畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (9): 3968-3977.doi: 10.11843/j.issn.0366-6964.2024.09.021
师睿1,2(), 李珊珊1, 张海亮1, 路海博1,3, 闫青霞4, 张毅1, 陈绍祜4, 王雅春1,*(
)
收稿日期:
2024-01-24
出版日期:
2024-09-23
发布日期:
2024-09-27
通讯作者:
王雅春
E-mail:rui.shi@wur.nl;wangyachun@cau.edu.cn
作者简介:
师睿(1995-), 男, 云南昆明人, 博士生, 主要从事分子及数量遗传学研究, E-mail: rui.shi@wur.nl
基金资助:
Rui SHI1,2(), Shanshan LI1, Hailiang ZHANG1, Haibo LU1,3, Qingxia YAN4, Yi ZHANG1, Shaohu CHEN4, Yachun WANG1,*(
)
Received:
2024-01-24
Online:
2024-09-23
Published:
2024-09-27
Contact:
Yachun WANG
E-mail:rui.shi@wur.nl;wangyachun@cau.edu.cn
摘要:
旨在估计奶牛繁殖性状在不同地区的遗传参数, 检测同一繁殖性状在不同地区之间的基因型与环境互作(G×E)效应。本研究利用全国6个地区2 064个牧场2005至2022年的荷斯坦牛群繁殖记录, 计算了2个重要繁殖性状: 初产日龄(AFC)和产犊间隔(CI), 共包含1 787 590和2 476 422条表型数据。同时对该原始表型数据进行详细的质控和分组。随后, 通过BLUPF90软件的airemlf90模块利用单性状动物模型和重复力模型对6个地区的2个繁殖性状进行了遗传分析, 使用双性状动物和重复力模型估计同一性状不同地区之间的遗传相关, 作为基因型与环境之间效应(G×E)的检测指标。结果表明, 研究所设定的质控条件能够剔除分布异常的表型值; AFC的遗传力较高且在地区间差异较大(0.06~0.40), 而CI的遗传力较低且各地区间差异较小(0.02~0.04);在大多数地区组合下, 2个繁殖性状皆检测到了显著的G×E效应(P<0.05)。综上, 同一繁殖性状在不同地区的遗传表现存在差异, 且部分区域之间存在显著的G×E效应。因此, 对我国奶牛繁殖性状进行遗传改良时需考虑区域性差异及G×E效应对遗传进展的影响。
中图分类号:
师睿, 李珊珊, 张海亮, 路海博, 闫青霞, 张毅, 陈绍祜, 王雅春. 中国荷斯坦牛繁殖性状的基因型与环境互作[J]. 畜牧兽医学报, 2024, 55(9): 3968-3977.
Rui SHI, Shanshan LI, Hailiang ZHANG, Haibo LU, Qingxia YAN, Yi ZHANG, Shaohu CHEN, Yachun WANG. Genotype by Environment Interaction of Fertility Traits for the Holstein Cattle in China[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3968-3977.
表 1
各地区不同性状数据质控结果"
地区 Region | 记录数 Records | 原始数据 Raw data | 质控后数据 Quality controlled data | 质控后保留率/% Percentages of controlled data on raw data | |||||
AFC | CI | AFC | CI | AFC | CI | ||||
北京 | 表型 | 165 553 | 240 501 | 136 708 | 209 581 | 82.6 | 87.1 | ||
BJ | 牧场 | 127 | 123 | 63 | 68 | 49.6 | 55.3 | ||
天津 | 表型 | 130 568 | 183 190 | 103 187 | 167 552 | 79.0 | 91.5 | ||
TJ | 牧场 | 79 | 74 | 48 | 52 | 60.8 | 70.3 | ||
上海 | 表型 | 152 323 | 222 228 | 134 443 | 186 699 | 88.3 | 84.0 | ||
SH | 牧场 | 179 | 161 | 92 | 91 | 51.4 | 56.5 | ||
河北 | 表型 | 636 594 | 822 939 | 528 678 | 606 294 | 83.0 | 73.7 | ||
HB | 牧场 | 600 | 564 | 343 | 264 | 57.2 | 46.8 | ||
河南 | 表型 | 329 679 | 494 981 | 141 607 | 438 628 | 43.0 | 88.6 | ||
HN | 牧场 | 413 | 401 | 217 | 283 | 52.5 | 70.6 | ||
山东 | 表型 | 372 873 | 512 583 | 252 990 | 455 075 | 67.8 | 88.8 | ||
SD | 牧场 | 462 | 436 | 45 | 222 | 9.7 | 50.9 | ||
总和 | 表型 | 1 787 590 | 2 476 422 | 1 297 613 | 2 063 829 | 72.6 | 83.3 | ||
Sum | 牧场 | 1 860 | 1 759 | 808 | 980 | 43.4 | 55.7 |
表 2
各地区不同性状描述性统计、方差组分及遗传参数"
地区 Region | 性状 Trait | 表型均值 Mean | 标准差 Standard deviation | 加性遗传方差 σa2 | 永久环境方差 σpe2 | 残差方差 σe2 | 遗传力 (标准误) h2 (standard error) | 重复力 (标准误) r2 (standard error) |
北京 | AFC | 767.77 | 86.67 | 1 077.40 | 3 891.40 | 0.22 (0.007) | ||
BJ | CI | 398.81 | 66.69 | 94.14 | 197.07 | 3 800.60 | 0.02 (0.002) | 0.07 (0.003) |
天津 | AFC | 747.56 | 84.92 | 981.06 | 2 996.10 | 0.25 (0.009) | ||
TJ | CI | 398.00 | 66.99 | 79.55 | 231.09 | 3 781.90 | 0.02 (0.003) | 0.08 (0.003) |
上海 | AFC | 767.87 | 73.44 | 242.41 | 3 820.40 | 0.06 (0.006) | ||
SH | CI | 404.80 | 66.77 | 72.05 | 204.42 | 3 501.60 | 0.02 (0.002) | 0.07 (0.003) |
河北 | AFC | 768.32 | 103.80 | 2 366.40 | 3 619.70 | 0.40 (0.005) | ||
HB | CI | 387.60 | 63.14 | 141.34 | 110.41 | 3 131.00 | 0.04 (0.003) | 0.07 (0.002) |
河南 | AFC | 779.36 | 102.94 | 1 144.00 | 4 215.80 | 0.21 (0.006) | ||
HN | CI | 390.68 | 60.27 | 74.02 | 85.35 | 2 304.90 | 0.03 (0.003) | 0.06 (0.002) |
山东 | AFC | 733.02 | 73.88 | 836.32 | 1 790.00 | 0.32 (0.009) | ||
SD | CI | 389.94 | 64.56 | 93.49 | 101.72 | 3 253.60 | 0.03 (0.002) | 0.06 (0.002) |
所有数据 | AFC | 765.06 | 95.70 | 1 425.40 | 3 661.00 | 0.28 (0.003) | ||
Sum | CI | 392.31 | 64.12 | 73.53 | 155.92 | 3 137.90 | 0.02 (0.001) | 0.07 (0.001) |
表 3
同一繁殖性状不同地区间遗传相关及标准误"
地区 Region | 北京 BJ | 天津 TJ | 上海 SH | 河北 HB | 河南 HN | 山东 SD |
北京 BJ | 0.862 (0.109)∧ | 0.954 (0.054)∧ | 0.580 (0.080) | 0.420 (0.107) | 0.600 (0.089) | |
天津 TJ | 0.091 (0.080)# | 0.789 (0.109) | 0.561 (0.110) | 0.262 (0.135)# | 0.794 (0.080) | |
上海 SH | 0.271 (0.099) | 0.073 (0.098)# | 0.693 (0.098) | 0.298 (0.130) | 0.543 (0.103) | |
河北 HB | 0.199 (0.043) | -0.149 (0.055) | 0.099 (0.070)# | 0.189 (0.090) | 0.551 (0.069) | |
河南 HN | 0.071 (0.062)# | -0.043 (0.065)# | -0.040 (0.087)# | 0.079 (0.040) | 0.250 (0.091) | |
山东 SD | 0.042 (0.072)# | 0.342 (0.054) | 0.122 (0.100)# | -0.016 (0.048)# | -0.092 (0.061)# |
表 5
筛选重合公牛后同一性状不同地区间遗传相关及标准误"
地区 Region | 北京 BJ | 天津 TJ | 上海 SH | 河北 HB | 河南 HN | 山东 SD |
北京 BJ | 0.998 (0.057)∧ | 0.865 (0.130)∧ | 0.573 (0.096) | 0.402 (0.120) | 0.784 (0.085) | |
天津 TJ | 0.196 (0.138) | 0.930 (0.084)∧ | 0.436 (0.171) | 0.288 (0.154)# | 0.919 (0.082)∧ | |
上海 SH | 0.573 (0.163) | 0.157 (0.128)# | 0.782 (0.119) | 0.336 (0.143) | 0.528 (0.129) | |
河北 HB | 0.025 (0.071)# | 0.002 (0.105)# | 0.161 (0.064) | 0.307 (0.110) | 0.607 (0.088) | |
河南 HN | 0.055 (0.094)# | 0.122 (0.106)# | -0.014 (0.078)# | 0.072 (0.046)# | 0.323 (0.102) | |
山东 SD | 0.104 (0.126)# | 0.043 (0.141)# | 0.311 (0.072) | 0.093 (0.055)# | 0.034 (0.077)# |
1 |
BRITT J H . Enhanced reproduction and its economic implications[J]. J Dairy Sci, 1985, 68 (6): 1585- 1592.
doi: 10.3168/jds.S0022-0302(85)80997-8 |
2 |
LUCY M C . Reproductive loss in high-producing dairy cattle: where will it end?[J]. J Dairy Sci, 2001, 84 (6): 1277- 1293.
doi: 10.3168/jds.S0022-0302(01)70158-0 |
3 |
SCHMIDTMANN C , THALLER G , KARGO M , et al. Derivation of economic values for German dairy breeds by means of a bio-economic model-with special emphasis on functional traits[J]. J Dairy Sci, 2021, 104 (3): 3144- 3157.
doi: 10.3168/jds.2019-17635 |
4 |
SAMARAWEERA A M , VAN DER WERF J H J , BOERNER V , et al. Economic values for production, fertility and mastitis traits for temperate dairy cattle breeds in tropical Sri Lanka[J]. J Anim Breed Genet, 2022, 139 (3): 330- 341.
doi: 10.1111/jbg.12667 |
5 |
MIGLIOR F , FLEMING A , MALCHIODI F , et al. A 100-Year Review: identification and genetic selection of economically important traits in dairy cattle[J]. J Dairy Sci, 2017, 100 (12): 10251- 10271.
doi: 10.3168/jds.2017-12968 |
6 | 师睿. 中国荷斯坦牛繁殖性状的基因组预测效果比较[D]. 北京: 中国农业大学, 2019. |
SHI R. Estimation of genetic parameters and genome-wide association study for female reproductive traits in Chinese Holstein population[D]. Beijing: China Agricultural University, 2019. (in Chinese) | |
7 |
刘澳星, 郭刚, 王雅春, 等. 中国荷斯坦牛初产日龄遗传评估及全基因组关联分析[J]. 畜牧兽医学报, 2015, 46 (3): 373- 381.
doi: 10.11843/j.issn.0366-6964.2015.03.004 |
LIU A X , GUO G , WANG Y C , et al. Genetic analysis and genome wide association studies for age at first calving in Chinese Holsteins[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46 (3): 373- 381.
doi: 10.11843/j.issn.0366-6964.2015.03.004 |
|
8 | 李欣, 周靖航, 温万, 等. 宁夏地区荷斯坦奶牛遗传参数估计[J]. 中国畜牧兽医, 2017, 44 (6): 1754- 1761. |
LI X , ZHOU J H , WEN W , et al. The estimation of genetic parameters of Holstein dairy cows in Ningxia Region[J]. China Animal Husbandry & Veterinary Medicine, 2017, 44 (6): 1754- 1761. | |
9 |
ZHU K , LI T W , LIU D Y , et al. Estimation of genetic parameters for fertility traits in Chinese Holstein of South China[J]. Front Genet, 2024, 14, 1288375.
doi: 10.3389/fgene.2023.1288375 |
10 |
GHAVI HOSSEIN-ZADEH N . Genetic parameters and trends for calving interval in the first three lactations of Iranian Holsteins[J]. Trop Anim Health Prod, 2011, 43 (6): 1111- 1115.
doi: 10.1007/s11250-011-9809-1 |
11 |
ELAHI TORSHIZI M . Effects of season and age at first calving on genetic and phenotypic characteristics of lactation curve parameters in Holstein cows[J]. J Anim Sci Technol, 2016, 58 (1): 8.
doi: 10.1186/s40781-016-0089-1 |
12 |
OJANGO J M , POLLOTT G E . Genetics of milk yield and fertility traits in Holstein-Friesian cattle on large-scale Kenyan farms[J]. J Anim Sci, 2001, 79 (7): 1742- 1750.
doi: 10.2527/2001.7971742x |
13 |
PIRLO G , MIGLIOR F , SPERONI M . Effect of age at first calving on production traits and on difference between milk yield returns and rearing costs in Italian Holsteins[J]. J Dairy Sci, 2000, 83 (3): 603- 608.
doi: 10.3168/jds.S0022-0302(00)74919-8 |
14 |
WATERS D L , CLARK S A , MOGHADDAR N , et al. Genomic analysis of the slope of the reaction norm for body weight in Australian sheep[J]. Genet Sel Evol, 2022, 54 (1): 40.
doi: 10.1186/s12711-022-00734-6 |
15 |
MCWHORTER T M , SARGOLZAEI M , SATTLER C G , et al. Single-step genomic predictions for heat tolerance of production yields in US Holsteins and Jerseys[J]. J Dairy Sci, 2023, 106 (11): 7861- 7879.
doi: 10.3168/jds.2022-23144 |
16 |
FREITAS P H F , JOHNSON J S , TIEZZI F , et al. Genomic predictions and GWAS for heat tolerance in pigs based on reaction norm models with performance records and data from public weather stations considering alternative temperature thresholds[J]. J Anim Breed Genet, 2024, 141 (3): 257- 277.
doi: 10.1111/jbg.12838 |
17 |
SONG H L , ZHANG Q , DING X D . The superiority of multi-trait models with genotype-by-environment interactions in a limited number of environments for genomic prediction in pigs[J]. J Anim Sci Biotechnol, 2020, 11, 88.
doi: 10.1186/s40104-020-00493-8 |
18 |
SONG H L , ZHANG Q , MISZTAL I , et al. Genomic prediction of growth traits for pigs in the presence of genotype by environment interactions using single-step genomic reaction norm model[J]. J Anim Breed Genet, 2020, 137 (6): 523- 534.
doi: 10.1111/jbg.12499 |
19 | FALCONER D S , MACKAY T F C . Introduction to quantitative genetics[M]. 4th ed Harlow, Essex: Longman, 1996. |
20 |
DUCROCQ V , CADET A , PATRY C , et al. Two approaches to account for genotype-by-environment interactions for production traits and age at first calving in South African Holstein cattle[J]. Genet Sel Evol, 2022, 54 (1): 43.
doi: 10.1186/s12711-022-00735-5 |
21 | SUNDBERG T , RYDHMER L , FIKSE W F , et al. Genotype by environment interaction of Swedish dairy cows in organic and conventional production systems[J]. Acta Agric Scand Sect A-Anim Sci, 2010, 60 (2): 65- 73. |
22 |
ISMAEL A , STRANDBERG E , BERGLUND B , et al. Genotype by environment interaction for activity-based estrus traits in relation to production level for Danish Holstein[J]. J Dairy Sci, 2016, 99 (12): 9834- 9844.
doi: 10.3168/jds.2016-11446 |
23 |
LIU A , SU G , HÖGLUND J , et al. Genotype by environment interaction for female fertility traits under conventional and organic production systems in Danish Holsteins[J]. J Dairy Sci, 2019, 102 (9): 8134- 8147.
doi: 10.3168/jds.2018-15482 |
24 |
ZHANG Z , KARGO M , LIU A X , et al. Genotype-by-environment interaction of fertility traits in Danish Holstein cattle using a single-step genomic reaction norm model[J]. Heredity (Edinb), 2019, 123 (2): 202- 214.
doi: 10.1038/s41437-019-0192-4 |
25 |
CHERUIYOT E K , NGUYEN T T T , HAILE-MARIAM M , et al. Genotype-by-environment (temperature-humidity) interaction of milk production traits in Australian Holstein cattle[J]. J Dairy Sci, 2020, 103 (3): 2460- 2476.
doi: 10.3168/jds.2019-17609 |
26 |
SIGDEL A , LIU L , ABDOLLAHI-ARPANAHI R , et al. Genetic dissection of reproductive performance of dairy cows under heat stress[J]. Anim Genet, 2020, 51 (4): 511- 520.
doi: 10.1111/age.12943 |
27 |
DEKKERS J C M . Multiple trait breeding programs with genotype-by-environment interactions based on reaction norms, with application to genetic improvement of disease resilience[J]. Genet Sel Evol, 2021, 53 (1): 93.
doi: 10.1186/s12711-021-00687-2 |
28 |
BENGTSSON C , THOMASEN J R , KARGO M , et al. Emphasis on resilience in dairy cattle breeding: possibilities and consequences[J]. J Dairy Sci, 2022, 105 (9): 7588- 7599.
doi: 10.3168/jds.2021-21049 |
29 |
CAO L , LIU H M , MULDER H A , et al. Genomic breeding programs realize larger benefits by cooperation in the presence of genotype×environment interaction than conventional breeding programs[J]. Front Genet, 2020, 11, 251.
doi: 10.3389/fgene.2020.00251 |
30 | MISZTAL I. Complex models, more data: simpler programming?[C]//Proceedings of the Computational Cattle Breeding '99 Workshop. Tuusula, 1999: 33. |
31 |
SU G , LUND M S , SORENSEN D . Selection for litter size at day five to improve litter size at weaning and piglet survival rate[J]. J Anim Sci, 2007, 85 (6): 1385- 1392.
doi: 10.2527/jas.2006-631 |
32 |
LIU A X , LUND M S , WANG Y C , et al. Variance components and correlations of female fertility traits in Chinese Holstein population[J]. J Anim Sci Biotechnol, 2017, 8, 56.
doi: 10.1186/s40104-017-0189-x |
33 |
SHI R , BRITO L F , LIU A X , et al. Genotype-by-environment interaction in Holstein heifer fertility traits using single-step genomic reaction norm models[J]. BMC Genomics, 2021, 22 (1): 193.
doi: 10.1186/s12864-021-07496-3 |
34 |
WELLER J I , EZRA E , GERSHONI M . Genetic and genomic analysis of age at first insemination in Israeli dairy cattle[J]. J Dairy Sci, 2022, 105 (6): 5192- 5205.
doi: 10.3168/jds.2021-21528 |
35 | VEERKAMP R F , BEERDA B . Genetics and genomics to improve fertility in high producing dairy cows[J]. Theriogenology, 2007, 68 (Suppl 1): S266- S273. |
36 |
MUUTTORANTA K , TYRISEVÄ A M , MÄNTYSAARI E A , et al. Genetic parameters for female fertility in Nordic Holstein and Red Cattle dairy breeds[J]. J Dairy Sci, 2019, 102 (9): 8184- 8196.
doi: 10.3168/jds.2018-15858 |
37 |
陈紫薇, 师睿, 罗汉鹏, 等. 宁夏地区荷斯坦牛青年牛繁殖性状遗传参数估计[J]. 畜牧兽医学报, 2021, 52 (2): 344- 351.
doi: 10.11843/j.issn.0366-6964.2021.02.007 |
CHEN Z W , SHI R , LUO H P , et al. Estimation of genetic parameters of reproductive traits of Holstein heifers in Ningxia[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (2): 344- 351.
doi: 10.11843/j.issn.0366-6964.2021.02.007 |
|
38 |
MOTA L F M , LOPES F B , FERNANDES JÚNIOR G A , et al. Genome-wide scan highlights the role of candidate genes on phenotypic plasticity for age at first calving in Nellore heifers[J]. Sci Rep, 2020, 10 (1): 6481.
doi: 10.1038/s41598-020-63516-4 |
39 | 任小丽, 栗敏杰, 白雪利, 等. 中国荷斯坦牛青年初产年龄和成年母牛产犊间隔遗传参数估计[J]. 中国畜牧杂志, 2019, 55 (3): 45- 49. |
REN X L , LI M J , BAI X L , et al. Genetic parameters for age at first calving of heifer and calving interval of cow in Chinese Holstein[J]. Chinese Journal of Animal Science, 2019, 55 (3): 45- 49. | |
40 |
KEARNEY J F , SCHUTZ M M , BOETTCHER P J . Genotype×environment interaction for grazing vs. confinement. Ⅱ. Health and reproduction traits[J]. J Dairy Sci, 2004, 87 (2): 510- 516.
doi: 10.3168/jds.S0022-0302(04)73190-2 |
[1] | 李相辰, 王林楠, 于正青, 张莉, 杨晨晨, 宋亮丽. 槲皮素抑制自噬恢复LTA诱导的奶牛乳腺上皮细胞紧密连接功能[J]. 畜牧兽医学报, 2024, 55(9): 3887-3896. |
[2] | 周佳丽, 丁宝隆, 马子明, 淡新刚, 赵洪喜. 奶牛子宫内膜炎与胃肠微生物相关性及益生菌作用的研究进展[J]. 畜牧兽医学报, 2024, 55(8): 3321-3330. |
[3] | 王若薇, 许曦瑶, 汤晓娜, 王春梅, 赵锋. 结缔组织生长因子体外调控奶牛乳腺上皮细胞生长和泌乳分化[J]. 畜牧兽医学报, 2024, 55(8): 3446-3459. |
[4] | 范悦, 韩博, 李艳华, 刘林, 麻柱, 孙东晓. 畜禽饲料效率性状遗传研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2786-2794. |
[5] | 郭子骄, 郑伟杰, 孙伟, 吴宝江, 包向男, 张琪, 贺巾锋, 包斯琴, 赵高平, 王子馨, 韩博, 李喜和, 孙东晓. 荷斯坦奶牛胚胎基因组遗传评估研究[J]. 畜牧兽医学报, 2024, 55(7): 2940-2950. |
[6] | 宋浩然, 冯肖艺, 张培培, 张航, 牛一凡, 余洲, 万鹏程, 崔凯, 赵学明. 奶牛卵泡颗粒细胞在卵泡发育中的作用机制[J]. 畜牧兽医学报, 2024, 55(6): 2313-2324. |
[7] | 张馨蕊, 付予, 马思佳, 杨卓, 陶金忠. 围产期奶牛生理调控与饲养管理[J]. 畜牧兽医学报, 2024, 55(6): 2325-2333. |
[8] | 闫田田, 武建亮, 王朝军, 徐利, 孟庆利, 苏美玉, 李涵乔, 黄国英, 王超, 林佳琪. 法系大白猪繁殖性状遗传参数估计及遗传进展分析[J]. 畜牧兽医学报, 2024, 55(6): 2388-2396. |
[9] | 张航, 张培培, 杨柏高, 冯肖艺, 牛一凡, 余洲, 曹建华, 万鹏程, 赵学明. IGF1、CoQ10、MT联合添加缓解热应激对牛IVF囊胚的影响[J]. 畜牧兽医学报, 2024, 55(6): 2474-2485. |
[10] | 康佳威, 黄宣凯, 王志鹏, 张爱珍, 孟芳荣, 盖鹏, 包军付, 孙可心, 宋少康, 孙攀, 陈一川, 张蕾, 高圣玥, 常铭航. 大白猪生长、繁殖和体尺性状遗传参数估计[J]. 畜牧兽医学报, 2024, 55(5): 1936-1944. |
[11] | 费国庆, 宁致远, 赵泽芳, 刘艳秋, 刘腾飞, 李贤, 丛日华, 陈鸿, 陈树林. 妊娠期奶牛黄体细胞的分离鉴定及培养特性[J]. 畜牧兽医学报, 2024, 55(5): 2214-2225. |
[12] | 向辉, 桂林森, 杨迪, 魏士昊, 宫艳斌, 史远刚, 马云, 淡新刚. 奶牛同期发情-定时输精技术研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1412-1422. |
[13] | 沈文娟, 杨卓, 张馨蕊, 付予, 陶金忠. 奶牛生殖道微生物与繁殖及相关疾病的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 924-932. |
[14] | 康方圆, 刘镇滔, 吴奎显, 倪晗, 钟凯, 李和平, 杨国宇, 韩立强. 脂噬对奶牛乳腺上皮细胞脂滴大小的调控研究[J]. 畜牧兽医学报, 2024, 55(3): 1095-1101. |
[15] | 张馨蕊, 付予, 杨卓, 沈文娟, 陶金忠. 奶牛早期妊娠诊断蛋白的研究[J]. 畜牧兽医学报, 2024, 55(2): 451-460. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||