

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (12): 6073-6079.doi: 10.11843/j.issn.0366-6964.2025.12.012
收稿日期:2025-03-12
出版日期:2025-12-23
发布日期:2025-12-24
通讯作者:
龚振兴
E-mail:2426986027@qq.com;gzx1982leo@163.com
作者简介:曹尚(2001-),男,河南鄢陵人,硕士生,主要从事兽医生物安全与动物疫病防控技术研究,E-mail:2426986027@qq.com
基金资助:Received:2025-03-12
Online:2025-12-23
Published:2025-12-24
Contact:
GONG Zhenxing
E-mail:2426986027@qq.com;gzx1982leo@163.com
摘要:
DNA/RNA甲基化和赖氨酸乙酰化修饰同为重要的表观遗传修饰,在调控基因表达和蛋白活力等生命过程中起重要作用,也是极具应用前景的药物作用靶标。本文将主要对DNA/RNA甲基化修饰和组蛋白乙酰化修饰调控顶复门原虫发育转化的研究进展进行综述,以期为新型抗顶复门原虫药物靶标筛选提供依据。
中图分类号:
曹尚, 龚振兴. 顶复门原虫DNA/RNA甲基化及与赖氨酸乙酰化修饰的关系[J]. 畜牧兽医学报, 2025, 56(12): 6073-6079.
CAO Shang, GONG Zhenxing. The Relationship between DNA/RNA Methylation and Lysine Acetylation Modification of Apicomplexan Parasites[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(12): 6073-6079.
| 1 |
CHEN X , SUO X , ZHU G , et al. The apicoplast biogenesis and metabolism: current progress and questions[J]. Trends Parasitol, 2024, 40 (12): 1144- 1158.
doi: 10.1016/j.pt.2024.10.019 |
| 2 |
SHU F , XIAO H , LI Q N , et al. Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8 (1): 32.
doi: 10.1038/s41392-022-01300-8 |
| 3 |
PONTS N , FU L , HARRIS E Y , et al. Genome-wide mapping of DNA methylation in the human malaria parasite Plasmodium falciparum[J]. Cell Host Microbe, 2013, 14 (6): 696- 706.
doi: 10.1016/j.chom.2013.11.007 |
| 4 |
WEI H , JIANG S , CHEN L , et al. Characterization of Cytosine Methylation and the DNA Methyltransferases of Toxoplasma gondii[J]. Int J Biol Sci, 2017, 13 (4): 458- 470.
doi: 10.7150/ijbs.18644 |
| 5 |
SCHMITZ R J , LEWIS Z A , GOLL M G . DNA Methylation: Shared and Divergent Features across Eukaryotes[J]. Trends Genet, 2019, 35 (11): 818- 827.
doi: 10.1016/j.tig.2019.07.007 |
| 6 |
TARYMA-LESNIAK O , SOKOLOWSKA K E , WOJDACZ T K . Short history of 5-methylcytosine: from discovery to clinical applications[J]. J Clin Pathol, 2021, 74 (11): 692- 696.
doi: 10.1136/jclinpath-2020-206922 |
| 7 |
SHI Z , YU Z , CHEN W . 4-Methylcytosine distribution follows the power function in Geobacter sulfurreducens genome[J]. Biochem Biophys Res Commun, 2021, 547, 65- 68.
doi: 10.1016/j.bbrc.2021.02.030 |
| 8 |
WU K J . The epigenetic roles of DNA N6-Methyladenine (6mA) modification in eukaryotes[J]. Cancer Lett, 2020, 494, 40- 46.
doi: 10.1016/j.canlet.2020.08.025 |
| 9 |
KONG Y , CAO L , DEIKUS G , et al. Critical assessment of DNA adenine methylation in eukaryotes using quantitative deconvolution[J]. Science, 2022, 375 (6580): 515- 522.
doi: 10.1126/science.abe7489 |
| 10 |
SIMPSON V J , JOHNSON T E , HAMMEN R F . Caenorhabditis elegans DNA does not contain 5-methylcytosine at any time during development or aging[J]. Nucleic Acids Res, 1986, 14 (16): 6711- 6719.
doi: 10.1093/nar/14.16.6711 |
| 11 |
HU C W , CHEN J L , HSU Y W , et al. Trace analysis of methylated and hydroxymethylated cytosines in DNA by isotope-dilution LC-MS/MS: first evidence of DNA methylation in Caenorhabditis elegans[J]. Biochem J, 2015, 465 (1): 39- 47.
doi: 10.1042/BJ20140844 |
| 12 |
GAO F , LIU X , WU X P , et al. Differential DNA methylation in discrete developmental stages of the parasitic nematode Trichinella spiralis[J]. Genome Biol, 2012, 13, R100.
doi: 10.1186/gb-2012-13-10-r100 |
| 13 |
CUYPERS B , DUMETZ F , MEYSMAN P , et al. The absence of C-5 DNA methylation in Leishmania donovani allows DNA enrichment from complex samples[J]. Microorganisms, 2020, 8 (8): 1252.
doi: 10.3390/microorganisms8081252 |
| 14 |
CHOI S W , KEYES M K , HORROCKS P . LC/ESI-MS demonstrates the absence of 5-methyl-2'-deoxycytosine in Plasmodium falciparum genomic DNA[J]. Mol Biochem Parasitol, 2006, 150 (2): 350- 352.
doi: 10.1016/j.molbiopara.2006.07.003 |
| 15 |
GISSOT M , CHOI S W , THOMPSON R F , et al. Toxoplasma gondii and Cryptosporidium parvum lack detectable DNA cytosine methylation[J]. Eukaryotic Cell, 2008, 7 (3): 537- 540.
doi: 10.1128/EC.00448-07 |
| 16 |
GONG Z X , YIN H , MA X , et al. Widespread 5-methylcytosine in the genomes of avian Coccidia and other apicomplexan parasites detected by an ELISA-based method[J]. Parasitol Res, 2017, 116 (5): 1573- 1579.
doi: 10.1007/s00436-017-5434-x |
| 17 |
SARID L , ANKRI S . Are metabolites from the gut microbiota capable of regulating epigenetic mechanisms in the human parasite Entamoeba histolytica?[J]. Front Cell Dev Biol, 2022, 10, 841586.
doi: 10.3389/fcell.2022.841586 |
| 18 |
WANG L , WU J , LIU R , et al. Epitranscriptome profiling of spleen mRNA m6A methylation reveals pathways of host responses to malaria parasite infection[J]. Front Immunol, 2022, 13, 998756.
doi: 10.3389/fimmu.2022.998756 |
| 19 |
DOMINISSINI D , MOSHITCH-MOSHKOVITZ S , SCHWARTZ S , et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012, 485 (7397): 201- 206.
doi: 10.1038/nature11112 |
| 20 |
WAN Y , TANG K , ZHANG D , et al. Transcriptome-wide high-throughput deep m(6)A-seq reveals unique differential m(6)A methylation patterns between three organs in Arabidopsis thaliana[J]. Genome Biol, 2015, 16, 272.
doi: 10.1186/s13059-015-0839-2 |
| 21 |
SHEN L , LIANG Z , GU X , et al. N(6)-methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis[J]. Dev Cell, 2016, 38 (2): 186- 200.
doi: 10.1016/j.devcel.2016.06.008 |
| 22 |
XIA Z , XU J , LU E , et al. m6A mRNA methylation regulates epithelial innate antimicrobial defense against cryptosporidial infection[J]. Front Immunol, 2021, 12, 705232.
doi: 10.3389/fimmu.2021.705232 |
| 23 |
WANG X , LU Z K , GOMEZ A , et al. N-6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014, 505 (7481): 117.
doi: 10.1038/nature12730 |
| 24 |
PING X L , SUN B F , WANG L , et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Res, 2014, 24 (2): 177- 189.
doi: 10.1038/cr.2014.3 |
| 25 |
CHANDOLA U , DAS R , PANDA B . Role of the N6-methyladenosine RNA mark in gene regulation and its implications on development and disease[J]. Brief Funct Genomics, 2015, 14 (3): 169- 179.
doi: 10.1093/bfgp/elu039 |
| 26 |
GOVINDARAJU G , KADUMURI R V , SETHUMADHAVAN D V , et al. N6-Adenosine methylation on mRNA is recognized by YTH2 domain protein of human malaria parasite Plasmodium falciparum[J]. Epigenetics Chromatin, 2020, 13 (1): 33.
doi: 10.1186/s13072-020-00355-7 |
| 27 |
BAUMGARTEN S , BRYANT J M , SINHA A , et al. Transcriptome-wide dynamics of extensive m6A mRNA methylation during Plasmodium falciparum blood-stage development[J]. Nat Microbiol, 2019, 4 (12): 2246- 2259.
doi: 10.1038/s41564-019-0521-7 |
| 28 |
ALVAREZ D R , OSPINA A , BARWELL T , et al. The RNA structurome in the asexual blood stages of malaria pathogen Plasmodium falciparum[J]. RNA Biol, 2021, 18 (12): 2480- 2497.
doi: 10.1080/15476286.2021.1926747 |
| 29 | SINHA A , BAUMGARTEN S , DISTILLER A , et al. Functional characterization of the m6A-dependent translational modulator PfYTH.2 in the human malaria parasite[J]. mBio, 2021, 12 (2): e00661- 21. |
| 30 |
SERRANO-DURÁN R , LÓPEZ-FARFÁN D , GÓMEZ-DÍAZ E . Epigenetic and epitranscriptomic gene regulation in Plasmodium falciparum and how we can use it against malaria[J]. Genes (Basel), 2022, 13 (10): 1734.
doi: 10.3390/genes13101734 |
| 31 |
WANG S , LV W , LI T , et al. Dynamic regulation and functions of mRNA m6A modification[J]. Cancer Cell Int, 2022, 22 (1): 48.
doi: 10.1186/s12935-022-02452-x |
| 32 |
NARITA T , WEINERT B T , CHOUDHARY C . Functions and mechanisms of non-histone protein acetylation[J]. Nat Rev Mol Cell Biol, 2019, 20 (3): 156- 174.
doi: 10.1038/s41580-018-0081-3 |
| 33 | HOLMES M J , PADGETT L R , BASTOS M S , et al. m6A RNA methylation facilitates pre-mRNA 3'-end formation and is essential for viability of Toxoplasma gondii[J]. PLoS Pathog, 2017, 17 (7): e1009335. |
| 34 |
PHILLIPS D M . The presence of acetyl groups of histones[J]. Biochem J, 1963, 87, 258- 263.
doi: 10.1042/bj0870258 |
| 35 |
GU W , ROEDER R G . Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain[J]. Cell, 1997, 90 (4): 595- 606.
doi: 10.1016/S0092-8674(00)80521-8 |
| 36 |
GLOZAK M A , SENGUPTA N , ZHANG X , et al. Acetylation and deacetylation of non-histone proteins[J]. Gene, 2005, 363, 15- 23.
doi: 10.1016/j.gene.2005.09.010 |
| 37 |
KIM S C , SPRUNG R , CHEN Y , et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey[J]. Mol Cell, 2006, 23 (4): 607- 618.
doi: 10.1016/j.molcel.2006.06.026 |
| 38 |
YANG X J , SETO E . Lysine acetylation: codified crosstalk with other posttranslational modifications[J]. Molecular Cell, 2008, 31 (4): 449- 461.
doi: 10.1016/j.molcel.2008.07.002 |
| 39 |
CHOUDHARY C , KUMAR C , GNAD F , et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions[J]. Science, 2009, 325 (5942): 834- 840.
doi: 10.1126/science.1175371 |
| 40 |
MIAO J , LAWRENCE M , JEFFERS V , et al. Extensive lysine acetylation occurs in evolutionarily conserved metabolic pathways and parasite-specific functions during Plasmodium falciparum intraerythrocytic development[J]. Mol Microbiol, 2013, 89 (4): 660- 675.
doi: 10.1111/mmi.12303 |
| 41 |
JEFFERS V , SULLIVAN W J Jr . Lysine acetylation is widespread on proteins of diverse function and localization in the protozoan parasite Toxoplasma gondii[J]. Eukaryotic Cell, 2012, 11 (6): 735- 742.
doi: 10.1128/EC.00088-12 |
| 42 |
DARKIN-RATTRAY S J , GURNETT A M , MYERS R W , et al. Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase[J]. Proc Natl Acad Sci U S A, 1996, 93 (23): 13143- 13147.
doi: 10.1073/pnas.93.23.13143 |
| 43 |
BOUGDOUR A , MAUBON D , BALDACCI P , et al. Drug inhibition of HDAC3 and epigenetic control of differentiation in Apicomplexa parasites[J]. J Exp Med, 2009, 206 (4): 953- 966.
doi: 10.1084/jem.20082826 |
| 44 |
TRENHOLME K , MAREK L , DUFFY S , et al. Lysine acetylation in sexual stage malaria parasites is a target for antimalarial small molecules[J]. Antimicrob Agents Chemother, 2014, 58 (7): 3666- 3678.
doi: 10.1128/AAC.02721-13 |
| 45 |
JEFFERS V , GAO H , CHECKLEY L A , LIU Y , et al. Garcinol inhibits GCN5-mediated lysine acetyltransferase activity and prevents replication of the parasite Toxoplasma gondii[J]. Antimicrob Agents Chemother, 2016, 60 (4): 2164- 2170.
doi: 10.1128/AAC.03059-15 |
| 46 |
HESPING E , SKINNER-ADAMS T S , FISHER G M , et al. An ELISA method to assess HDAC inhibitor-induced alterations to P. falciparum histone lysine acetylation[J]. Int J Parasitol Drugs Drug Resist, 2020, 14, 249- 256.
doi: 10.1016/j.ijpddr.2020.10.010 |
| 47 | BOISSAVY T , ROTILI D , MOUVEAUX T , et al. Hydroxamate-based compounds are potent inhibitors of Toxoplasma gondii HDAC biological activity[J]. Antimicrob Agents Chemother, 2023, 67 (11): e00661- 23. |
| 48 |
DI BELLO E , NOCE B , FIORAVANTI R , et al. Effects of Structurally Different HDAC Inhibitors against Trypanosoma cruzi, Leishmania, and Schistosoma mansoni[J]. ACS Infect Dis, 2022, 8 (7): 1356- 1366.
doi: 10.1021/acsinfecdis.2c00232 |
| 49 |
FIORAVANTI R , MAUTONE N , ROVERE A , et al. Targeting histone acetylation/deacetylation in parasites: an update (2017-2020)[J]. Curr Opin Chemi Biol, 2020, 57, 65- 74.
doi: 10.1016/j.cbpa.2020.05.008 |
| 50 |
LECOEUR H , PRINA E , ROSAZZA T , et al. Targeting macrophage histone H3 modification as a Leishmania strategy to dampen the NF-κB/NLRP3-mediated inflammatory response[J]. Cell Reports, 2020, 30 (6): 1870- 1882.
doi: 10.1016/j.celrep.2020.01.030 |
| 51 |
YU Z , ZHOU T , LUO Y , et al. Modulation effects of Toxoplasma gondii histone H2A1 on murine macrophages and encapsulation with polymer as a vaccine candidate[J]. Vaccines (Basel), 2020, 8 (4): 731.
doi: 10.3390/vaccines8040731 |
| 52 |
ALMAR M L , YAÑUK J G , ANGEL S O , et al. In vitro effect of harmine alkaloid and its N-methyl derivatives against Toxoplasma gondii[J]. Front Microbiol, 2021, 12, 716534.
doi: 10.3389/fmicb.2021.716534 |
| 53 |
WANG X , WANG L , SUN Y , et al. DNA methylation and histone deacetylation regulating insulin sensitivity due to chronic cold exposure[J]. Cryobiology, 2017, 74, 36- 42.
doi: 10.1016/j.cryobiol.2016.12.006 |
| 54 | NIE W F , LEI M , ZHANG M , et al. Histone acetylation recruits the SWR1 complex to regulate active DNA demethylation in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2021, 118 (33): 16641- 16650. |
| 55 |
DENG S , ZHANG J , SU J , et al. RNA m6A regulates transcription via DNA demethylation and chromatin accessibility[J]. Nat Gen, 2022, 54 (9): 1427- 1437.
doi: 10.1038/s41588-022-01173-1 |
| 56 |
LUCKY A B , WANG C , LI X , et al. Characterization of the dual role of Plasmodium falciparum DNA methyltransferase in regulating transcription and translation[J]. Nucleic Acids Res, 2023, 51 (8): 3918- 3933.
doi: 10.1093/nar/gkad248 |
| 57 |
REYSER T , PALOQUE L , AUGEREAU J M , et al. Epigenetic regulation as a therapeutic target in the malaria parasite Plasmodium falciparum[J]. Malar J, 2024, 23 (1): 44.
doi: 10.1186/s12936-024-04855-9 |
| 58 |
FISHER O , SIMAN-TOV R , ANKRI S . Characterization of cytosine methylated regions and 5-cytosine DNA methyltransferase (Ehmeth) in the protozoan parasite Entamoeba histolytica[J]. Nucleic Acids Res, 2004, 32 (1): 287- 297.
doi: 10.1093/nar/gkh161 |
| 59 |
GONG Z X , QU Z , YU Z , et al. Label-free quantitative detection and comparative analysis of lysine acetylation during the different life stages of Eimeria tenella[J]. J Proteome Res, 2023, 22 (9): 2785- 2802.
doi: 10.1021/acs.jproteome.2c00726 |
| [1] | 宗云鹤, 杨宇泽, 孙研研, 陈继兰, 李云雷. 赖氨酸乙酰化修饰在鸡精液冷冻中的保护作用及机制研究进展[J]. 畜牧兽医学报, 2025, 56(7): 3071-3079. |
| [2] | 吴彩艳,王祯,李娟,林栩慧,廖申权,戚南山,吕敏娜,孙铭飞. 宿主细胞F-actin聚集在顶复门原虫入侵过程中的作用研究[J]. 畜牧兽医学报, 2016, 47(3): 423-428. |
| [3] | 张念章,陈佳,王萌,朱兴全, 黄思扬. 顶复门原虫钙依赖蛋白激酶的研究进展[J]. 畜牧兽医学报, 2013, 44(1): 1-6. |
| [4] | 戚南山;孙铭飞;廖申权;吴彩艳;吕敏娜;袁建丰;余劲术;李祥瑞;蔡建平. 顶复门原虫入侵相关因子的研究进展[J]. 畜牧兽医学报, 2012, 43(2): 167-174. |
| [5] | 廖申权;蔡建平;戚南山;吴彩艳;吕敏娜;袁建丰;余劲术;孙铭飞. 顶复门原虫电子转移链代谢及Ⅱ型NADH脱氢酶研究进展[J]. 畜牧兽医学报, 2012, 43(1): 1-6. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
