

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (12): 6219-6231.doi: 10.11843/j.issn.0366-6964.2025.12.024
陈怡1,2(
), 刘彬1,2, 张习录1,2, 陆情梅1,2, 潘智仁1,2, 施晓丽1,2, 罗志军3, 赵佳福1,2,*(
)
收稿日期:2025-05-14
出版日期:2025-12-23
发布日期:2025-12-24
通讯作者:
赵佳福
E-mail:3330436407@qq.com;jfzhao@gzu.edu.cn
作者简介:陈怡(2000-),女,浙江泰顺人,硕士,主要从事动物繁殖生理调控的研究,E-mail: 3330436407@qq.com
基金资助:
CHEN Yi1,2(
), LIU Bin1,2, ZHANG Xilu1,2, LU Qingmei1,2, PAN Zhiren1,2, SHI Xiaoli1,2, LUO Zhijun3, ZHAO Jiafu1,2,*(
)
Received:2025-05-14
Online:2025-12-23
Published:2025-12-24
Contact:
ZHAO Jiafu
E-mail:3330436407@qq.com;jfzhao@gzu.edu.cn
摘要:
旨在研究鞣花酸(EA)及其代谢物尿石素A(UA)、尿石素B(UB)和尿石素C(UC)对贵州黑山羊卵巢颗粒细胞(OGCs)促增殖、抗氧化、抑凋亡的效果对比,以期寻找相较于EA更优的选择。本研究通过采集健康且性成熟的羊卵巢组织,分离培养OGCs,经鉴定后用于后续研究。同时,基于课题组前人的研究发现,1 μmol·L-1浓度的EA对OGCs具有最优的生物学效应。因此,试验分为5组:对照组(CON组)、EA组、UA组、UB组、UC组,处理组分别添加1 μmol·L-1对应药物。随后,采用CCK-8检测添加各组药物0、24、36及48 h对OGCs细胞增殖的影响,采用细胞划痕试验检测其对OGCs细胞迁移的影响,采用ROS试剂盒检测其对OGCs的ROS水平影响,最后通过qRT-PCR检测其对抗凋亡基因Bcl-2,促凋亡基因Bax、Caspase-3、Caspase-9,炎症因子IL-1β、IL-6、TNF-α及繁殖相关基因GDF9、BMPR-1B、CYP19A1、FSHβ mRNA表达的影响。UA对OGCs的增殖效果最好,其次是EA与UB,最后是UC;细胞划痕试验发现UA显著促进了细胞迁移能力,UB显著抑制了细胞迁移,且EA与UA相比,两者之间并无显著性差异;ROS试验发现,UA与EA显著降低了细胞内ROS含量;qRT-PCR结果发现,与CON组相比,UA、UB、UC、EA组中促凋亡基因CASP3、CASP9、BAX的mRNA表达水平显著降低,而在抗凋亡方面,UA组中BCL-2的表达量显著高于其他组。对炎症因子mRNA表达水平的检测结果显示,UA、UC、EA组IL-1β相对表达量显著低于CON组,且UA组mRNA表达量最低;各组IL-6的表达量与CON组无显著差异,但TNF-α含量均显著降低。对繁殖相关基因的检测结果显示,UA、EA组GDF9、BMPR-1B、CYP19A1和FSHβ的表达量均显著高于CON组,其中UA组表达量最高。本研究发现,与EA及EA其他代谢物相比,UA在促进OGCs增殖、迁移、抗氧化、抗凋亡及调控生殖-炎症相关基因表达方面具有显著优势,可作为哺乳动物繁殖调控的重要添加剂进行深入研究。
中图分类号:
陈怡, 刘彬, 张习录, 陆情梅, 潘智仁, 施晓丽, 罗志军, 赵佳福. 鞣花酸及其代谢物对山羊卵巢颗粒细胞促增殖、抗氧化、抑凋亡的效果对比研究[J]. 畜牧兽医学报, 2025, 56(12): 6219-6231.
CHEN Yi, LIU Bin, ZHANG Xilu, LU Qingmei, PAN Zhiren, SHI Xiaoli, LUO Zhijun, ZHAO Jiafu. A Comparative Study on the Effects of Ellagic Acid and Its Metabolites on Proliferation Promotion, Antioxidation, Apoptosis Inhibition of Goat Ovarian Granulosa Cells[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(12): 6219-6231.
表 1
PCR引物序列"
| 基因 Gene | 登录号 Accession number | 引物序列(5′→3′) Primer sequence | 片段大小/bp Products size |
| IL-1β | XM_013967700.2 | F: ATGAGCCGAGAAGTGGTGTTC R: CAGGGTCGGTGTATCACCTT | 135 |
| IL-6 | NM_001285640.1 | F: AATCTGGGTTCAATCAGGCGA R: GCTCTGCAACTCCATGACAG | 128 |
| TNF-α | NM_001286442.1 | F: GTGGAGCTGGCAGAGGAGGTG R: GGAGGAAGGAGAAGAGGCTGAGG | 91 |
| CYP19A1 | NM_001285747.1 | F: AAGTGCTGAACCCAAGGCAT R: TCCAGTGAGCAGCAGGATTG | 89 |
| BMPR-1B | XM_018049152.1 | F: CCTGGAGAATCCCTGAGAGAC R: CCCCATAGCGACCTTTTCCA | 143 |
| GDF9 | XM_013965446.2 | F: CACCGCAGAGACCAGGAGAG R: TCCAGTTGTCCCACTTCAGC | 135 |
| FSHβ | XM_013969782.2 | F: AGATGTCTGTGTGTACATGCG R: GGTTGGCTCTTCTCTTGAGG | 122 |
| BCL2 | XM_018039337.1 | F: TCTTTGAGTTCGGAGGGGTC R: TGGTGGAAGAGTGTGCTGTG | 187 |
| BAX | XM_013971446.2 | F: CATCGGAGATGAATTGGACACTAA R: GGCCTTGAGCACCAGTTTGC | 147 |
| CASP3 | NM_001286089.1 | F: CCTGGACTGTCGTATTGAGA R: TAACCCGAGTAAGAATGTGC | 218 |
| CASP9 | XM_005690814.3 | F: TGAAGACCAGCAGACAAGC R: AGTGAATCCTCCAGAACCAA | 167 |
| β-actin | XM_013975437.2 | F: GGTGCCCATCTACGAGG R: CTTGATGTCACGGACGATT | 154 |
| 1 | 周明帅. COL1A1调控卵巢颗粒细胞生物学功能影响贵州黑山羊产羔性状的研究[D]. 贵阳: 贵州大学, 2023. |
| ZHOU M S, COL1A1 regulates the biological function ofovarian granulosa cells and affects the kiddingtraits of guizhou black goats Abstract[D]. Guiyang: Guizhou University, 2023. (in Chinese) | |
| 2 |
ZHANG F L , KONG L , ZHAO A H , et al. Inflammatory cytokines as key players of apoptosis induced by environmental estrogens in the ovary[J]. Environ Res, 2021, 198, 111225.
doi: 10.1016/j.envres.2021.111225 |
| 3 |
YANG H , XIE Y , YANG D , et al. Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and Puma[J]. Oncotarget, 2017, 8 (15): 25310- 25322.
doi: 10.18632/oncotarget.15813 |
| 4 | XUE H , HU Z , LIU S , et al. The mechanism of NF-kappaB-TERT feedback regulation of granulosa cell apoptosis in PCOS rats[J]. PLoS One, 2024, 19 (10): e312115. |
| 5 |
LANDETE J M . Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism, functions and health[J]. Food Res Int, 2011, 44, 1150- 1160.
doi: 10.1016/j.foodres.2011.04.027 |
| 6 | SHARIFI-RAD J , QUISPE C , CASTILLO C , et al. Ellagic acid: a review on its natural sources, chemical stability, and therapeutic potential[J]. Oxid Med Cell Longev, 2022, 2022, e848084. |
| 7 | WEN X , ZHOU M , LU Q , et al. Addition of ellagic acid improved the immune ability and delayed the apoptosis of ovarian granulosa cells of guizhou black goat[J]. Anim Prod Sci, 2024, 64 (1): 1- 11. |
| 8 |
CECI C , GRAZIANI G , FARAONI I , et al. Strategies to improve ellagic acid bioavailability: from natural or semisynthetic derivatives to nanotechnological approaches based on innovative carriers[J]. Nanotechnology, 2020, 31 (38): 382001.
doi: 10.1088/1361-6528/ab912c |
| 9 |
GARCÍA-VILLALBA R , ESPÍN J C , TOMÁS-BARBERÁN F A . Chromatographic and spectroscopic characterization of urolithins for their determination in biological samples after the intake of foods containing ellagitannins and ellagic acid[J]. J Chromatogr A, 2016, 1428, 162- 175.
doi: 10.1016/j.chroma.2015.08.044 |
| 10 |
LUDWIG I A , MENA P , CALANI L , et al. New insights into the bioavailability of red raspberry anthocyanins and ellagitannins[J]. Free Radic Biol Med, 2015, 89, 758- 769.
doi: 10.1016/j.freeradbiomed.2015.10.400 |
| 11 |
XIAN W , YANG S , DENG Y , et al. Distribution of urolithins metabotypes in healthy chinese youth: difference in gut microbiota and predicted metabolic pathways[J]. J Agric Food Chem, 2021, 69 (44): 13055- 13065.
doi: 10.1021/acs.jafc.1c04849 |
| 12 | 石莹, 杜凤, 王玥, 等. 尿石素A的药理作用及机制研究进展[J]. 中南药学, 2022, 20 (1): 113- 120. |
| SHI Y , DU F , WANG Y , et al. Research progress in pharmacological effect and mechanism of urolithin A[J]. Central South Pharmacy, 2022, 20 (1): 113- 120. | |
| 13 |
ANDREUX P A , BLANCO-BOSE W , RYU D , et al. The mitophagy activator urolithin a is safe and induces a molecular signature of improved mitochondrial and cellular health in humans[J]. Nat Metab, 2019, 1 (6): 595- 603.
doi: 10.1038/s42255-019-0073-4 |
| 14 |
ROGOVSKII V S , MATYUSHIN A I , SHIMANOVSKII N L . Influence of urolithin a on cytokine production by various cancer cell lines[J]. Pharm Chem J, 2023, 57, 481- 485.
doi: 10.1007/s11094-023-02909-x |
| 15 |
GARCÍA-VILLALBA R , GIMÉNEZ-BASTIDA J A , CORTÉS-MARTÍN A , et al. Urolithins: a comprehensive update on their metabolism, bioactivity, and associated gut microbiota[J]. Mol Nutr Food Res, 2022, 66 (21): e2101019.
doi: 10.1002/mnfr.202101019 |
| 16 |
MA M , WANG Y , FAN S , et al. Urolithin a alleviates colitis in mice by improving gut microbiota dysbiosis, modulating microbial tryptophan metabolism, and triggering AhR activation[J]. J Agric Food Chem, 2023, 71 (20): 7710- 7722.
doi: 10.1021/acs.jafc.3c00830 |
| 17 |
CHEN P , GUO Z , CHEN F , et al. Recent advances and perspectives on the health benefits of urolithin b, a bioactive natural product derived from ellagitannins[J]. Front Pharmacol, 2022, 13, 917266.
doi: 10.3389/fphar.2022.917266 |
| 18 |
KANG I , KIM Y , TOMÁS-BARBERÁN F A , et al. Urolithin a, c, and d, but not iso-urolithin a and urolithin b, attenuate triglyceride accumulation in human cultures of adipocytes and hepatocytes[J]. Mol Nutr Food Res, 2016, 60 (5): 1129- 1138.
doi: 10.1002/mnfr.201500796 |
| 19 |
SAVI M , BOCCHI L , MENA P , et al. In vivo administration of urolithin a and b prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats[J]. Cardiovasc Diabetol, 2017, 16 (1): 80.
doi: 10.1186/s12933-017-0561-3 |
| 20 |
HU J , MESNAGE R , TUOHY K , et al. (Poly)phenol-related gut metabotypes and human health: an update[J]. Food Funct, 2024, 15 (6): 2814- 2835.
doi: 10.1039/D3FO04338J |
| 21 |
ZHANG M , CUI S , MAO B , et al. Ellagic acid and intestinal microflora metabolite urolithin a: a review on its sources, metabolic distribution, health benefits, and biotransformation[J]. Crit Rev Food Sci Nutr, 2023, 63 (24): 6900- 6922.
doi: 10.1080/10408398.2022.2036693 |
| 22 |
GARCÍA-VILLALBA R , GIMÉNEZ-BASTIDA J A , CORTÉS-MARTÍN A , et al. Urolithins: a comprehensive update on their metabolism, bioactivity, and associated gut microbiota[J]. Mol Nutr Food Res, 2022, 66 (21): e2101019.
doi: 10.1002/mnfr.202101019 |
| 23 | 汪鸽, 韩延华. 早发性卵巢功能不全的颗粒细胞凋亡机制及中医药干预研究进展[J]. 中医药信息, 2022, 39 (2): 83- 88. |
| WANG G , HAN Y H . Research progress in mechanism of granulosa cell apoptosis in POI and TCM intervention[J]. Information on Traditional Chinese Medicine, 2022, 39 (2): 83- 88. | |
| 24 | 徐保阳, 秦文峡, 晏向华. 母猪卵泡发育质量的营养调控研究进展[J]. 动物营养学报, 2022, 34 (10): 6334- 6342. |
| XU B Y , QIN W X , YAN X H . Advances in nutritional regulation of follicular development quality of sows[J]. Chinese Journal of Animal Nutrition, 2022, 34 (10): 6334- 6342. | |
| 25 |
HE Y , DENG H , JIANG Z , et al. Effects of melatonin on follicular atresia and granulosa cell apoptosis in the porcine[J]. Mol Reprod Dev, 2016, 83 (8): 692- 700.
doi: 10.1002/mrd.22676 |
| 26 |
GONZÁLEZ-SARRÍAS A , NÚÑEZ-SÁNCHEZ M Á , GARCÍA-VILLALBA R , et al. Antiproliferative activity of the ellagic acid-derived gut microbiota isourolithin A and comparison with its urolithin a isomer: the role of cell metabolism[J]. Eur J Nutr, 2017, 56 (2): 831- 841.
doi: 10.1007/s00394-015-1131-7 |
| 27 |
CHEN H , BAI M , ZHANG T , et al. Ellagic acid induces cell cycle arrest and apoptosis through TGF-β/Smad3 signaling pathway in human breast cancer MCF-7 cells[J]. Int J Oncol, 2015, 46 (4): 1730- 1738.
doi: 10.3892/ijo.2015.2870 |
| 28 |
MALIK A , AFAQ S , SHAHID M , et al. Influence of ellagic acid on prostate cancer cell proliferation: a caspase-dependent pathway[J]. Asian Pac J Trop Med, 2011, 4 (7): 550- 555.
doi: 10.1016/S1995-7645(11)60144-2 |
| 29 | 张颖, 陈茜, 石华, 等. 尿石素A对肾癌786-O细胞的作用机制研究[J]. 湖南师范大学学报(医学版), 2024, 21 (1): 20- 25. |
| ZHANG Y , CHEN Q , SHI H , et al. Biological effects of urolithin a on renal carcinoma 786-O cells[J]. Journal of Hunan Normal University(Medical Sciences), 2024, 21 (1): 20- 25. | |
| 30 | 陈婷婷, 吴宿慧, 李根林, 等. 鞣花酸类成分的肠道菌代谢过程及其药理作用变化研究进展[J]. 中国现代应用药学, 2024, 41 (21): 2982- 2989. |
| CHEN T T , WU S H , LI G L , et al. Research progress on cut microbiota metabolism process and pharmacological effects of ellagic acid components[J]. Chinese Journal of Modern Applied Pharmacy, 2024, 41 (21): 2982- 2989. | |
| 31 |
ZHU H , YAN Y , JIANG Y , et al. Ellagic acid and its anti-aging effects on central nervous system[J]. Int J Mol Sci, 2022, 23 (18): 10937.
doi: 10.3390/ijms231810937 |
| 32 |
UMESALMA S , SUDHANDIRAN G . Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF-kappaB, iNOS, COX-2, TNF-alpha, and IL-6 in 1, 2-dimethylhydrazine-induced rat colon carcinogenesis[J]. Basic Clin Physiol Pharmacol, 2010, 107 (2): 650- 655.
doi: 10.1111/j.1742-7843.2010.00565.x |
| 33 | 张建伟. 板栗壳斗鞣花单宁及其代谢产物鞣花酸和尿石素的生物活性研究[D]. 北京: 北京林业大学, 2015. |
| ZHANG J W. Studies on biological activities of euclidean tannins from burso of castanea mollissima. and their metabolic products ellagic acid and urolithin[D]. Beijing: Beijing Forestry University, 2015. (in Chinese) | |
| 34 | 温晓艳. 鞣花酸对玉米赤霉烯酮诱导贵州黑山羊卵巢颗粒细胞损伤的改善作用[D]. 贵阳: 贵州大学, 2024. |
| WEN X Y. The improvement effect of ellagic acid on zearalenone-induced ovarian granulosa cell damage in guizhou black goats[D]. Guiyang: Guizhou University, 2024. (in Chinese) | |
| 35 | ZHEN X , WU B , WANG J , et al. Increased incidence of mitochondrial cytochrome c oxidase 1 gene mutations in patients with primary ovarian insufficiency[J]. PLoS One, 2015, 10 (7): e132610. |
| 36 | DEVINE P J , PERREAULT S D , LUDERER U . Roles of reactive oxygen species and antioxidants in ovarian toxicity[J]. Biol Reprod, 2012, 86 (2): 27. |
| 37 | ESPÍN J C , LARROSA M , GARCÍA-CONESA M T , et al. Biological significance of urolithins, the gut microbial ellagic acid-derived metabolites: the evidence so far[J]. Evid Based Complement Alternat Med, 2013, 2013, 270418. |
| 38 |
AHN D , PUTT D , KRESTY L , et al. The effects of dietary ellagic acid on rat hepatic and esophageal mucosal cytochromes P450 and phase Ⅱ enzymes[J]. Carcinogenesis, 1996, 17 (4): 821- 828.
doi: 10.1093/carcin/17.4.821 |
| 39 |
GALANO A , FRANCISCO M M , PÉREZ-GONZÁLEZ A . Ellagic acid: an unusually versatile protector against oxidative stress[J]. Chem Res Toxicol, 2014, 27 (5): 904- 918.
doi: 10.1021/tx500065y |
| 40 | SHAFIE B , POURAHMAD J , REZAEI M . N-acetylcysteine is more effective than ellagic acid in preventing acrolein induced dysfunction in mitochondria isolated from rat liver[J]. J Food Biochem, 2021, 45 (7): e13775. |
| 41 |
XIAO Y , HUANG R , WANG N , et al. Ellagic acid alleviates oxidative stress by mediating Nrf2 signaling pathways and protects against paraquat-induced intestinal injury in piglets[J]. Antioxidants (Basel), 2022, 11 (2): 252.
doi: 10.3390/antiox11020252 |
| 42 |
LARROSA M , GONZÁLEZ-SARRÍAS A , YÁÑEZ-GASCÓN M J , et al. Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-A in a colitis rat model and the effect of colon inflammation on phenolic metabolism[J]. J Nutr Biochem, 2010, 21 (8): 717- 725.
doi: 10.1016/j.jnutbio.2009.04.012 |
| 43 | HARPER P . A review of the dietary intake, bioavailability and health benefits of ellagic acid (EA) with a primary focus on its anti-cancer properties[J]. Cureus, 2023, 15 (8): e43156. |
| 44 |
HOU Y , CHU X , PARK J , et al. Urolithin a improves alzheimer's disease cognition and restores mitophagy and lysosomal functions[J]. Alzheimers Dement, 2024, 20 (6): 4212- 4233.
doi: 10.1002/alz.13847 |
| 45 | CHEN P , WU L , LEI J , et al. The ellagitannin metabolite urolithin c attenuated cognitive impairment by inhibiting neuroinflammation via downregulation of MAPK/NF-kB signaling pathways in aging mice[J]. Int Immunopharmacol, 2024, 142 (Pt B): 113151. |
| 46 | 贾晓燕, 胡朋朋, 王佩欣, 等. 覆盆子单宁富集组分消化稳定性及对肠道菌群的调节作用[J]. 食品科学, 2023, 44 (9): 104- 113. |
| JIA X Y , HU P P , WANG P X , et al. Digestive stability of tannin-enriched fraction of rubus chingii hu fruits and its regulatory effect on the intestinal microflora[J]. Food Science, 2023, 44 (9): 104- 113. | |
| 47 |
HUO Y , LI Q , YANG L , et al. SDNOR, a Novel antioxidative lncRNA, is essential for maintaining the normal state and function of porcine follicular granulosa cells[J]. Antioxidants (Basel), 2023, 12 (4): 799.
doi: 10.3390/antiox12040799 |
| 48 |
ELGEBALY M M , HAZAA A B M , AMER H A , et al. L-Cysteine improves bovine oocyte developmental competence in vitro via activation of oocyte-derived growth factors BMP-15 and GDF-9[J]. Reprod Domest Anim, 2022, 57 (7): 734- 742.
doi: 10.1111/rda.14113 |
| 49 |
SHI X , JIN X , LIN J , et al. Idebenone relieves the damage of heat stress on the maturation and developmental competence of porcine oocytes[J]. Reprod Domest Anim, 2022, 57 (4): 418- 428.
doi: 10.1111/rda.14080 |
| 50 |
AZAMI S H , NAZARIAN H , ABDOLLAHIFAR M A , et al. The antioxidant curcumin postpones ovarian aging in young and middle-aged mice[J]. Reprod Fertil Dev, 2020, 32 (3): 292- 303.
doi: 10.1071/RD18472 |
| 51 |
SRI R , SASANGKA P , JANTJE S , et al. Luteinizing hormone effect on the GDF-9 and BMPR-1a expression of bovine granulosa cells culture[J]. IOP Conf Ser: Mater Sci Eng, 2019, 546 (6): 62021.
doi: 10.1088/1757-899X/546/6/062021 |
| 52 |
CHRISTENSON L K , DEVOTO L . Cholesterol transport and steroidogenesis by the corpus luteum[J]. Reprod Biol Endocrinol, 2003, 1, 90.
doi: 10.1186/1477-7827-1-90 |
| 53 |
MA X , YI H . BMP15 regulates FSHR through TGF-β receptor Ⅱ and SMAD4 signaling in prepubertal ovary of Rongchang pigs[J]. Res Vet Sci, 2022, 143, 66- 73.
doi: 10.1016/j.rvsc.2021.12.013 |
| 54 |
BANG Y , KWON Y , KIM M , et al. Ursolic acid enhances autophagic clearance and ameliorates motor and non-motor symptoms in parkinson's disease mice model[J]. Acta Pharmacol Sin, 2023, 44 (4): 752- 765.
doi: 10.1038/s41401-022-00988-2 |
| 55 |
WANG Y , REN F , LI B , et al. Ellagic acid exerts antitumor effects via the PI3K signaling pathway in endometrial cancer[J]. J Cancer, 2019, 10 (15): 3303- 3314.
doi: 10.7150/jca.29738 |
| 56 |
SHEN M , LIU Z , LI B , et al. Involvement of FoxO1 in the effects of follicle-stimulating hormone on inhibition of apoptosis in mouse granulosa cells[J]. Cell Death Dis, 2014, 5 (10): e1475.
doi: 10.1038/cddis.2014.400 |
| 57 | HUNZICKER-DUNN M E , LOPEZ-BILADEAU B , LAW N C , et al. PKA and GAB2 play central roles in the FSH signaling pathway to PI3K and AKT in ovarian granulosa cells[J]. Proc Natl Acad Sci U S A, 2012, 109 (44): E2979- E2988. |
| 58 |
CHO J , RHO O , JUNCO J , et al. Effect of combined treatment with ursolic acid and resveratrol on skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate[J]. Cancer Prev Res (Phila), 2015, 8 (9): 817- 825.
doi: 10.1158/1940-6207.CAPR-15-0098 |
| 59 |
CASTREJON-JIMENEZ N S , LEYVA-PAREDES K , BALTIERRA-URIBE S L , et al. Ursolic and oleanolic acids induce mitophagy in A549 human lung cancer cells[J]. Molecules, 2019, 24 (19): 3444.
doi: 10.3390/molecules24193444 |
| 60 |
LI L , ZHANG X , CUI L , et al. Ursolic acid promotes the neuroprotection by activating Nrf2 pathway after cerebral ischemia in mice[J]. Brain Res, 2013, 1497, 32- 39.
doi: 10.1016/j.brainres.2012.12.032 |
| 61 |
GARCIA-VILLALBA R , GIMENEZ-BASTIDA J A , CORTES-MARTIN A , et al. Urolithins: a comprehensive update on their metabolism, bioactivity, and associated gut microbiota[J]. Mol Nutr Food Res, 2022, 66 (21): e2101019.
doi: 10.1002/mnfr.202101019 |
| 62 |
SINGH R , CHANDRASHEKHARAPPA S , VEMULA P K , et al. Microbial metabolite urolithin b inhibits recombinant human monoamine oxidase a enzyme[J]. Metabolites, 2020, 10 (6): 258.
doi: 10.3390/metabo10060258 |
| [1] | 王莹, 张姣姣, 王鲜忠, 权富生. 卵巢颗粒细胞自噬研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1508-1517. |
| [2] | 李笑微, 田微, 刘媛, 李惠侠. 高温应激下湖羊卵巢颗粒细胞m6A甲基化修饰差异研究[J]. 畜牧兽医学报, 2025, 56(4): 1712-1721. |
| [3] | 何雨, 王翔宇, 狄冉, 储明星, 梁琛. BMP4/SMAD4通过下调GJA1基因表达影响绵羊卵巢颗粒间隙连接活性[J]. 畜牧兽医学报, 2025, 56(2): 679-688. |
| [4] | 赵笑怡, 朱龙龙, 刘辉, 张董燕, 蔡龙, 王雅蕾, 王晶, 赵俊星, 陈美霞. L-苹果酸对猪卵巢颗粒细胞增殖及转录谱的影响[J]. 畜牧兽医学报, 2025, 56(11): 5563-5574. |
| [5] | 刘阳光, 章会斌, 文浩宇, 谢帆, 赵世明, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 猪卵泡液外泌体处理卵巢颗粒细胞的SNP/Indel筛选分析[J]. 畜牧兽医学报, 2024, 55(2): 576-586. |
| [6] | 段香茹, 康佳, 杨若晨, 单新雨, 李太春, 赵雯, 张英杰, 刘月琴. L-半胱氨酸对绵羊卵巢颗粒细胞增殖、凋亡和类固醇激素分泌的影响[J]. 畜牧兽医学报, 2024, 55(1): 179-191. |
| [7] | 胡亚美, 宋湘容, 黄亮, 张璐通, 高磊, 庞卫军, 杨公社, 褚瑰燕. FGF21增强线粒体功能抑制猪卵巢颗粒细胞凋亡[J]. 畜牧兽医学报, 2023, 54(3): 1034-1045. |
| [8] | 袁铜, 黄靓, 杨琳, 王文策, 朱勇文. 肠道菌群及其代谢产物调节动物线粒体功能的研究进展[J]. 畜牧兽医学报, 2023, 54(1): 48-57. |
| [9] | 张德明, 黄嘉訸, 李劲树, 郑红梅, 王少英, 杨公社, 史新娥. 猪肠道微生物及其代谢产物与肠道屏障研究进展[J]. 畜牧兽医学报, 2022, 53(5): 1334-1344. |
| [10] | 王磊, 何莉娜, 唐雪, 李碧筠, 黄思艺, 王钰锟, 徐德军, 赵中权. miR-495-3p对山羊卵巢颗粒细胞功能的影响[J]. 畜牧兽医学报, 2022, 53(2): 436-446. |
| [11] | 韦人月, 王峥, 周志新, 邓朝阳, 侯凯文, 郑家三. 基于LC-MS技术的患乳腺癌猫血清代谢组学分析[J]. 畜牧兽医学报, 2020, 51(9): 2293-2301. |
| [12] | 敖叶, 陈祥, 周志楠, 张艳, 洪磊, 韦仕南, 吴雨, 唐文. SMAD1基因对黔北麻羊卵巢颗粒细胞的影响及组织表达分析[J]. 畜牧兽医学报, 2020, 51(7): 1607-1618. |
| [13] | 余苗, 李贞明, 王刚, 容庭, 陈卫东, 王凤英, 马现永. 黑水虻幼虫粉对育肥猪盲肠食糜主要微生物数量和代谢产物的影响[J]. 畜牧兽医学报, 2020, 51(2): 299-310. |
| [14] | 裴亚萍, 赵瑾, 孙娜, 孙盼盼, 孙耀贵, 范阔海, 尹伟, 李宏全. 咖啡酸对玉米赤霉烯酮诱导小鼠卵巢颗粒细胞凋亡的保护作用[J]. 畜牧兽医学报, 2020, 51(12): 3068-3075. |
| [15] | 洪磊, 陈祥, 唐文, 周志楠, 段志强, 赵佳福. 黔北麻羊SRD5A2基因干扰载体构建及其对产羔相关基因表达的影响[J]. 畜牧兽医学报, 2020, 51(12): 2980-2990. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||