Res Ther, 2021, 12(1):82.
|
[13] |
胡俊西. 巴马小型香猪皮肤比较生物学研究[D]. 重庆:西南大学, 2006.HU J X. Comparative biological research of skin in Bama minipig[D]. Chongqing:Southwest University, 2006. (in Chinese)
|
[14] |
陈俊颖, 魏 泓. 猪皮肤在创伤修复中的应用研究进展[J]. 西南国防医药, 2009, 19(11):1151-1153.CHEN J Y, WEI H. Research progress on the application of porcine skin in trauma repair[J]. Medical Journal of National Defending Forces in Southwest China, 2009, 19(11):1151-1153. (in Chinese)
|
[15] |
CENDALES L C, KANITAKIS J, SCHNEEBERGER S, et al. The Banff 2007 working classification of skin-containing composite tissue allograft pathology[J]. Am J Transplant, 2008, 8(7):1396-1400.
|
[16] |
LUO L, LI C W, WU W Q, et al. Functional analysis of alloreactive memory CD4+ T cells derived from skin transplantation recipient and naive CD4+ T cells derived from untreated mice[J]. J Surg Res, 2012, 176(2):649-656.
|
[17] |
RICHTERS C D, HOEKSTRA M J, DU PONT J S, et al. Immunology of skin transplantation[J]. Clin Dermatol, 2005, 23(4):338-342.
|
[18] |
BENICHOU G, YAMADA Y, YUN S H, et al. Immune recognition and rejection of allogeneic skin grafts[J]. Immunotherapy, 2011, 3(6):757-770.
|
[19] |
WYNN T A, VANNELLA K M. Macrophages in tissue repair, regeneration, and fibrosis[J]. Immunity, 2016, 44(3):450-462.
|
[20] |
AITCHESON S M, FRENTIU F D, HURN S E, et al. Skin wound healing:normal macrophage function and macrophage dysfunction in diabetic wounds[J]. Molecules, 2021, 26(16):4917.
|
[21] |
LOGIE J J, ALI S, MARSHALL K M, et al. Glucocorticoid-mediated inhibition of angiogenic changes in human endothelial cells is not caused by reductions in cell proliferation or migration[J]. PLoS One, 2010, 5(12):e14476.
|
[22] |
LANGENDORF E K, ROMMENS P M, DREES P, et al. Dexamethasone Inhibits the pro-angiogenic potential of primary human myoblasts[J]. Int J Mol Sci, 2021, 22(15):7986.
|
[23] |
FUJIO K, KOMAI T, INOUE M, et al. Revisiting the regulatory roles of the TGF-β family of cytokines[J]. Autoimmun Rev, 2016, 15(9):917-922.
|
[24] |
MORIKAWA M, DERYNCK R, MIYAZONO K. TGF-β and the TGF-β family:context-dependent roles in cell and tissue physiology[J]. Cold Spring Harb Perspect Biol, 2016, 8(5):a021873.
|
[25] |
ZHONG C X, WANG S Z, DANG L, et al. Progress in 11β-HSD1 inhibitors for the treatment of metabolic diseases:a comprehensive guide to their chemical structure diversity in drug development[J]. Eur J Med Chem, 2020, 191:112134.
|
[26] |
TERAO M, MUROTA H, KIMURA A, et al. 11β-Hydroxysteroid dehydrogenase-1 is a novel regulator of skin homeostasis and a candidate target for promoting tissue repair[J]. PLoS One, 2011, 6(9):e25039.
|
[27] |
TIGANESCU A, HUPE M, UCHIDA Y, et al. Increased glucocorticoid activation during mouse skin wound healing[J]. J Endocrinol, 2014, 221(1):51-61.
|
[28] |
DASHTI-KHAVIDAKI S, SAIDI R, LU H. Current status of glucocorticoid usage in solid organ transplantation[J]. World J Transplant, 2021, 11(11):443-465.
|
[29] |
MORGAN S A, SHERLOCK M, GATHERCOLE L L, et al. 11β-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle[J]. Diabetes, 2009, 58(11):2506-2515.
|
[30] |
SHIBAYAMA Y, ALKHOURY C, NEMAZANYY I, et al. Class 3 phosphoinositide 3-kinase promotes hepatic glucocorticoid receptor stability and transcriptional activity[J]. Acta Physiol (Oxf), 2022, 235(1):e13793.
|