[1] CHEN X, SUO X, ZHU G, et al. The apicoplast biogenesis and metabolism: current progress and questions[J]. Trends Parasitol, 2024, 40(12):1144-1158. [2] SHU F, XIAO H, LI Q N, et al. Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1):32. [3] PONTS N, FU L, HARRIS E Y, et al. Genome-wide mapping of DNA methylation in the human malaria parasite Plasmodium falciparum[J]. Cell Host Microbe, 2013, 14(6):696-706. [4] WEI H, JIANG S, CHEN L, et al. Characterization of Cytosine Methylation and the DNA Methyltransferases of Toxoplasma gondii[J]. Int J Biol Sci, 2017, 13(4):458-470. [5] SCHMITZ R J, LEWIS Z A, GOLL M G. DNA Methylation: Shared and Divergent Features across Eukaryotes[J]. Trends Genet, 2019, 35(11):818-827. [6] TARYMA-LESNIAK O, SOKOLOWSKA K E, WOJDACZ T K. Short history of 5-methylcytosine: from discovery to clinical applications[J]. J Clin Pathol, 2021, 74(11):692-696. [7] SHI Z, YU Z, CHEN W. 4-Methylcytosine distribution follows the power function in Geobacter sulfurreducens genome[J]. Biochem Biophys Res Commun, 2021, 547:65-68. [8] WU K J. The epigenetic roles of DNA N6-Methyladenine (6mA) modification in eukaryotes[J]. Cancer Lett, 2020, 494:40-46. [9] KONG Y, CAO L, DEIKUS G, et al. Critical assessment of DNA adenine methylation in eukaryotes using quantitative deconvolution[J]. Science, 2022, 375(6580):515-522. [10] SIMPSON V J, JOHNSON T E, HAMMEN R F. Caenorhabditis elegans DNA does not contain 5-methylcytosine at any time during development or aging[J]. Nucleic Acids Res, 1986, 14(16):6711-6719. [11] HU C W, CHEN J L, HSU Y W, et al. Trace analysis of methylated and hydroxymethylated cytosines in DNA by isotope-dilution LC-MS/MS: first evidence of DNA methylation in Caenorhabditis elegans[J]. Biochem J, 2015, 465(1):39-47. [12] GAO F, LIU X, WU X P, et al. Differential DNA methylation in discrete developmental stages of the parasitic nematode Trichinella spiralis[J]. Genome Biol, 2012, 13:R100. [13] CUYPERS B, DUMETZ F, MEYSMAN P, et al. The absence of C-5 DNA methylation in Leishmania donovani allows DNA enrichment from complex samples[J]. Microorganisms, 2020, 8(8):1252. [14] CHOI S W, KEYES M K, HORROCKS P. LC/ESI-MS demonstrates the absence of 5-methyl-2'-deoxycytosine in Plasmodium falciparum genomic DNA[J]. Mol Biochem Parasitol, 2006, 150(2):350-352. [15] GISSOT M, CHOI S W, THOMPSON R F, et al. Toxoplasma gondii and Cryptosporidium parvum lack detectable DNA cytosine methylation[J]. Eukaryotic Cell, 2008, 7(3):537-540. [16] GONG Z X, YIN H, MA X, et al. Widespread 5-methylcytosine in the genomes of avian Coccidia and other apicomplexan parasites detected by an ELISA-based method[J]. Parasitol Res, 2017, 116(5):1573-1579. [17] SARID L, ANKRI S. Are metabolites from the gut microbiota capable of regulating epigenetic mechanisms in the human parasite Entamoeba histolytica? [J]. Front Cell Dev Biol, 2022, 10:841586. [18] WANG L, WU J, LIU R, et al. Epitranscriptome profiling of spleen mRNA m6A methylation reveals pathways of host responses to malaria parasite infection[J]. Front Immunol, 2022, 13:998756. [19] DOMINISSINI D, MOSHITCH-MOSHKOVITZ S, SCHWARTZ S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012, 485(7397):201-206. [20] WAN Y, TANG K, ZHANG D, et al. Transcriptome-wide high-throughput deep m(6)A-seq reveals unique differential m(6)A methylation patterns between three organs in Arabidopsis thaliana[J]. Genome Biol, 2015, 16:272. [21] SHEN L, LIANG Z, GU X, et al. N(6)-methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis[J]. Dev Cell, 2016, 38(2):186-200. [22] XIA Z, XU J, LU E, et al. m6A mRNA methylation regulates epithelial innate antimicrobial defense against cryptosporidial infection[J]. Front Immunol, 2021, 12:705232. [23] WANG X, LU Z K, GOMEZ A, et al. N-6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014, 505(7481):117. [24] PING X L, SUN B F, WANG L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Res, 2014, 24(2):177-189. [25] CHANDOLA U, DAS R, PANDA B. Role of the N6-methyladenosine RNA mark in gene regulation and its implications on development and disease[J]. Brief Funct Genomics, 2015, 14(3):169-179. [26] GOVINDARAJU G, KADUMURI R V, SETHUMADHAVAN D V, et al. N6-Adenosine methylation on mRNA is recognized by YTH2 domain protein of human malaria parasite Plasmodium falciparum[J]. Epigenetics Chromatin, 2020, 13(1):33. [27] BAUMGARTEN S, BRYANT J M, SINHA A, et al. Transcriptome-wide dynamics of extensive m6A mRNA methylation during Plasmodium falciparum blood-stage development[J]. Nat Microbiol, 2019, 4(12):2246-2259. [28] ALVAREZ D R, OSPINA A, BARWELL T, et al. The RNA structurome in the asexual blood stages of malaria pathogen Plasmodium falciparum[J]. RNA Biol, 2021, 18(12):2480-2497. [29] SINHA A, BAUMGARTEN S, DISTILLER A, et al. Functional characterization of the m6A-dependent translational modulator PfYTH.2 in the human malaria parasite[J]. mBio, 2021, 12(2): e00661-21. [30] SERRANO-DURÁN R, LÓPEZ-FARFÁN D, GÓMEZ-DÍAZ E. Epigenetic and epitranscriptomic gene regulation in Plasmodium falciparum and how we can use it against malaria[J]. Genes (Basel), 2022, 13(10):1734. [31] WANG S, LV W, LI T, et al. Dynamic regulation and functions of mRNA m6A modification[J]. Cancer Cell Int, 2022, 22(1):48. [32] NARITA T, WEINERT B T, CHOUDHARY C. Functions and mechanisms of non-histone protein acetylation[J]. Nat Rev Mol Cell Biol, 2019, 20(3):156-174. [33] HOLMES M J, PADGETT L R, BASTOS M S, et al. m6A RNA methylation facilitates pre-mRNA 3'-end formation and is essential for viability of Toxoplasma gondii[J]. PLoS Pathog, 2017, 17(7):e1009335. [34] PHILLIPS D M. The presence of acetyl groups of histones[J]. Biochem J, 1963, 87:258-263. [35] GU W, ROEDER R G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain[J]. Cell, 1997, 90(4):595-606. [36] GLOZAK M A, SENGUPTA N, ZHANG X, et al. Acetylation and deacetylation of non-histone proteins[J]. Gene, 2005, 363:15-23. [37] KIM S C, SPRUNG R, CHEN Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey[J]. Mol Cell, 2006, 23(4):607-618. [38] YANG X J, SETO E. Lysine acetylation: codified crosstalk with other posttranslational modifications[J]. Molecular Cell, 2008, 31(4):449-461. [39] CHOUDHARY C, KUMAR C, GNAD F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions[J]. Science, 2009, 325(5942):834-840. [40] MIAO J, LAWRENCE M, JEFFERS V, et al. Extensive lysine acetylation occurs in evolutionarily conserved metabolic pathways and parasite-specific functions during Plasmodium falciparum intraerythrocytic development[J]. Mol Microbiol, 2013, 89(4):660-675. [41] JEFFERS V, SULLIVAN W J Jr. Lysine acetylation is widespread on proteins of diverse function and localization in the protozoan parasite Toxoplasma gondii[J]. Eukaryotic Cell, 2012, 11(6):735-742. [42] DARKIN-RATTRAY S J, GURNETT A M, MYERS R W, et al. Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase[J]. Proc Natl Acad Sci U S A, 1996, 93(23):13143-13147. [43] BOUGDOUR A, MAUBON D, BALDACCI P, et al. Drug inhibition of HDAC3 and epigenetic control of differentiation in Apicomplexa parasites[J]. J Exp Med, 2009, 206(4):953-966. [44] TRENHOLME K, MAREK L, DUFFY S, et al. Lysine acetylation in sexual stage malaria parasites is a target for antimalarial small molecules[J]. Antimicrob Agents Chemother, 2014, 58(7):3666-3678. [45] JEFFERS V, GAO H, CHECKLEY L A, LIU Y, et al. Garcinol inhibits GCN5-mediated lysine acetyltransferase activity and prevents replication of the parasite Toxoplasma gondii[J]. Antimicrob Agents Chemother, 2016, 60(4):2164-2170. [46] HESPING E, SKINNER-ADAMS T S, FISHER G M, et al. An ELISA method to assess HDAC inhibitor-induced alterations to P. falciparum histone lysine acetylation[J]. Int J Parasitol Drugs Drug Resist, 2020, 14:249-256. [47] BOISSAVY T, ROTILI D, MOUVEAUX T, et al. Hydroxamate-based compounds are potent inhibitors of Toxoplasma gondii HDAC biological activity[J]. Antimicrob Agents Chemother, 2023, 67(11):e00661-23. [48] DI BELLO E, NOCE B, FIORAVANTI R, et al. Effects of Structurally Different HDAC Inhibitors against Trypanosoma cruzi, Leishmania, and Schistosoma mansoni[J]. ACS Infect Dis, 2022, 8(7):1356-1366. [49] FIORAVANTI R, MAUTONE N, ROVERE A, et al. Targeting histone acetylation/deacetylation in parasites: an update (2017-2020) [J]. Curr Opin Chemi Biol, 2020, 57:65-74. [50] LECOEUR H, PRINA E, ROSAZZA T, et al. Targeting macrophage histone H3 modification as a Leishmania strategy to dampen the NF-κB/NLRP3-mediated inflammatory response[J]. Cell Reports, 2020, 30(6):1870-1882. [51] YU Z, ZHOU T, LUO Y, et al. Modulation effects of Toxoplasma gondii histone H2A1 on murine macrophages and encapsulation with polymer as a vaccine candidate[J]. Vaccines (Basel), 2020, 8(4):731. [52] ALMAR M L, YAÑUK J G, ANGEL S O, et al. In vitro effect of harmine alkaloid and its N-methyl derivatives against Toxoplasma gondii[J]. Front Microbiol, 2021, 12:716534. [53] WANG X, WANG L, SUN Y, et al. DNA methylation and histone deacetylation regulating insulin sensitivity due to chronic cold exposure[J]. Cryobiology, 2017, 74:36-42. [54] NIE W F, LEI M, ZHANG M, et al. Histone acetylation recruits the SWR1 complex to regulate active DNA demethylation in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2021, 118(33):16641-16650. [55] DENG S, ZHANG J, SU J, et al. RNA m6A regulates transcription via DNA demethylation and chromatin accessibility[J]. Nat Gen, 2022, 54(9):1427-1437. [56] LUCKY A B, WANG C, LI X, et al. Characterization of the dual role of Plasmodium falciparum DNA methyltransferase in regulating transcription and translation[J]. Nucleic Acids Res, 2023, 51(8):3918-3933. [57] REYSER T, PALOQUE L, AUGEREAU J M, et al. Epigenetic regulation as a therapeutic target in the malaria parasite Plasmodium falciparum[J]. Malar J, 2024, 23(1):44. [58] FISHER O, SIMAN-TOV R, ANKRI S. Characterization of cytosine methylated regions and 5-cytosine DNA methyltransferase (Ehmeth) in the protozoan parasite Entamoeba histolytica[J]. Nucleic Acids Res, 2004, 32(1):287-297. [59] GONG Z X, QU Z, YU Z, et al. Label-free quantitative detection and comparative analysis of lysine acetylation during the different life stages of Eimeria tenella[J]. J Proteome Res, 2023, 22(9):2785-2802. |